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Critical behavior of a nonpolar smectogen from high-resolution birefringence measurements
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We report high-sensitivity and high-temperature resolution experimental data for the temperature dependence
of the optical birefringence of a nonpolar monolayer smectogen 4-butyloxyphenyl-4′-decyloxybenzoate (10.O.4)
liquid crystal by using a rotating-analyzer technique. The birefringence data cover nematic and smectic-A phases
of the 10.O.4 compound. The birefringence data are used to probe the temperature behavior of the nematic
order parameter S(T ) in the vicinity of both the nematic-isotropic (N -I ) and the nematic–smectic-A (N -SmA)
transitions. For the N -I transition, from the data sufficiently far away from the smectic-A phase, the average
value of the critical exponent β describing the limiting behavior of S(T ) is found to be 0.2507 ± 0.0010, which is
in accordance with the so-called tricritical hypothesis, which predicts β = 0.25 and excludes higher theoretical
values. The critical behavior of S(T ) at the N -I transition is discussed in detail by comparing our results with
the latest reports in the literature and we conclude that by comparing with the previously reported results, the
isotropic internal field assumption by the Vuks-Chandrasekhar-Madhusudana model is adequate to extract the
critical behavior of S(T ) from the optical birefringence data. We observe that there is no discontinuous behavior
in the optical birefringence, signaling the second-order nature of the N -SmA transition. The effect of the coupling
between the nematic and smectic-A order parameters on the optical birefringence near the N -SmA transition is
also discussed. In a temperature range of about 4 K above and below the N -SmA transition, the pretransitional
evidence for the N -SmA coupling have been detected. From the analysis of the optical birefringence data above
and below the N -SmA transition by means of various fitting expressions we test the validity of the scaling relation
λ = 1 − α between the critical exponent λ describing the limiting behavior of the nematic order parameter and the
specific heat capacity exponent α. We then show that the temperature derivative of the nematic order parameter
S(T ) near TNA exhibits the same power-law divergence as the specific heat capacity with an effective critical
exponent of 0.2303 ± 0.0035.
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I. INTRODUCTION

Liquid crystals (LCs) constitute a state of matter that
has properties between those of a crystalline solid and an
isotropic liquid. Many liquid crystalline compounds exhibit
one or more distinct mesophases between the crystalline solid
and the isotropic liquid. These mesophases are classified on
the basis of molecular order. Most common mesophases are
orientationally ordered nematic (N ) phases and the layered
smectic (Sm) phases [1,2]. Without any long-range positional
order, the nematic phase is characterized by long-range
orientational order where the molecules tend to align along
a preferred direction, the so-called director. In smectic phases,
in addition to long-range orientational order, partial positional
order is present as well. In the smectic-A (SmA) phase,
a one-dimensional layering structure, normal to the layers
parallel to the director, occurs.

A nematic liquid crystal, due to its orientational order,
behaves like an optically uniaxial crystal and its physical
properties exhibit anisotropy [1,3]. As pointed out by de
Gennes [1], any anisotropic physical quantity can be a measure
of orientational ordering in the nematic phase. Among these
quantities, the optical birefringence is a crucial parameter with
respect to practical applications of liquid crystals since in
each type of nematic display an optimum birefringence value
is required to obtain a maximum optical contrast [4,5]. In
contrast, the birefringence is of great importance since it is
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directly proportional to the orientational order parameter of
the N phase. Furthermore, it is worthwhile noting that the
knowledge of the temperature dependence of the orientational
order parameter is essential for testing any model of liquid
crystalline behavior [6].

It is well known that interference methods [4] are often
used to measure the optical birefringence. To date, the wedge
method [7], the light transmission method for plane-parallel
liquid crystal cells [8–10], and the conoscopic method [11]
have been frequently used. Recently, a modulated polarization
technique for birefringence measurements has been reported
[12,13]. In addition it should be noted that birefringence
measurements have concentrated almost solely on homologous
series of 4-alkyl-4′-cyanobiphenyl (nCB) and 4-alkyloxy-4′-
cyanobiphenyl (nOCB) [14] liquid crystalline compounds and
their mixtures [7–9,11–13]. The nCB and nOCB compounds
are known to have the strongly polar cyano end group.
Thus the partial bilayer SmA phase, SmAd , forms due to an
antiparallel orientation between neighboring polar molecules
such that the aromatic cores overlap [15]. Nevertheless, in
the literature one can find numerous studies on the critical
behavior of the orientational (nematic) order parameter S(T )
obtained from refractive index or birefringence measurements
directly [16–21]. However, the above-mentioned studies on
the critical behavior of the order parameter S(T ) have focused
mostly on the nematic-isotropic (N -I ) transition, except for the
studies in Refs. [17,21]. In most studies [18–20] the analysis
of the order parameter S(T ) has been performed via the Haller
approximation [22], which is known to be inconsistent with
the weakly first-order character of the N -I transition [23,24].
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In fact, the critical exponent β of the order parameter S(T )
found by this approximation has values in between 0.14
and 0.2 [18–20] that do not match any of the predicted
theoretical values. Recently, it has been shown [16,17] that
the Haller approximation is not acceptable in the analysis of
the order parameter S(T ) since it leads systematically to lower
values for β, namely, β � 0.20, than those extracted from
refractive index [16,17], dielectric constant anisotropy [25,26],
and anisotropy in thermal conductivity data [27]. Another
issue is that not only the temperature resolution but also
resolutions in refractive index and birefringence measurements
are insufficient to extract the limiting behavior of the exponent
β discussed in the above studies since refractive index [18,19]
and birefringence measurements [20] are based on the visual
inspection by means of an Abbe refractometer and wedge
method for the former and Newton’s ring technique for the
latter. Thus it should be emphasized that high-resolution
(in both temperature and birefringence) measurements are
essential in order to extract the critical behavior near the phase
transition region.

The nematic–smectic-A (N -SmA) transition in liquid crys-
tals has been studied extensively [23,24,28,29], but it still
remains one of the most intriguing problems in the statistical
mechanics of condensed matter. Although one can find several
refractive index or optical birefringence studies covering the N

and SmA phases in the literature [11,21,30], quite surprisingly,
the number of high-resolution (in both temperature and
birefringence) optical studies is quite limited especially in the
vicinity of the N -SmA transition. Lim and Ho [31] measured
the birefringence in polar liquid crystal 8OCB [14] in order
to reveal the behavior of the nematic order parameter near
the N -SmA transition. They did not observe any measurable
discontinuity in the birefringence, signaling the second-order
nature of the transition. They remarked that improvements
beyond mean-field molecular and phenomenological theories
are essential to clarify pretransitional temperature behavior,
due to fluctuations, of the birefringence in the vicinity of the
N -SmA transition. In addition, Gramsbergen and de Jeu [32]
measured the birefringence of mixtures of two compounds,
namely, n = 7 and 8, of the homologous series of nonpolar
p,p′-dialkylazoxybenzenes (nAB) near the N -SmA transition.
The tricritical N -SmA point was observed for a mole fraction
near 0.5 of the 8AB liquid crystal in the mixture. At lower mole
fractions of 8AB, for the second-order transitions, the critical
exponent λ describing the limiting behavior of the nematic
order parameter in the vicinity of the N -SmA transition was
found to increase with decreasing 8AB concentration from
the value of 0.51 for the tricritical mixture to 0.64 for the
pure 7AB compound. They noted that the critical exponent
values were in good agreement with the ones extracted from
x-ray scattering experiments [33]. However, since calorimetric
information was not available, it was not possible to test the
theoretically expected [34] relation λ = 1 − α, where α is the
specific heat capacity exponent. Very recently, Kityk et al.
reported high-resolution optical birefringence measurements
of 8OCB [12] and 7CB–8CB [13] imbibed in silica channels
and also compared their results to the bulk behavior. In
these studies however, the critical behavior of birefringence
near the phase transitions was not discussed. Furthermore,
in Ref. [27] Marinelli and Mercuri reported high-resolution

photopyroelectric (PPE) measurements of the anisotropy in
the thermal conductivity in the nCB (n = 5–9) homologous
series. They used the data to deduce the critical behavior of
the nematic order parameter S(T ) close to the N -I and N -SmA

transitions of 8CB and 9CB LC compounds in particular. They
developed a simple model taking into account the contribution
of fluctuations to the orientational order close to the N -SmA

transition. Within the framework of the model, the authors used
the critical exponent 1 − α directly to quantify the limiting
behavior of the nematic order parameter near the N -SmA

transition [see Eqs. (8) and (9) in Ref. [27]]. Instead of testing
the theoretically expected relation λ = 1 − α, they used the
values of specific heat capacity exponents directly given in
the literature [23,28,29] to analyze their data. Another issue
is that the scaling condition S(T = 0 K) = 1 [16,17] for the
order parameter S(T ) is not fulfilled in the data analysis given
in Ref. [27] since the PPE technique does not give the S(T )
value but only a quantity proportional to it because of the
very complicated connection between thermal conductivity
and microscopic processes of heat transport as argued by
Marinelli and Mercuri [27].

