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Stability of cholesteric blue phases in the presence of a guest component
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We investigate theoretically, with the aid of numerical calculations based on a Landau–de Gennes theory,
how two cubic cholesteric blue phases of a chiral liquid crystal, BP I and BP II, are stabilized when a guest
component, such as a polymer network, is introduced and replace energetically costly defect regions. We show
that the temperature range of stable BP I is significantly widened by the guest component, while the stability of
BP II is only modestly enhanced.
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I. INTRODUCTION

Liquid crystals [1] have intrigued physicists as well as
material scientists because they exhibit various phases with
spontaneous orientational and/or positional molecular order.
Cholesteric blue phases (BPs) of a highly chiral liquid crystal
are good examples of such intriguing liquid crystalline phases
that have challenged scientists for a long time. BPs have
unique optical properties including the presence of Bragg
reflections in the visible wavelength range implying periodic
structures whose periodicity is a few hundred nanometers,
and the absence of birefringence in spite of local orientational
order, in contrast to usual nematic liquid crystals. Extensive
experimental and theoretical studies in the 1980s and 1990s,
summarized in a number of review articles [2–8], revealed
that two thermodynamically stable BPs possess cubic sym-
metry; one phase referred to as BP I has the symmetry of
O8 [I4132], while the symmetry of the other phase, BP II, is
O2 [P 4232] (a third BP, BP III, is believed to have an
amorphous structure [9]). They comprise a regular array
of so-called double-twist cylinders and a network of line
disclinations of winding number −1/2. At the axis of a double-
twist cylinder, the local orientation profile, or the director n,
exhibits twist distortions along all the directions perpendicular
to the cylinder axis. Though the local free energy density of
a liquid crystal at the axes of double-twist cylinders is lower
than that of a single twist of a well-known chiral nematic (or
cholesteric) phase (N∗), double-twist configurations cannot
fill the whole space without introducing line disclinations as
singularities in n. BPs have thus attracted interest of physicists
as a fascinating example of frustrated order. Recently, attention
is being paid to BPs from other fields of physics because of
the similarities between BPs and chiral ferromagnets [10], and
also because double-twist configurations in a liquid crystal can
be regarded as an example of Skyrmion excitations [11,12]
whose crucial role has been discussed in various condensed
matter systems [13] including two-dimensional electron gases
[14], Bose-Einstein condensates [15], and thin films of chiral
ferromagnets [16], as well as elementary particle systems
where Skyrmion excitations were originally proposed [13,17].

The temperature range of stable BPs is a few Kelvin or
less in usual liquid crystal materials, possibly because of
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the delicate balance between the energetic gain of double-
twist configurations and the loss of disclination lines. This
narrow temperature range hindered the use of BPs in practical
applications, though their characteristic optical properties
easily tuned by an applied electric field was highly appealing.
However, BPs with wider stable temperature range were
recently reported by several groups [18–20]. Among them,
Kikuchi et al. [18] demonstrated that introducing photo-cross-
linked polymers as a guest component greatly stabilizes BPs
over 60 K. We note that doping nanoparticles have been shown
to stabilize BPs [21–25] though its effect is not as dramatic as
that of photo-cross-linked polymers. These BPs with greater
stability drew considerable attention to possible applications
of BPs, including mirrorless lasing [26,27] and fast-switching
displays [28–30].

Although there have been several theoretical studies con-
cerning the stability of BPs of pure liquid crystals [4,6,31–35],
the stabilization of BPs by introducing other components has
only been given little attention theoretically [36], and it is
not yet clear whether polymer-doped cholesteric blue phases
are stabilized thermodynamically or kinetically. Recently, we
discussed in a quantitative manner how a guest component
can stabilize BP I [37]. We focused on its thermodynamic
stability, and showed that the replacement of energetically
costly disclination core regions by the guest component and
the resulting reduction of the total free energy of BP I can
give a good account for the wide temperature range of stable
BP I observed experimentally [18]. In our previous study [37],
we restricted our attention to moderate strength of chirality
which yields BP I as the only stable BP between the isotropic
phase (Iso) and N∗. When the chirality of the liquid crystal
is strong enough, BP II appears as a thermodynamically
stable phase between Iso and BP I (here we will not discuss
BP III that could appear between Iso and BP II). It was shown
experimentally [38] that, in contrast to the above-mentioned
cases of BP I, the stabilization of BP II is highly difficult
and requires a very careful choice of experimental conditions.
Similar difficulties in stabilizing BP II were reported [23] when
metal nanoparticles were doped as a guest component; the
authors of Ref. [23] showed that longer sputter time (and hence
more doped nanoparticles) yielded more stable BP I and that
doped nanoparticles did not enhance the stability of BP II.