The nonpolar 4-alkyloxyphenyl-4′-alkyloxybenzoate
(n.O.m) liquid crystalline compounds [35], in contrast to
nCB and nOCB compounds, do not exhibit antiparallel
ordering and have a normal monolayer smectic A, namely,
SmAm, phase [36]. In contrast, the N -I and N -SmA

transitions in n.O.m compounds have not been investigated
systematically. The 6.O.8, 6.O.10, and 6.O.12 compounds
and their mixtures have been investigated only by adiabatic
scanning calorimetry [29,37,38]. Additionally, both the
SmA-SmC transition in pure 10.O.4 and the SmA-SmC∗
(chiral SmC) transition in the binary mixtures of 10.O.4 with
methyl-choloropentanoyloxy heptyloxybiphenyl (C7) liquid
crystals have been studied via x-ray measurements for the
former [39] and ac calorimetry [40], NMR spectroscopy [41],
and electroclinic tilt susceptibility measurements [42] for
the latter. Yildiz and Nesrullajev investigated the effect of
surface aging on thermotropic properties of 10.O.4 by means
of polythermic polarizing microscopy technique [43]. The
mirage effect in particular was used to study SmA-SmC

transitions in 10.O.4-8.O.4 binary mixtures by Özbek
et al. [44]. The effect of thin films on the orientational and
optical properties of 10.O.4 has also been studied by the
mirage effect [45]. Results for the N -SmA transitions of the
10.O.4 compound have been reported from studies based
on refractive index measurements [17] and calorimetric
methods [46]. Recently, Gupta et al. reported the temperature
dependence of optical birefringence of 10.O.6 liquid crystal
in nematic, smectic-A, and smectic-C phases [47] by means
of the Chatelain-wedge principle. Although the birefringence
measurements cover nematic and smectic-A phases, the
authors did not argue the critical behavior of the order
parameter of the 10.O.6 liquid crystal since the temperature
resolution was insufficient. In contrast, in Ref. [17] Yildiz
et al. measured the ordinary and extraordinary refractive
indices of 10.O.4 by means of an Abbe refractometer. As has
been repeatedly stated, these types of measurements are based
on visual inspection; thus the resolution in the birefringence
is poor. Due to a lack of information about the critical
behavior of the nematic order parameter, particularly in the
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vicinity of the N -SmA transition, recently we have focused
on high-resolution optical birefringence measurements based
on a rotating-analyzer method, which is a very accurate
interference method [32,48,49]. It is well known that the
optical birefringence is a direct measure of the nematic order
parameter. Furthermore, it is also sensitive to the smectic
order parameter, as will be discussed in more detail in the
following section. The rotating-analyzer method has been
known for a long time; quite surprisingly it has not been used
for optical birefringence measurements. The method has a
resolution as high as the one used by Kityk et al. [12,13].

The aim of the present work is to focus on the critical
behavior of the nematic order parameter near both the N -I
and the N -SmA transitions in n.O.m compounds since large
terminal dipoles are absent in these compounds contrary to
nCB and nOCB liquid crystals. With this purpose in mind, we
report high-resolution (in both the birefringence and tempera-
ture) optical birefringence data for a 10.O.4 LC covering the
nematic and the smectic-A phases. It is worthwhile noting that
this high-resolution optical birefringence study investigates
the temperature dependence of the optical birefringence of
n.O.m nonpolar monolayer smectogens. Here we discuss the
critical behavior of the nematic order parameter at the N -I
transition in detail by comparing our results with the latest
reports in the literature. We also discuss the effect of the
coupling between the nematic and smectic-A order parameters
on the optical birefringence in the vicinity of the N -SmA

transition. Moreover, by analyzing the temperature behavior of
both optical birefringence �n directly and also its temperature
derivative near the N -SmA transition, we have tested the
validity of the scaling relation λ = 1 − α between the critical
exponent λ describing the limiting behavior of the nematic
order parameter and the specific heat capacity exponent α in
the vicinity of the transition, contrary to the analysis carried
out by Marinelli and Mercuri in Ref. [27].

II. THEORETICAL BACKGROUND

A. Nematic-isotropic transition

In the nematic phase, for rodlike molecules, the simplest
measure of the long-range orientational order of a liquid crystal
is given by the scalar order parameter S(T ), introduced by
Tsvetkov [50]:

S = 1
2 〈3 cos2θ − 1〉, (1)

where θ describes the orientation of the molecular symmetry
axis with respect to the director and it depends strongly on
temperature T . The angular brackets denote an averaging
over all molecules under consideration. As far as the optical
measurements, refractive index, or optical birefringence are
concerned, to determine the behavior of S(T ) one needs
to develop a molecular model connecting the macroscopic
property (i.e., optical birefringence) to the related molec-
ular property, namely, the polarizability α. Two models
have been extensively applied, namely, the isotropic model
by Vuks, Chandrasekhar, and Madhusudana [51] and the
anisotropic model by Neugebauer, Maier, and Saupe [52]. The
Vuks-Chandrasekhar-Madhusudana (VCM) model assumes
an isotropic internal field experienced by a molecule. The
nematic order parameter S(T ), under the assumption of the

VCM model, is given by

�α

〈α〉S(T ) = n2
e − n2

o

〈n2〉 − 1
, (2)

where ne and no are the extraordinary and ordinary refractive
indices, respectively, and 〈n2〉 = (n2

e + 2n2
o)/3. The molecular

polarizability anisotropy is given by �α = αl − αt , where
αl and αt are longitudinal (parallel) and transverse (perpen-
dicular) polarizabilities relative to the long molecular axis,
respectively. The mean polarizability, which is an intrinsic
temperature-independent molecular property [19,21,47], is
〈α〉 = (αl + 2αt )/3. The optical anisotropy, or optical bire-
fringence, depends on the wavelength and temperature and is
defined as

�n = ne − no = n‖ − n⊥, (3)

where n‖ and n⊥ are the refractive indices parallel and
perpendicular to the director, respectively. Noting that n2

e −
n2

o = 2n(�n), where n = (ne + no)/2, it is plausible to take
that n ≈ nI and 〈n2〉 ≈ n2 ≈ n2

I , where nI is the value of
the refractive index in the isotropic phase just above the
N -I transition temperature TNI . With the help of these
approximations, Eq. (2) can be written as

�α

〈α〉S(T ) = 2nI�n

n2
I − 1

. (4)

This approximation seems excellent due to partial cancellation
of the changes resulting from small variations in n with
temperature T [16,17].

Particularly noteworthy is the fact that the temperature
dependence of the order parameter S in the nematic phase turns
out to be quite complicated since there is no analytic solution
to the quartic equation arising from the minimization condition
of the Landau–de Gennes expansion [1,53]. However, the
behavior of S(T ) in the nematic phase can still be well ap-
proximated by a four-parameter power-law expression, which
is consistent with the mean-field theory for a critical as well as
a tricritical point for a weakly first-order transition (nonzero
cubic term) [23,25,37,53]. The temperature dependence of
S(T ) can be written as

S(T ) = S∗∗ + A|τ |β, (5)

where τ = (T − T ∗∗)/T ∗∗ is the reduced temperature relative
to the effective second-order transition temperature T ∗∗ seen
from below TNI , i.e., the absolute limit of the superheating
of the nematic phase, and is slightly larger than the observed
transition temperature TNI . At T = 0 K, the nematic order
would become perfect; hence a plausible scaling condition for
S(T ) is given by S(0) = 1, which implies S∗∗ + A = 1. In
order to quantify the birefringence measurements we used the
following expression derived from Eqs. (4) and (5) together
with the scaling condition given above:

�n = n2
I − 1

2nI

�α

〈α〉 [S∗∗ + (1 − S∗∗)|τ |β]. (6)

This expression contains four fit parameters �α/〈α〉, S∗∗,
T ∗∗, and β. The nI value is quoted from refractive index
measurements [17]. Previous attempts to extract the critical
behavior of the order parameter S(T ) have assumed a smaller
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number of free parameters for the fitting procedure. Haller’s
approximation [22] consists of determining �α/〈α〉 and β

from an expression similar to Eq. (5) in which S∗∗ = 0 and
T ∗∗ = TNI . Only points far from TNI have been considered
in the fitting procedure [18–20]. As argued previously, this
approximation gives systematically lower values for β and is
not consistent with the character of the N -I transition.

B. Nematic–smectic-A transition

In liquid crystalline compounds exhibiting the smectic-A
phase as well as the nematic phase, it is reasonable to expect
that the orientational ordering is augmented by the occurrence
of the smectic layering and this augmentation will probably
depend on the strength of the coupling between the nematic and
smectic-A order parameters. For the coupling of the nematic
order parameter S with the smectic-A order parameter �, de
Gennes postulated [54] the relationship S − S0 = Cχ〈|�|〉2

in the mean-field approach. Here S0 is the value of S in the
absence of smectic ordering, C is a coupling constant, and χ

is a response function. By including the effect of short-range
smectic ordering and the fluctuations of the order parameters,
this form has to be modified [31] into S − S0 ∼ 〈|�|2〉. Based
on a rather general consequence of the Landau–de Gennes free
energy [33,34,54], one can derive the following expression:

〈|�|2〉 = A + B±|t |λ, (7)

where t = (T − TNA)/TNA, with TNA the N -SmA transition
temperature, and λ = 1 − α, with α the specific heat capacity
exponent. The plus-minus sign refers to above and below TNA,
respectively. As mentioned previously, there is a quite general
argument predicting the relation λ = 1 − α for the Landau–de
Gennes free energy. Simply, the argument starts with the free
energy of the form U = ∫

d3r[at |�|2 + δU (�)] and then
calculates the partition function Z = ∫

d� exp(−U/kBT ).
Differentiation with respect to temperature yields the excess
entropy �S∗ ∼ 〈|�|2〉. Then �S∗ can be calculated by taking
the integral of the singular part of the specific heat capacity
CP ∼ t−α; thus �S∗ ∼ 〈|�|2〉 ∼ t1−α and finally one obtains
λ = 1 − α. As discussed in Sec. II A, the relation between
the optical birefringence �n and the order parameter S is
rather complex due to the internal field problem, but as a
first approximation it is reasonable to assume that they are
proportional. Thus, with the help of the relation S − S0 ∼
〈|�|2〉, it is possible to determine the critical exponent λ in
Eq. (7) from high-resolution �n vs T data in the vicinity of
the N -SmA transition and to justify the relation λ = 1 − α

by comparing the specific heat capacity exponent α in the
literature when available.

III. EXPERIMENT

The nonpolar smectogen liquid crystal 4-butyloxyphenyl-
4′-decyloxybenzoate (10.O.4) C10H21O-Ph-COO-Ph-OC4H9,
where Ph refers to a benzene ring, was synthesized and purified
by Dabrowski in the Institute of Chemistry, Military University
of Technology, Warsaw, Poland. By chromatography, the
purity was stated to be better than 99.8% and the compound
was used as received.

In this work we employed high-resolution (in both temper-
ature and birefringence) optical birefringence measurements
to reveal the critical behavior of the 10.O.4 compound. We
performed the optical measurements via the rotating-analyzer
method [32,48,49]. In this method, light from a He-Ne
laser (JDS Uniphase) at a wavelength of λ = 633 nm, passes
successively through a polarizer (Thorlabs Inc.), the sample,
a quarter-wave plate (Thorlabs Inc.), and a rotating polaroid
with angular frequency ω before reaching a photodiode
(Thorlabs Inc.). The polarizer and the quarter-wave plate are
both oriented at an angle of 45◦ to the optical axis of the
planar-oriented sample. Note that the phase of the ac signal
at the photodiode is directly proportional to the birefringence
of the sample. A reference beam from another laser module
passes through the rotating polaroid onto another photodiode.
Thus two signals are modulated with an angular frequency
of 2ω. (For more details, see Refs. [32,49].) Note that the
light transmitted by the sample is elliptically polarized with an
ellipticity expressed as a phase retardation of δ, given by δ =
(2πd/λ)�n. Here d refers to the sample thickness. Passing
through the quarter-wave plate, the elliptically polarized light
is converted to the plane polarized light rotated through half
the ellipticity angle. This angle is very accurately determined
via the rotating polaroid and thus the phase angle of the
rotated light is measured relative to the reference beam. The
block diagram of the setup is given in Fig. 1. The phase
measurements were made with an accuracy of 10−4 rad, with
the help of lock-in detection (Stanford Research, SR830).
In our setup the sensitivity in �n of 10−6 was obtained
for a 20-μm-thick sample. The temperature was measured
and controlled by an resistance temperature detector sensor
(Omega Eng. Corp.) and a LakeShore Model 331 temperature
controller with a resolution of 0.001 K, respectively. It is worth
recalling that the rotating analyzer setup is fully computer-
controlled via LABVIEW (National Instruments) software.
The resulting arbitrariness in �n was removed by using the
samples with various thicknesses, namely, 18 and 20 μm.

It is well known that for accurate measurements of S

and other relevant optical parameters the LC samples need
to be well aligned. The 10.O.4 sample was introduced by
capillary filling in the isotropic phase into a LC cell, which
was purchased from Instec Inc., with a thickness of 20 μm, and
then prepared to produce planar orientation of LC molecules.
After the filling process the LC cell was sealed with an epoxy
cement. The exact thickness of the empty cell was checked

FIG. 1. Schematic diagram of the high-resolution rotating an-
alyzer setup: L, laser; POL, polarizer; SH, sample holder; QWP,
quarter wave plate; RP, rotating polaroid; PD, photodiode; LIA,
lock-in amplifier; T cont, temperature controller; PC, computer. The
arrow shows the director n̂.
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both interferometrically (Jasco V-530 UV-visible spectropho-
tometer) and via scanning electron microscopy. Additionaly,
the microscopy observations were carried out with an Olympus
BHSP polarizing microscope equipped with a homemade hot
stage and with a EMKO ESM 9320 digital PID temperature
controller in order to identify the structure of the mesophases,
to confirm the phase transition temperatures and to check the
planar alignment of the LC cells as well. The optical birefrin-
gence measurements were performed for several cooling and
heating runs and reproducible results were obtained.

IV. RESULTS and DISCUSSION

A. Nematic-isotropic transition

In Fig. 2 the optical birefringence �n vs temperature T

data of 10.O.4 upon cooling (with the average scanning rate
of 1.8 mK/min) from isotropic liquid to the SmA phase is
displayed. In the isotropic phase the birefringence is zero
and increases with decreasing temperature as expected. We
considered the N -I transition temperature TNI to be the lowest
temperature corresponding to the zero birefringence in the
isotropic phase. Thus the observed transition temperature was
TNI = 359.54 K. Thus it can be concluded that any pretransi-
tional effects are absent in the isotropic phase. Moreover, the
overall shape of the �n vs T behavior is in good agreement
with similar studies for various rodlike LCs [12,13]. As seen
in Fig. 2, an enhancement in �n takes place upon lowering
the temperature towards the SmA phase. The �n is enhanced
as the smecticlike short-range order builds up, reflecting the
enhancement in the nematic (orientational) order parameter.
It should be pointed out that due to the considerably higher
resolution, our �n measurements can be used to describe
more precisely the nature of the N -SmA transition, as will
be discussed below. Note that the N -I and N -SmA transition
temperatures were also confirmed by texture changes in the
polarizing microscope.