In this paper, we employ our previous theoretical argument
[37] to discuss the stability of BP I and BP II when the chirality
of the liquid crystals is strong enough. We show that indeed
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BP II is not significantly stabilized compared with BP I and
give a discussion on its reason by comparing the profiles
of free energy densities of BP I and BP II in a quantitative
manner. After presenting our theoretical argument in Sec. II
we present and discuss our results in Sec. III. Section IV
concludes this paper.

II. THEORETICAL ARGUMENT

Our theoretical argument here is the same as that presented
in our previous paper [37], where we discussed only the
stability of BP I by choosing the parameters in the numerical
calculations so that BP II did not appear in the phase
sequence. In the present study we consider a situation where,
in the absence of the guest component, BP II appears as a
thermodynamically stable phase between an isotropic phase
and BP I. Here we describe only the essential features of
our theoretical argument and do not repeat the details already
presented in [37].

The orientational order of cholesteric blue phases is
discussed on the basis of a Landau–de Gennes theory which
employs a second-rank symmetric and traceless tensor as
an order parameter. After appropriate rescaling of the free
energy density, the order parameter, and the length, the free
energy density ϕ in terms of the rescaled order parameter χαβ

becomes [6,37]

ϕ = τ Trχ2 −
√

6 Trχ3 + (Trχ2)2

+ κ2{[(∇ × χ )αβ + χαβ]2 + η[(∇ · χ )α]2}, (1)

where Tr represents the trace of a tensor. The rescaled
temperature τ satisfies τ � 1 × (T − T ∗), where T is the
absolute temperature in Kelvin and T ∗ is the temperature at
which the isotropic phase becomes unstable. The parameter
κ , inversely proportional to the cholesteric pitch, measures the
strength of chirality, and η concerns the anisotropy of liquid
crystal elasticity. We choose κ = 0.7, which corresponds
to the cholesteric pitch of approximately 160 nm (in our
previous study [37], we chose κ = 0.4). We also set η = 1 (the
so-called one-constant approximation). See Ref. [37] for the
correspondence between rescaled variables and (dimensional)
material parameters.

The profile of the orientational order χαβ without the
guest component is calculated by solving the Euler-Lagrange
equation δF/δχαβ (r) − λδij = 0, where λ is a Lagrange
multiplier ensuring Trχαβ = 0, and F = ∫

�tot
d r ϕ is the total

free energy. The volume of integration �tot is set on a N3 = 643

cubic lattice with periodic boundary conditions. We use the
numerical scheme developed in Ref. [39], in which not only
the order parameter χ but also the lattice spacings are relaxed
in the course of calculation. With the choice of κ = 0.7 and
η = 1, we find that the ranges of stable BP I and BP II are
−3.44 � τ � −0.277 and −0.277 � τ � 0.224, respectively
and at lower and higher temperatures the stable phases are N∗
and Iso, respectively.

When the free energy density profile ϕ(r) or ϕi (i =
1,2, . . . ,N3 labels the numerical lattice points) is calculated,
we can determine how the liquid crystal accommodates the
guest component. In our previous study [37], we assumed
strong segregation with sharp interfaces between the liquid

crystal and the guest component, and weak anchoring at the
interfaces without disturbing the liquid crystal alignment, and
gave a detailed argument on the validity of these assumptions.
We adopt the same assumptions here, and then the guest
component just replaces the regions of liquid crystal with larger
free energy density. As in [37], we sort the set {ϕi} so that fi

becomes a monotonically decreasing function of i. When the
volume fraction of the guest component is φ, the liquid crystal
with higher ϕ must be replaced by the guest component, and the
index i of the lattice point to be replaced satisfies i/N3 < φ.
For the convenience of the following discussion, we define
ϕ(φ) ≡ ϕi=φN3 . From its construction mentioned above, ϕ(φ)
is a monotonically decreasing function of φ. As we will show
below, ϕ(φ) can give a simple and clear insight into how large
the defect regions with higher ϕ are, and how the regions with
lower ϕ are distributed.