In order to reveal the critical behavior of the nematic order
parameter S(T ) near the N -I transition the experimental �n

vs T data have been fitted to Eq. (6). For the fitting procedure,

FIG. 2. Measured optical birefringence �n vs temperature T

of the 10.O.4 compound. The arrow marks the N -SmA transition
temperature. The solid line is the fit to Eq. (6) extrapolated to the
SmA phase.

we have used a nonlinear multiparameter fitting program
using a subroutine of MATLAB, based on the conjugated
gradient method, which has been used successfully up to now
[16,17,45,46]. The quality of the fits has been evaluated via
the reduced error function χ2

ν , which is defined as [55]

χ2
ν =

1
ν

∑
i(yi − fi)2

σ 2
, (8)

where ν = N − p is the degrees of freedom, with N the
number of data points and p the number of fit parameters.
In Eq. (8) yi is the ith measurement value and fi is the
corresponding fit value. Here σ 2 refers to the variance of the
data. Following this definition, a good fit yields χ2

ν ≈ 1–1.5.
The results of the fits are summarized in Table I. The stability of
the fit results was tested by a double range shrinking technique
in which the points situated at both ends of the data set
were gradually discarded and the data refitted. At the high-
temperature side some data points had to be eliminated due to
the fact that they were very close to the transition temperature
TNI and probably in the coexistence region. Additionally, since
10.O.4 LC exhibits the N -SmA transition at TNA = 349.37 K,
the influence of the pretransitional behavior of the SmA phase
was detected in the nematic phase. We observed that this
pretransitional smectic behavior continues to 4.1 K above
the N -SmA transition temperature. Thus the range shrinking
procedure at the low-temperature side of the nematic phase
indicated that only the 5.9-K data range was available for the
fitting procedure in the N phase. Due to the high resolution,
we had enough data points (2950 points typically) to get
reasonably fit results. Based on the refractive index data,
Chirtoc et al. reported [16] a similar pretransitional behavior
of the SmA phase for polar LC 8CB continuing up to 4
above TNA.

As seen from Table I, the average value of the temperature
difference T ∗∗ − TNI is found to be 0.24 ± 0.03 K. Note that
the value of 0.21 ± 0.04 K on average for T ∗∗ − TNI was
reported for the nCB homologous series based on refractive
index data by Chirtoc et al. [16]. In contrast, we previously
obtained a value of 0.16 ± 0.04 K for this difference by using
refractive index data [17]. Since the resolution of the refractive
index measurements is not as good as that obtained by the
method presented here the result T ∗∗ − TNI = 0.24 ± 0.03 K
seems more reliable. In the literature one can find some
reported results for T ∗∗ − TNI based on various experimental
techniques to compare with our results. Cusmin et al. reported
that T ∗∗ − TNI ≈ 0.073 K for the 9OCB compound based
on the specific heat capacity, dielectric constant, and molar
volume measurements [56]. Rzoska et al. found −0.2 and
−0.09 for 6OCB and 7OCB LCs, respectively, by dielectric
constant measurements [57] having no physical significance.
Moreover, Zywocinski found T ∗∗ − TNI ≈ 0.11 for 8CB
following molar volume data [58]. The T ∗∗ − TNI values from
specific heat capacity measurements are known to be one order
of magnitude smaller than the values obtained from several
other quantities [38]. Thus the main conclusion drawn here is
that the optical measurements seem to be more appropriate
to get reliable values for the spinodal temperature T ∗∗.
Additionally, we have found that �α/〈α〉 = 0.5314 ± 0.0002
on average using the refractive index value nI = 1.5654 in
the isotropic phase just above the N -I transition temperature

041705-5
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TABLE I. Parameter values obtained from the fitting of �n(T ) data with Eq. (6) in the N -phase 10.O.4. Quantities in square brackets were
held fixed. The molar mass of 10.O.4 is 426.602 g/mol.

�α/〈α〉 S∗∗ T ∗∗ (K) β χ 2
ν

0.5316 ± 0.0002 0.1523 ± 0.010 359.78 ± 0.11 0.251 ± 0.003 1.09
0.5312 ± 0.0018 0.1515 ± 0.010 359.77 ± 0.06 [0.25] 1.09
0.2148 ± 0.082 [0] [359.54] 0.155 ± 0.016 3.4

TNI of the 10.O.4 LC [17]. Notice that in the present work
we have used a He-Ne laser of wavelength 633 nm. It is
worthwhile noting that the obtained value of �α/〈α〉 from
refractive index measurements by means of an Abbe-type
refractometer with a light source of wavelength 589.3 nm is
lower by 6.7% than the one found in the present work [17]. In
Ref. [16] Chirtoc et al. argued that the parameter �α/〈α〉
is wavelength dependent whereas the others are not. The
authors also observed that the values of �α/〈α〉 determined
using a 589.3-nm-wavelength light source are lower than those
determined using a 633-nm-wavelength laser source.

Depicted in Figs. 3(a) and 3(b) are the profiles of the
χ2

ν error function vs the fit parameters S∗∗, T ∗∗, and β

corresponding to the fits of the �n vs T data. They were
obtained from stepwise variation of the fit parameters S∗∗, T ∗∗,

FIG. 3. Profiles of the error function χ 2
ν obtained from stepwise

variation of the fit parameters (a) S∗∗ and T ∗∗ and (b) β.

and β, namely, in steps of 0.01, respectively. It should be noted
that the minima of the corresponding profiles are in excellent
agreement with those obtained from the four-parameter fitting
procedure. The average value of the critical exponent β

deduced from the χ2
ν error function profile was found to

be 〈β〉 = 0.2507 ± 0.0010, with a smaller standard deviation
than those of the individual fits. From the exponent value
given in Table I and the high-resolution measurements of the
optical birefringence in the present work, it can be concluded
that within the limit of experimental uncertainties, the critical
exponent of the nematic order parameter is in agreement
with the value given by the tricritical hypothesis (TCH) with
β = 0.25 and excludes higher theoretical values. Notice that
in our previous study based on refractive index measurements
[17], the critical exponent β for the N -I transition was found
to be 0.246. In the present work, due to the high sensitivity
of our method, the exponent value is more reliable. It is
worth noting that a similar tricritical value for the critical
exponent β near the N -I transition has been obtained for
the 8CB LC, which exihibits the SmA phase apart from the
N phase by refractive index measurements [16]. Hence one
can conclude that the tricitical behavior in the vicinity of the
N -I transition is valid for both LC compounds exhibiting
the partial bilayer SmA phase and the monolayer smectic
A phase, i.e., for LCs with or without a terminal dipole,
respectively. Cusmin et al. have reported that in the vicinity
of the N -I transition, the critical exponents α ≈ 0.5 and
β ≈ 0.25 based on the specific heat capacity, static dielectric
constant, and molar volume measurements on 9OCB [56];
additionally Rzoska et al. extracted the critical behavior of the
static dielectric constant near the N -I transition and reported
that α ≈ 0.5 for 6OCB and 7OCB [57]. Notice that although
the reported values of the spinodal temperatures are conflicting
in those studies, the exponent values extracted from various
physical quantities are in good agreement with the TCH.
The tricritical hypothesis was proposed by Keyes [59] and
Anisimov et al. [60,61]. According to the conjectures by
Keyes, two competing nematic order parameters, namely,
the uniaxial and biaxial order parameters, are expected to
exhibit diverging fluctuations near the N -I transition even
though the biaxial order parameter is zero in the nematic
phase. Anisimov et al., based on high-resolution specific heat
capacity measurements, argued that the behavior of the N -I
transition looks like that near a tricritical point because of the
smallness of the third- and fourth-order term coefficients in
the Landau–de Gennes expansion [1,61].

Simoes and Simeao [62] studied the profile of the nematic
order parameter derived from rescaled experimental data
points by magnetic susceptibility anisotropy and dielectric
anisotropy measurements. All investigated compounds present
the N -I and the nematic-crystalline phase transitions, without
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any other liquid crystalline phase. They rescaled the data
by defining the nematic temperature t = (T − TNC)/(TNI −
TNC), where TNC is the nematic-crystalline transition. Hence-
forth they showed that all experimental data coalesce along a
common line that extends from the N -I transition region to
the nematic-crystalline transition region. In order to quantify
the data they used a similar expression given in Eq. (6) [see
Eq. (2) in Ref. [62]]. They have found β = 0.21 ± 0.02,
which is quite close to the TCH value. Thereafter, Simoes
et al. [63], by using experimental refractive index and thermal
conductivity anisotropy data, investigated the behavior of the
nematic order parameter in the entire nematic range for the
LC samples exhibiting only an isotropic liquid, nematic, and
crystalline phase sequence. They improved a recursive process
that makes an independent and local calculation of the order
parameter exponent β in the entire range of the N phase by
using an equation similar to Eq. (6). They concluded that along
the entire N range β = 0.25 which is the value given by the
TCH.

However, it should be pointed out that the data used by
Simoes et al. in Refs. [62,63] belong to LC compounds having
only a nematic phase without any other liquid crystalline
phase. In contrast, LCs compounds such as 8CB and 10.O.4
exhibit pretransitional smectic behavior that continues up
to 4 K above the N -SmA transition. It will be intriguing
to investigate whether similar homogenous global behavior
of the nematic order parameter S(T ) would be seen for
LC compounds exhibiting pretransitional smectic behavior
and whether there would be a universal pretransitional
temperature range above TNA. It is worth recalling that in
order to decipher these behaviors various high-resolution
experimental data, e.g., optical birefringence, dielectric an-
siotropy, and thermal conductivity anisotropy, are needed.
We think that at least the present work is the beginning
of high-resolution optical measurements to decipher the
puzzle. A theory of the pretransitional smectic behavior above
TNA deserves systematic investigation both theoretically and
experimentally.

Apart from the χ2
ν error function profiles vs the parameters

S∗∗ and β given in Fig. 3, Fig. 4 displays the correlation

FIG. 4. Correlation of the four-parameter fit results in the (β,S∗∗)
plane around the optimal values.

between the parameters S∗∗ and β along the degenerate river
on the χ2

ν surface as well. It could be clearly seen that
the trajectory of the fitting procedure follows a curved path
signaling the presence of an absolute maximum S∗∗

max = 0.165.
From the profiles in Fig. 3, one can realize why the Haller
approximation (S∗∗ = 0) gives deficient values for the ex-
ponent β. In Table I, to gain insight, we also included the
fit results obtained via the Haller approximation, which gives
lower values for β with large χ2

ν values. In Ref. [62] Simoes and
Simeao observed that when the Haller approximation is used
to fit all data β = 0.159 ± 0.003 is found as well. As discussed
in Sec. I, the studies given in Refs. [18–20,30] found values
for β between 0.14 and 0.2. Although Kumari et al. [19],
Pisipati and co workers [20] used the spinodal temperature
T ∗∗ in the Haller expression instead of the N -I transition
temperature TNI , they reported that the T ∗∗ values are about
0.1–4 K higher than TNI , which has no physical significance.
Additionally Prasad and co-workers [18,30] asserted that the
exponent β in the Haller expression depends on the molecular
structure and its value is close to 0.2. Together with references
given previously for the nCB homologous series, the present
work shows that the value of the β exponent for the N -I
transition is consistent with the TCH value and excludes the
above conclusion. Our high-resolution optical birefringence
measurements show that the N -I transition may not be a
mean-field transition as argued by Maier and Saupe [1–3]. In
order to highlight this point, in Fig. 5 we plot the nematic order
parameter S of the 10.O.4 LC as a function of temperature by
using the present birefringence data and the fit results tabulated
in Table I together with traditional theoretical models, namely,
the Haller expression, the Maier-Saupe model [64], and the
Picken model [65]. It is well known that the Maier-Saupe order
parameter can be expressed approximately by the equation

S ∼=
(

1 − yT

TNI

)z

, (9)

where y ∼= 0.98 and z ∼= 0.22 for a series of experimental data
[66]. Most materials gave y = 0.98–0.99 and z = 0.14–0.18.
The semiempirical equation improved by Picken et al. [65],

S = 0.1 + 0.9

(
1 − 0.99

T

TNI

)0.25

, (10)

was found to describe S well for some homologous series at
least. As seen in Fig. 5(a), the fit expression that we used
to quantify our data [Eq. (6)] provides the best description
of the nematic order parameter in comparison to traditional
theoretical models excluding their validity near the N -I
transition.

In Refs. [12,13] Kityk et al. used a modulated polarization
technique for birefringence measurements of some LCs. In
those studies they argued that it is sufficient to determine
experimentally accessible �n in order to obtain the molecular
arrangement in a LC compound. They asserted that the temper-
ature dependence of the bare refractive indices originates from
changes in the anisotropic molecular polarizabilities of the
single molecules. Then, in order to separate out these effects
they used the quantity �n∗ ∝ �n(T )[ne(T ) + no(T )]/2 and
called �n∗ an effective birefringence. Thus they argued that
�n∗ is solely proportional to S(T ). However, it should be
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FIG. 5. (a) Nematic order parameter S vs temperature T de-
termined from Eq. (4) together with the values in Table I. Dashed
curves represent traditional theoretical models for the nematic order
parameter S: the Haller approximation [Eq. (5) with S∗∗ and T ∗∗ =
TNI ], the Maier-Saupe model [Eq. (9)], and the semiempirical Picken
equation [Eq. (10)]. (b) Effective birefringences (see the text) �n∗ vs
T and �n∗∗ vs T and the nematic order parameter S vs T determined
in the present work.

noted that in order to determine the temperature behavior of the
effective birefringence one needs either the refractive indices
ne and no as functions of temperature T or to consult the
literature data. In Fig. 5(b) we plot �n∗ vs T for 10.O.4
generated from the present �n(T ) data and the refractive
index data given in Ref. [17]. As shown in Fig. 5(b), the
nematic order parameter S(T ) of the 10.O.4 LC obtained from
the present work is higher than the effective birefringence
�n∗(T ) behavior. Hence it is unreliable to resort to the
�n∗(T ) data to represent the behavior of the order parameter
S(T ). In contrast, in Sec. II A, while deriving Eq. (4), we
have taken n = (ne + no)/2 ≈ nI . Thus it is reasonable to
expect that the quantity �n∗∗ ∝ �n(T )nI should overlap
with �n∗(T ) [see Fig. 5(b)]. We can conclude that although
the quantities �n∗and �n∗∗ are deficient to represent the
temperature behavior of S(T ), the approximation we have used
to derive Eq. (4) is plausible. The last point to be emphasized
here is that the isotropic internal field assumption by the VCM
model and the approximation used while deriving Eq. (4) are

adequate to extract the critical behavior of the order parameter
S(T ) from the optical birefringence data.

B. Nematic–smectic-A transition

As stated previously, the study of the critical behavior at
the N -SmA transition is an active area of research [23,24].
Most theoretical studies predict that this transition should
belong to the three-dimensional (3D) XY universality class [1].
However, the experimental results to date have not established
a clear case of 3D XY universality [23,24,28,29]. Owing to the
coupling between the nematic and smectic-A order parameters,
strongly influenced by the width of the nematic range, a
crossover behavior from the second-order transition up to a
tricritical point (TCP), beyond which the N -SmA transition
is of first order, has been observed [23,24,28,29,36,56].
For a wide nematic range (weak coupling) the N -SmA

transition is of second order. When the nematic range is
narrow (strong coupling) the transition is of first order
[28,29]. The McMillan ratio RM = TNA/TNI accounts for
the coupling. Although the ratio RM determines the width
of the nematic range, its value is not universal for different
systems. Additionally, the ratio RM has been empirically
used to locate the N -SmA TCP. Tricritical points have been
characterized by the ratio of 0.942 to 0.995 [36,56], and sys-
tems with smaller ratios usually exhibit second-order N -SmA

transitions.
In this section we focus on the coupling between the nematic

and smectic-A order parameters near the N -SmA transition
based on the optical birefringence data. It is worthwhile
pointing out that the coupling, if it exists, manifests itself
by an enhancement in the nematic order parameter S, thus in
the �n vs T data. In the nematic and smectic-A phases �n

and S are proportional to each other through quantities such as
density and the mean refractive index, which are known to be
insensitive to temperature [5,64]. Thus our high-resolution �n

vs T data perfectly reflect the effect on the order parameter S by
the buildup of smectic-A ordering near the N -SmA transition.
As one can infer from the extended plot in Fig. 6 and from
the fact that no thermal hysteresis was observed within the

FIG. 6. Expanded plot of �n vs temperature T in the vicinity of
the N -SmA transition. The solid line is the fit to Eq. (13).
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experimental resolution, the N -SmA transition of 10.O.4 LC
appears continuous.