When we denote the region replaced by the guest compo-
nent by �c, the total free energy of the system of cholesteric
blue phases with the guest component is given by

FBPI,II =
∫

�tot−�c

d r ϕ(r) + �totφϕg, (2)

where ϕg is the free energy density of the guest component
assumed to be independent of position. From the definition of
ϕ(φ), Eq. (2) can be also written as

FBPI,II = �tot

( ∫ 1

φ

dφ′ ϕ(φ′) + φϕg

)
. (3)

The free energy of N∗ to be compared with FBPI,II is

FN∗ = �tot{(1 − φ)ϕN∗ + φϕg}, (4)

where ϕN∗ is the free energy density of the N∗ phase that is
again position independent. We note that mere replacement of
a part of liquid crystal volume by a guest component of equal
volume in the above argument does not change the volume
or the dimension of the unit cell. Although the interaction
between the liquid crystal and the guest component leading
to surface anchoring, which we assume to be negligible as
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FIG. 1. (Color online) Calculated phase diagram in the presence
of a guest component of volume fraction φ. For reference, the
boundary between BP II and Iso (τ � 0.224) is also shown as a
dotted line. Inset is a magnified one around τ = 0.
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mentioned above, could change the dimension of the unit cell,
this effect is beyond the scope of the present work.

In our previous study [37], the effect of the energy of the
interface between the liquid crystal and the guest component
was discussed. It was shown that, with a reasonable value of
the interfacial energy σ � 1 × 10−5 J m−2, the stability of
blue phases was only slightly influenced by the interfacial
energy. Moreover, we assumed that the guest components
macroscopically phase separate in the N∗ phase of the
liquid crystal, which leads to the absence of the contribution
of σ in the thermodynamic limit. This assumption is in
fact unreasonable in the case of photopolymerized polymer
network as the guest component. Then the contribution of σ

is nonzero in FN∗ , which cancels out that in FBPI,II. Therefore,
in the present discussion, we do not consider the contribution
of the interfacial energy.

The phase boundaries between the two of BP I, BP II, and
N∗ in the (φ,τ ) phase diagram are determined by solving
FBPI,II − FN∗ = 0 and FBPI − FBPII = 0 (note that FBPI,II and
FN∗ are now regarded as a function of φ and τ ). In the
experiments of Kikuchi et al. [18], the thermodynamic stability

of BP I over Iso at higher temperatures is not significantly
affected by the guest component. It is possibly due to the fact
that at the BP I–Iso transition the local nematic order loses its
thermodynamic stability, and the guest component does not
influence the local nematic order. Therefore we do not discuss
here the effect of the guest component on the stability of BP I
over Iso as in the previous study [37].

III. RESULTS AND DISCUSSIONS

In Fig. 1, we show the calculated (φ,τ ) phase diagram of
a chiral liquid crystal in the presence of a guest component.
As already shown in our previous work [37], the temperature
range of stable BP I becomes remarkably wider with the
increase of φ. From the relation τ � 1 × (T − T ∗), BP I can
be stable over the temperature range of larger than 60 K by
introducing a guest component of volume fraction less than
10%, despite the fact that it is stable only in the range of
less than 4 K in the absence of a guest component. This is
in good agreement with experiments of Kikuchi et al. [18]
using a photo-cross-linked polymer as a guest component. On
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FIG. 2. (Color online) Plots of ϕBPII(φ) − ϕBPI(φ) (red solid line) and ϕBPI(φ) − ϕN∗ (green dashed line) for τ = (a) 0.2, (b) 0, (c) −1, and
(d) −10. In (c) and (d), the values of φ satisfying ϕBPII(φ) − ϕBPI(φ) and FBPI = FBPII are highlighted by a cross (×) and a vertical dashed line,
respectively. Irregular oscillations of ϕBPII(φ) − ϕBPI(φ) at small φ are a numerical artifact. Insets are the plots of ϕBPII(φ) (green dashed line),
ϕBPI(φ) (red solid line), and, for reference, ϕN∗ (blue dotted horizontal line).
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the other hand, the temperature range of stable BP II is not
significantly altered by the increasing φ, again in agreement
with experimental findings [38].

To clarify why BP II is not significantly stabilized by a guest
component, we discuss the behavior of free energy densities
ϕ(φ) for BP I and BP II [which we will denote by ϕBPI(φ) and
ϕBPII(φ), respectively]. In Fig. 2 we plot ϕBPII(φ) − ϕBPI(φ)
and ϕBPI(φ) − ϕN∗ as well as ϕBPI(φ) and ϕBPII(φ) at various
temperatures. When τ = 0.2, close to the transition between
BP II and Iso, ϕBPII(φ) is smaller than ϕBPI(φ) except at φ close
to 1 as seen in Fig. 2(a). This clearly indicates that BP II is
more favorable energetically than BP I at this temperature.
However, Figs. 2(b)–2(d) indicate that, as the temperature
is lowered, ϕBPII(φ) − ϕBPI(φ) becomes positive at smaller
values of φ (except at those very close to zero for τ = 0).
Moreover, in the range of φ where ϕBPII(φ) − ϕBPI(φ) < 0, the
energetic gain of BP II over BP I, i.e., |ϕBPII(φ) − ϕBPI(φ)|,
becomes smaller for lower τ . We also note that the value of φ

at which ϕBPII(φ) = ϕBPI(φ) becomes larger. These properties
of ϕBPI,II(φ) are responsible for the fact that BP II becomes
less and less favorable energetically than BP I when the
temperature is lowered.

The function ϕBPII(φ) − ϕBPI(φ) characterizes the energetic
advantage of BP II over BP I, and ϕBPI(φ) − ϕN∗ characterizes
that of BP I over N∗. It is well known [6] that double-twist
distortions in BP I and BP II are locally more favorable
energetically than single-twist ones in N∗ and compensate
for the energetic loss in the defect regions. This is clearly seen
in the behavior of ϕBPI(φ) − ϕN∗ , and once the energetically
costly region with small φ is removed by the guest component,
BP I can be energetically more favorable than N∗. However,
for BP II to become the most stable phase, its free energy must
be lower than that of BP I as well as that of N∗. The energetic
gain of BP II over BP I, |ϕBPII(φ) − ϕBPI(φ)|, at φ close to 1 is
much smaller than that of BP I over N∗, ϕBPI(φ) − ϕN∗ . This
is because in BP II, as in BP I, energetically favorable regions
involve double-twist distortions and their free energy densities
ϕ cannot be much smaller than that in BP I, except at higher
temperatures [Fig. 2(a)]. Moreover, when the temperature τ is
lowered, the range of φ with ϕBPII(φ) − ϕBPI(φ) < 0 shrinks
[see Figs. 2(b)–2(d)]. Therefore, a large amount of volume
at which ϕBPII(φ) − ϕBPI(φ) > 0 must be removed by a guest
component for the free energy of BP II to be lower than that
of BP I. This qualitatively explains why BP II is not easy
to stabilize by introducing a guest component as observed
experimentally [23,38].

Here we comment on a previous study by Ravnik et al. [21]
who discussed the effect of spherical colloidal particles on the
stability of cholesteric blue phases. By numerical calculations
based on a Landau–de Gennes theory, they showed that in
the case of small cholesteric pitch BP II can be successfully
stabilized by doping colloidal particles. They also visualized
the colloidal arrangement that minimizes the free energy and
colloidal particles are at the disclination lines (we also note that
a recent experiment [40] clearly demonstrated the trapping of
colloidal particles at a disclination line of a nematic liquid
crystal). In their case, where colloidal particles reside in a
unit cell of BP II depends sensitively on surface anchoring
strength, particle radius, number density (or volume fraction)
of particles, and so on (the effect of particle size is more

(a)

(d)(c)

(b)

FIG. 3. (Color online) Isosurfaces of free energy density at
(a) and (b) τ = 0 and (c) and (d) τ = −1. The value of ϕ is
(a) 0.01, (b) −0.005, (c) −0.06, and (d) −0.3.