In Fig. 2 it could be seen that there is an increment
in the order parameter S induced by the occurrence of
smectic layering above and below TNA ≈ 349.37 K. It is
quite reasonable to infer that there should be an anomalous
increase in the quantity −d(�n)/dT both above and below
TNA by inspecting the temperature behavior of the residuals
�nexp − �nfit, with nfit from the fitting in the nematic range of
10.O.4 above TNA + 4.1 K when the residuals are extrapolated
down to a lower-temperature region. Kityk and Huber [12]
have used the quantity d(�n)/dT to locate the phase transition
temperatures. It should be noted here that both transition
temperatures TNI and TNA of the 10.O.4 LC extracted from
the extrema of the d(�n)/dT vs T data are consistent with
the ones obtained by polarizing microscopy and the supplier.
Kityk and Huber [12] also argued that d(�n)/dT was related
to the heat capacity anomaly based on the argument given
in Sec. II B. In the present work, contrary to the approach
by Kityk et al., we have discussed whether the limiting
behavior seen in the d(�n)/dT vs T data near TNA is
related to the specific heat capacity exponent α. Although
it is possible to try numerical differentiation of the �n(T )
data, the −d(�n)/dT calculated successively from the pairs of
neighboring data points are too scattered, especially when the
points are measured at rather small temperature steps, namely,
2–5 mK. Instead, it is admissible to introduce a new quotient
such that

Q(T ) = −�n(T ) − �n(TNA)

T − TNA

. (11)

One can easily show that if the −d(�n)/dT vs T data
follows a power-law behavior with the critical exponent z, then
the limiting behavior of the quotient Q(T ) follows a power law
with the same critical exponent and the background term but
different critical amplitude. A point that should be emphasized
here is that the quotient Q(T ) is similar to the quantity C(T ) =
[H (T ) − Hc]/(T − Tc), with H (T ) the enthalpy obtained as a
function of temperature T by adiabatic scanning calorimetry
[23,67]. Likewise, the quantity C(T ), which is in fact the
slope of the chord connecting H (T ) at T with Hc at Tc,
has a power-law behavior with the same critical exponent
α as the specific heat capacity Cp = dH/dT [23,29,67].
This fact has frequently been exploited in the analysis of
the enthalpy data [23,46,67,68]. Previously, another quotient
Q(T ) = [V (T ) − Vc]/(T − Tc), with V (T ) the molar volume
obtained as a function of temperature T by a dilatometer [69],
was used to analyze the molar volume data near TNA for various
liquid crystals. It should be underlined here that since the
quotient Q(T ) has a regular background contribution that may
result from the temperature dependence of �nfit, it is possible
to eliminate this effect by defining the so-called the background
quotient Qb(T ) = −[�nfit(T ) − �nfit(TNA)]/(T − TNA). In
this manner the anomaly in the quotient �Q(T ) = Q(T ) −
Qb(T ) can be observed more clearly as presented in Fig. 7
for the 10.O.4 LC. Note that �Q(T ) exhibits critical behavior
near the N -SmA transition. As discussed previously in
Sec. II B, the critical exponent z describing the behavior of
the �Q vs T data near TNA should be the same as that of the

FIG. 7. Temperature behavior of the quotient �Q(T ) in the
vicinity of the N -SmA transition. The solid line is the fit to Eq. (12).

specific heat capacity and the volume thermal expansion coeffi-
cient, namely, α. Hence one can expect z = α = 1 − λ. At this
stage we would like to stress that the relationship between the
critical exponents λ and α (see Sec. II B ) can be deduced via
the Lorenz-Lorentz relation between the refractive index and
the density. When going from the nematic phase to the smectic-
A phase, the increase in �n(T ) and S(T ) is accompanied by
an increase in the density [69,70]. That is, the increase in
the nematic order parameter S(T ) is associated with a better
packing of the molecules, due to induced smectic layering, and
an associated density effect. Thus, on the basis of the gene-
ralized Pippard relations, the temperature behavior of the
density and the volume thermal expansion coefficient have the
same power-law divergence near a second-order phase tran-
sition as that of the specific heat capacity [71].

As an attempt to quantify the critical behavior of �Q(T )
associated with the N -SmA transition the following fitting
equation has been applied:

�Q(T ) = A±|t |−z + B, (12)

with the critical amplitudes A+ and A− above and below TNA

and a background term B as well. Here t = (T − TNA)/TNA

is the reduced temperature. Note that while fitting the �Q vs
T data to Eq. (12) we have imposed the equality of the critical
exponents below and above TNA and fixed TNA at 349.37 K. In
Fig. 8 we present the χ2

ν error function profile of simultaneous
fits of �Q(T ) above and below TNA as a function of the
critical exponent z from the fitting procedure with three free
parameters A+, A−, and B. As seen in Fig. 8, the minimum
of the profile is in good agreement with the value determined
from the four-parameter simultaneous fits. The minimum is
found to be z = 0.2301 ± 0.0010. Also note that the value
of z from the four-parameter fitting is 0.2301 ± 0.0020.
Previously, we performed adiabatic scanning calorimetry
(ASC) measurements on the 10.O.4 LC compound [46]. It
is well known that ASC yields a temperature dependence of
both the heat capacity and enthalpy. It can easily distinguish
between the first- and second-order transitions and reveals
subtle features of heat capacity [23,29,67]. Based on ASC
data, we concluded that the N -SmA transition of 10.O.4 is of
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FIG. 8. The χ 2
ν error function profile for fits of the �Q(T ) data

obtained from stepwise variation of the critical exponent z. The fitting
function is given by Eq. (12).

second order within the experimental resolution and the value
of the effective specific heat capacity critical exponent was
found to be α = 0.23 ± 0.01 [46]. Note that there is excellent
agreement between the z value extracted from optical �Q(T )
data and the α value from calorimetric data. Thus it should be
stressed that the temperature derivative of the nematic order
parameter S(T ) curve below and above TNA has the same
power-law divergence as the specific heat capacity.

In order to get deeper insight into the critical behavior at the
N -SmA transition of 10.O.4 from our birefringence data and
also to check the theoretically expected relation λ = 1 − α we
have fitted our �n(T ) data to the following expression, which
is reminiscent of the fitting expression used to analyze the
molar volume data in the literature [69,70]:

�n(T )

=
{

A′
+|t |1−z(1 + D′

+|t |0.5) + B ′
+|t | + C ′

+, T > TNA

A′
−|t |1−z′

(1 + D′
−|t |0.5) + B ′

−|t | + C ′
−, T < TNA,

(13)

where t = (T − TNA)/TNA. The fitting equation (13) can be
obtained by integrating Eq. (12) or it can be directly drawn
from Eq. (7) with the inclusion of a linear background term
such as B ′

±|t | in the vicinity of TNA. It is customary to include
the first correction-to-scaling term [72] with the exponent 0.5
as we did in Eq. (13). Additionally, we notice here that in
Eq. (13) we removed the constraint of the equality of the
critical exponents below and above the transition. Also, at
this stage we prefer using λ = 1 − z instead of λ = 1 − α. In
principle, the transition temperature TNA should be treated as
a free parameter. It is well known that in fitting expressions
such as Eq. (13) different parameters can be strongly correlated
and to avoid this we reduced the free parameters in Eq. (13).
At first we established the transition temperature TNA with
the fitting expression (12). In the preliminary fits TNA was
changed by iterations with steps of 0.002 K. The criteria for
choosing the best value of TNA were the minimum of the
χ2

ν error function profile for the fits both below and above
TNA and the equality of the critical exponents z = z′. It is

worth recalling that this procedure is quite similar to the
one applied by Zywocinski and Wieczorek in the analysis
of molar volume data [69]. The transition temperature value
established by this method is TNA = 349.364 K with the criti-
cal exponents z = z′ = 0.232 ± 0.002. Note that the above
value of TNA is 6 mK lower than the value obtained from the
extrema of the d(�n)/dT vs T data and the one by polarizing
microscopy. Since close to the transition point the contribution
from the correction-to-scaling terms can be neglected, we
set D′

+ = D′
− = 0. We then fitted our �n(T ) data near the

N -SmA transition to Eq. (13) with TNA = 349.364 K fixed and
the constraint D′

+ = D′
− = 0 using a nonlinear multiparameter

fitting program discussed in the preceding section. The fitting
results are presented in Table II. The values of the calculated
critical exponents are stable to range shrinking and can be
averaged to z = 0.2417 ± 0.0004. The inclusion of the correc-
tion terms, i.e., D′

+ �= D′
− �= 0, did not improve the fit quality.

Figure 9 presents the χ2
ν error function profile of simultaneous

fits �n(T ) above and below TNA as a function of the critical
exponent z. Additionally, as shown in Table II, C ′

+ ∼= C ′
− =

�n(TNA) = 0.127 35 ± 0.000 20, thus we concluded that the
N -SmA transition of 10.O.4 is continuous together with the
observation that there is no thermal hysteresis near TNA.

As discussed above, the quotient Q(T ) has a regular
background contribution that may result from the temperature
dependence of �nfit; thus, for the fitting procedure we used
the background quotient Qb(T ) to eliminate this regular
background. In the final step to determine the critical exponent
z from the �n(T ) data directly, we have subtracted the
regular background �nfit(T ) from the birefringence data and
then fitted the �n(T ) − �nfit(T ) data to the following fit
expression:

�n(T ) − �nfit(T )

=
{

A+|t |1−z + B+|t | + C+, T > TNA

A−|t |1−z′ + B−|t | + C−, T < TNA.
(14)

Since the correction-to-scaling terms did not improve the
fit quality appreciably during the previous fits, we did not
include these correction terms in Eq. (14). While fitting the
�n(T ) − �nfit(T ) data to Eq. (14) the N -SmA transition
temperature was fixed at TNA = 349.364 K, as was done
previously. The fitting results are tabulated in Table II. The
critical exponent values are insensitive to range shrinking
and can be averaged to z = 0.2305 ± 0.0025. Additionally,
Fig. 10 depicts the χ2

ν error function profile of simultaneous
fits �n(T ) − �nfit(T ) above and below TNA as a function of
the critical exponent z. The agreement is excellent with the
exponent values obtained from separate fits. By taking into
account the value of the critical exponent z obtained from
various fitting expressions [Eqs. (12)–(14)] it can be seen that
the critical exponent z extracted from the optical birefringence
data and the α value from the calorimetric data are in good
agreement. It should be noted here that the critical exponent
z values are quite close to the α value when the regular
background �nfit(T ) is subtracted during the fitting procedure
[see the fitting expressions (12) and (14)]. Also note that the fits
to Eq. (14) give better χ2

ν values than those to Eq. (13). Thus
one can conclude that in order extract the critical exponent
from the �n(T ) data, the temperature dependence of �nfit(T )
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TABLE II. Fitting parameters for the �n(T ) data over the N -SmA transition region of 10.O.4 [refer to Eqs. (13) and (14)]. Parameters in
brackets were held constant at the quoted value. The N -SmA transition temperature TNA = 349.364 K was held fixed in the fits. Here |t |max

denotes the upper limit of the fit and n is the number of data points in the fit.

Phase z,z′ A′+,A′− B ′+,B ′− C ′+,C ′− D′+,D′− n log10|t |max χ 2
ν

N 0.2418 −0.6960 1.4642 0.1274 [0] 363 −2.67 1.85
±0.0003 ±0.0002 ±0.010 ±0.0001

SmA 0.2417 0.7658 −1.6774 0.1273 [0] 738 −2.38 1.76
±0.0001 ±0.0009 ±0.0038 ±0.0001

z,z′ A+,A− B+,B− C+,C− n log10|t |max χ 2
ν

N 0.230 −0.8188 2.481 0.0041 355 −2.67 1.03
±0.003 ±0.0002 ±0.001 ±0.0001

SmA 0.231 0.8993 −2.666 0.0038 456 −2.58 1.14
±0.002 ±0.0002 ±0.001 ±0.0001

should be taken into account during the fitting procedure. We
emphasize that the value of the exponent z obtained by the
rotating-analyzer method is more reliable than our previous
results based on refractive index data [17]. From the obtained
values of the exponent z (=α) one can conclude that for
the nonpolar smectogen (monolayer smectic-SmAm) 10.O.4
compound, the critical behavior of the N -SmA transition is
dominated by crossover from 3D XY to tricriticality together
with the observed McMillan ratio of RM = 0.972. That is why
the obtained z (=α) values are significantly larger than the 3D
XY for α.

As discussed in Sec. I, previously, the thermal conductivity
anisotropy of 8CB and 9CB LCs was used by Marinelli and
Mercuri [27] as a probe of the critical behavior of the nematic
order parameter S(T ) close to the N -I and N -SmA transitions.
Although the phenomenological model develop by the authors
gives the same limiting behavior for the magnitude of the
enhancement δS = S − S0 near TNA, instead of testing the
theoretical relation λ = 1 − α, the authors used 1 − α directly
for the critical behavior of the nematic order parameter S(T )
near TNA to analyze their data [see Eqs. (8) and (9) in Ref. [27]].
They quoted α values directly from the literature. It is worth

FIG. 9. The χ 2
ν error function profile for fits of the �n(T ) data

deduced from stepwise variation of the critical exponent z. The fitting
function is given by Eq. (13).

noticing that the fitting expression (14) used here is quite
similar to the one used by Marinelli and Mercuri [see Eq. (9)
in Ref. [27]] except for the background terms B±|t | and C±.
Nevertheless, in order to quantify their data the authors kept
β fixed at the value of 0.37 for 8CB and 9CB LCs, which
is inconsistent with the TCH for the N -I transition. Another
issue is that the scaling condition S(T = 0 K) = 1 for the
order parameter is not fulfilled in the data analysis given in
Ref. [27], contrary to the one given in the present work. It
should be emphasized that contrary to Marinelli and Mercuri,
in the above analysis we prefer using λ = 1 − z instead of λ =
1 − α and treat the exponent z as a free parameter. We have
shown that there is excellent agreement between the z value
extracted from optical data and the α value from calorimetric
data. It should be remarked that the arguments and conclusions
drawn here could be reached due to the high resolution (in both
birefringence and temperature) of our measurements.

Furthermore, the temperature dependence of the order
parameter 〈|�|2〉 can be achieved by means of the integrated
x-ray-scattering intensity measurements [33]. Alternatively,
the critical exponent λ in Eq. (7) can be extracted from from
fitting the x-ray data to Eq. (7). These types of fittings were

FIG. 10. Profile of the error function χ 2
ν for the fits of the

�n(T ) − �nfit(T ) data near TNA obtained from stepwise variation
of the critical exponent z by means of the fit function in Eq. (14).
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performed by Chan et al. [33] for a series of LCs with a large
variety of nematic ranges RN (=TNI − TNA). For compounds
with narrow RN and close to the TCP (αTCP = 0.5), λ values
close to 1 − α were found. However, for compounds with
wide RN ’s, where one gets α values quite close to the 3D
XY universality value αXY = −0.007, the authors observed
that λ was not equal to 1 − α and was much smaller than
1. The observed disagreement questioned the quantitative
validity of the Landau–de Gennes free energy [33]. However,
from our high-resolution �n(T ) data for the 10.O.4 LC
exhibiting an effective α value between the 3D XY and
tricritical values, we have concluded that z = α within the
experimental uncertainty. Moreover, Beaubois et al. presented
a comparative study of two LC compounds, namely, 8OCB and
4-octyloxybenzoyloxy-4′-cyanotolane C8 tolane with different
RN based on the birefringence measurements [73]. The authors
observed that for 8OCB exhibiting a narrow RN there is a
continuous transition-induced increase in the birefringence
ne − no as soon as the fluctuations of the smectic-A order
parameter � in the nematic phase becomes sizable. On the
contrary, for a C8 tolane LC compound having a very large RN

from 99 ◦C to ≈247 ◦C, the authors observed that the ne − no

vs T data are perfectly smooth and quite flat in the vicinity of
TNA. On the basis of their observations the authors concluded
that the birefringence ne − no would not be sensitive to the cou-
pling between the nematic and smectic-A order parameters for
LCs exhibiting quite large RN [73]. Sied et al. established the
experimental two-component phase diagram for 8CB-8OCB
by means of modulated differential scanning calorimetry to
reveal the nature of the N -SmA transition [74]. The authors
discussed that there exists a more or less common trend when
the effective α exponents are plotted against the normalized
nematic range RN/TNI (=1 − RM ). They concluded that 3D
XY predictions take place for RN/TNI � 0.04 and when RN

becomes short (RN/TNI � 0.04) the crossover behavior to
tricriticality is observed. It should be noted that the nCB
and nOCB homologs and C8 tolane LCs exhibit a SmAd

and monolayer SmA phase, namely, SmA1, and the nonpolar
n.O.m homologs exhibit a SmAm phase. Although the above
conclusion that the crossover behavior to tricriticality is
observed when RN/TNI � 0.04 seems valid for the 10.O.4
LC with the observed numerical values of RN/TNI = 0.028
and α = 0.23, a systematic calorimetric study on monolayer
smectics (SmAm) to determine whether such a trend between
the effective α exponents and the normalized nematic range
RN/TNI exists is lacking.

Based on the observations made by Beaubois et al. [73]
and Sied et al. [74], it would be crucial to investigate whether
there exists a relation between the normalized nematic range
RN/TNI and the critical exponent z to reveal the agreement
between the exponents z and α for a series of LC compounds
having different RN and especially different smectic-A phases
such as SmAd , SmA1, and SmAm since it is well known that
the magnitude of the enhancement δS = S − S0 of the nematic
order parameter is smaller for SmAd than for SmAm LCs for
a given RM [12,31,49,71,75]. Additionally, these systematic
optical birefringence measurements are essential on LCs
having different RN in order to understand the sensitivity of
the optical birefringence on the N -SmA coupling. The above-
mentioned issues are not clear at the moment and deserve

to be investigated systematically based on high-resolution
(in both temperature and birefringence) optical birefringence
experiments.