clearly manifested in a different work [41]). They discuss
the stability of blue phases doped with particles on the basis
that the arrangements of particles in BP I and BP II are
face-centered and body-centered cubic, respectively, which,
they showed, are the optimum arrangements in terms of the
free energy. However, the number density of colloidal particles
was inevitably fixed, and therefore the effect of its variation
cannot be deduced from their argument. Moreover, it is not
clear from their text whether the energies of doped BP I and
BP II were compared at the same number density of colloidal
particles. Therefore, our results cannot be directly compared
with those of [21], and further studies will be necessary
to clarify the difference between the effect of doping solid
particles and that of introducing a polymer network which can
adopt an optimum shape. Nevertheless, we believe that the
reduction of the free energy by the replacement of defect core
is the common mechanism of the stabilization of blue phases,
whatever the guest component is.

Finally it is interesting to see how the regions with higher
free energy density are distributed in BP II (in the case of BP
I, they are straight disclination lines, as demonstrated visually
in Refs. [21,37]). In Fig. 3 we show their distributions at
different temperatures τ . When τ = 0 (BP II is lower in free
energy than BP I), the most energetically costly regions reside
in the straight parts of disclination lines (this was already
shown in Fig. 1 B of Ref. [21]). On the other hand, they are
at the junction point of four disclination lines when τ = −1
(at which BP I is the most stable). Therefore the distribution
of free energy density in BP II depends on temperature in
a nontrivial manner, and an intuition that the free energy
density is the highest at the junction points proves wrong. For
BP II to be energetically more favorable than BP I, it might
be necessary to reduce the free energy density at the junction
points that do not exist in BP I.

IV. CONCLUSION

We discussed, by numerical calculations using a Landau–de
Gennes theory, how cubic cholesteric blue phases, BP I and
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BP II, are stabilized by introducing a guest component, based
on an assumption that the guest component replaces the
energetically costly defect regions of the blue phase. In our
previous work [37] we showed that BP I can be effectively
stabilized by the guest component, in agreement with an
experimental demonstration by Kikuchi et al. [18]. In this work
we considered the cases with larger helical twisting power of
a chiral liquid crystal for which both BP I and BP II are stable
(without a guest component) in a certain temperature range. We
showed that the temperature range of BP II is not significantly
widened by the guest component in contrast to that of BP I,
which is again in agreement with experimental findings. This
result was qualitatively explained by comparing the profiles of
the free energy densities of BP I and BP II. BP I after replacing
the defects comprises regions with double-twist distortions that
are energetically more favorable than single-twist distortions
in N∗, which is the main reason for the great enhancement
of the stability of BP I over N∗. On the other hand, after
the replacement of defects, both BP I and BP II are made
up of energetically favorable double-twist regions, and thus
the mere replacement of defect regions cannot give a great
energetic advantage of BP II over BP I.

Our theoretical argument can be applied to any problem
concerning the stability of soft materials with energetically
costly topological defects when an immiscible guest com-
ponent is introduced. One interesting problem could be the
stability of another cholesteric blue phase, BP III. It was shown
recently [24,25] that BP III could be effectively stabilized by
doping nanoparticles. There were considerable debates on the
structure of BP III, and an amorphous network of disclination
lines was suggested as its probable structure numerically [9].
Our argument, combined with the numerical profiles of BP III,
could clarify the nature of the stabilization of BP III which is
now entirely unclear.

ACKNOWLEDGMENTS

The author thanks Professor H. Kikuchi and Dr. Y. Nagano
for valuable discussions which motivated this work, and Dr. H.
Yoshida for useful correspondence. This work was supported
by Grant-in-Aid for Scientific Research “KAKENHI” for
Young Scientists (B) from the Japan Society for the Promotion
of Science, and the Cooperative Research Program of “Net-
work Joint Research Center for Materials and Devices.”

[1] P. G. de Gennes and J. Prost, The Physics of Liquid Crystals,
2nd ed. (Oxford University Press, Oxford, 1993).

[2] V. A. Belyakov and V. E. Dmitrienko, Sov. Phys. Usp. 28, 535
(1985).
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