V. CONCLUSION

In this work we have presented high-resolution (in both
the birefringence and temperature) experimental data for
the temperature dependence of the optical birefringence
for the liquid crystal 4-butyloxyphenyl-4′-decyloxybenzoate
(10.O.4). The birefringence data cover nematic and smectic-A
phases of the 10.O.4 LC compound. The measurements are
based on a rotating-analyzer method, which is known to be a
very accurate interference method. It is worthwhile noting that
this high-resolution experimental study is for the temperature
dependence of optical birefringence of n.O.m nonpolar mono-
layer smectogens. We have discussed the critical behavior of
the nematic order parameter at the N -I transition in detail by
comparing our results with the latest reports found in the liter-
ature. By using the Vuks-Chandrasekhar-Madhusudana model
for the internal electric field we have obtained the temperature
behavior of the nematic order parameter S(T ). From the data
sufficiently far away from the smectic-A phase we have ex-
tracted the critical exponent β describing the limiting behavior
of S(T ) near the N -I transition. The average value of the
critical exponent β was found to be 〈β〉 = 0.2507 ± 0.0010.
The critical exponent value is in agreement with the value given
by the tricritical hypothesis with β = 0.25 and excludes higher
theoretical values. Additionally, we have concluded that by
comparing our results with the reported results in the literature
[16,17,19,20,22], the isotropic internal field assumption by
the VCM model and the approximation used while deriving
Eq. (4) are adequate to extract the critical behavior of the order
parameter S(T ) from the optical birefringence data.

Furthermore, we have also shown that the so-called ef-
fective birefringence �n∗ ∝ n(T )[ne(T ) + no(T )]/2 used by
Kityk et al. [12,13] and the quantity �n∗∗ ∝ �n(T )nI are de-
ficient to represent the temperature behavior of S(T ), contrary
to the claim by Kityk et al. Recently, Simoes et al. [62,63]
investigated the behavior of the nematic order parameter in
the entire nematic range for the LC samples exhibiting only
an isotropic liquid, nematic, and crystalline phase sequence by
rescaling the experimental data obtained from refractive index,
anisotropy in magnetic susceptibility, dielectric constant, and
thermal conductivity measurements. They concluded that
along the entire N range β = 0.25, which is the value given
by the TCH. Although it is established that experimental
data on the N -I transition can be well described by the
TCH, the characteristic temperatures (TNI , T ∗, and T ∗∗) and
their relative differences seem to depend on the experimental
method and still remain a puzzle [56–58]. By comparing our
results, namely, the T ∗∗ − TNI difference, with the reported
values obtained from various experimental data, we concluded
that the optical measurements seem to be more appropriate to
get reliable values for the spinodal temperature T ∗∗. Finally,
we emphasize that the data used by Simoes et al. belong
to LC compounds having only a nematic phase without any
other liquid crystalline phase. In contrast, LCs compounds
such as 8CB [16] and 10.O.4 exhibit pretransitional smec-
tic behavior that continues up to 4 K above the N -SmA
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transition. It would be intriguing to investigate whether the
similar homogenous global behavior of the nematic order
parameter S(T ) would be seen for LC compounds exhibiting
pretransitional smectic behavior and whether there would be
a universal pretransitional temperature range above TNA. A
theory comprising not only the global behavior of the order
parameter S(T ) observed by Simoes et al. but also the pretran-
sitional smectic behavior above TNA is lacking and the latter
subject deserves further investigation both theoretically and
experimentally.

No discontinuous behavior in the optical birefringence at
the N -SmA transition was detected. Thus we concluded that
the N -SmA transition of the 10.O.4 LC is continuous. We
have presented a detailed analysis of the critical behavior of
the nematic order parameter S(T ) in the vicinity of the N-SmA
transition in Sec. IV B . In a temperature range of about
4 K above and below the N -SmA transition, pretransitional
evidence for the N -SmA coupling has been observed. From
the analysis of the optical birefringence data above and
below the N -SmA transition temperature by means of various
fitting expressions [Eqs. (12)–(14)], it has been found that
the temperature derivative of the nematic order parameter
S(T ) near TNA exhibits a power-law divergence with a critical
exponent z. The critical exponent value is quite insensitive to
range shrinking and can be averaged to z = 0.2303 ± 0.0035.
It should be noted that, within experimental uncertainty,
the obtained experimental value of the exponent z is the
same as the value of the exponent α (α = 0.23 ± 0.01) from
adiabatic scanning calorimetry for the specific heat capacity

[46]. Excellent agreement between the critical exponent z

extracted from optical birefringence data and the α value from
calorimetric data is clearly established. It should be noted
once again that owing to the high sensitivity and temperature
resolution of our optical birefringence measurements, we
could reach the conclusions presented in this work. Thus
one can conclude that the rotating-analyzer method can be
successfully applied to study the pretransitional effects in the
vicinity of the N -SmA transition in LCs. The method has
proven to be a very accurate and easy way to reveal the order
of the N -SmA transition as compared to calorimetric methods.

A systematic investigation of whether there is agreement
between the exponents z and α for other LC compounds
is lacking. As discussed in Sec. IV B, the relation between
the exponents z and α or the validity of the scaling relation
λ = 1 − α deserve to be investigated systematically to reveal
the sensitivity of the optical birefringence on the N -SmA

coupling for a series of LC compounds having different RN and
especially different smectic-A phases such as SmAd , SmA1,
and SmAm. The analysis of the birefringence data near the
N -SmA transition particularly for LC compounds exhibiting
a partially bilayer SmA phase, namely, SmAd , is beyond the
scope of the present paper.

ACKNOWLEDGMENT

This work was supported by the Research Fund of Istanbul
Technical University under Grants No. 34412, No. 34254, and
No. 34824.

[1] P. G. de Gennes and J. Prost, The Physics of Liqiud Crystals,
2nd ed. (Oxford University Press, New York, 1993).

[2] S. Kumar, Liquid Crystals (Cambridge University Press,
Cambridge, 2001).

[3] P. J. Collings and M. Hird, Introduction to Liquid Crystals:
Chemistry and Physics (Taylor & Francis, London, 1997).

[4] G. Pelzl, in Handbook of Liquid Crystals, edited by D. Demus,
J. Goodby, G. W. Gray, H. W. Spiess, and V. Vill (Wiley-VCH,
Weinheim, 1998), Vol. 2A, p. 128, and references cited therein.

[5] H. Hirschmann and V. Reiffenrath, in Handbook of Liquid
Crystals (Ref. [4]), p. 199.

[6] S. Urban et al., Phys. Chem. Chem. Phys. 5, 924 (2003).
[7] W. Kuczynski, B. Zywucki, and J. Malecki, Mol. Cryst.

Liq. Cryst. 381, 1 (2002), and references cited therein;
M. Ramakrishna et al., ibid. 528, 49 (2010).

[8] B. Kundu, R. Pratibha, and N. V. Madhusudana, Phys. Rev. Lett.
99, 247802 (2007); R. Pratibha, N. V. Madhusudana, and B. K.
Sadashiva, Phys. Rev. E 71, 011701 (2005); S. Dhara and N. V.
Madhusudana, Phase Transit. 81, 561 (2008).

[9] T. Moses and J. Reeves, Liq. Cryst. 35, 1395 (2008).
[10] Y. Yusuf, Y. Sumisaki, and S. Kai, Chem. Phys. Lett. 382, 198

(2003).
[11] F. Beaubois and J. P. Marcerou, Europhys. Lett. 36, 111

(1996).
[12] G. Chahine et al., Phys. Rev. E 82, 011706 (2010); A. V. Kityk

and P. Huber, Appl. Phys. Lett. 97, 153124 (2010).

[13] A. V. Kityk, K. Knorr, and P. Huber, Phys. Rev. B 80, 035421
(2009); A. V. Kityk et al., Phys. Rev. Lett. 101, 187801 (2008).

[14] The abbreviations in nCB and nOCB refer to homologous 4-
alkyl-4′-cyanobiphenyl and 4-alkyloxy-4′-cyanobiphenyl liquid
crystalline compounds, respectively. Here n refers to the number
of carbon atoms in the alkyl chain for the former and the alkyloxy
chain for the latter.

[15] A. J. Leadbetter, R. M. Richardson, and C. N. Colling, J. Phys.
(Paris) Colloq. 36, C1-37 (1975).

[16] I. Chirtoc, M. Chirtoc, C. Glorieux, and J. Thoen, Liq. Cryst.
31, 229 (2004).
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