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Elastic and hydrodynamic torques on a colloidal disk within a nematic liquid crystal
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The orientationally dependent elastic energy and hydrodynamic behavior of colloidal disks with homeotropic
surface anchoring suspended in the nematic liquid crystal 4-cyano-4′-pentylbiphenyl (5CB) have been
investigated. In the absence of external torques, the disks align with the normal of the disk face â parallel to the
nematic director n̂. When a magnetic field is applied, the disks rotate â by an angle θ so that the magnetic torque
and the elastic torque caused by distortion of the nematic director field are balanced. Over a broad range of angles,
the elastic torque increases linearly with θ in quantitative agreement with a theoretical prediction based on an elec-
trostatic analogy. When the disks are rotated to angles θ > π

2 , the resulting large elastic distortion makes the disk
orientation unstable, and the director undergoes a topological transition in which θ −→ π − θ . In the transition, a
defect loop is shed from the disk surface, and the disks spin so that â sweeps through π radians as the loop collapses
back onto the disk. Additional measurements of the angular relaxation of disks to θ = 0 following removal of
the external torque show a quasi-exponential time dependence from which an effective drag viscosity for the
nematic can be extracted. The scaling of the angular time dependence with disk radius and observations of disks
rotating about â indicate that the disk motion affects the director field at surprisingly modest Ericksen numbers.
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I. INTRODUCTION

In liquid crystals the introduction of interactions and
constraints that compete with the fluid’s Frank elastic energy
result in a number of emergent phenomena. Examples include
the Fréedericksz transition, where electric or magnetic field
energies conflict with the elasticity [1], and the formation of
blue phases in chiral nematics, which results from the incom-
patibility of global space filling with the strain-minimizing
double-twist structure [1,2]. When inclusions are added to
a nematic, interactions at the inclusion surfaces impose
boundary conditions on the liquid-crystal order that similarly
constrain the ordering, leading to distorted director fields
and the formation of topological defects [3], as exemplified
by the canonical ‘Saturn rings” and “hedgehog” defects that
accompany a spherical colloid with homeotropic anchoring in
a nematic [4,5]. Further, since changes in the relative position
of multiple inclusions can change the energy cost associated
with these distortions, an effective force between inclusions is
created [6]. At large distances, the form of this interaction is
dictated by the symmetry of the nematic distortions, leading
typically to anisotropic attractive forces between suspended
particles. This property of liquid crystals has been advanced
as a method for colloidal self-assembly and the fabrication of
metamaterials [6].

While the vast majority of research on inclusions in liquid
crystals has concerned spherical particles, several studies
have revealed new phenomena that emerge with nonspherical
particles [7–22]. For example, Lapointe and coworkers have
found that equilateral polygonal platelets assemble in a
nematic via either dipolar or quadrupolar forces depending
on the number of polygon sides and that the elastic forces on
cylindrical inclusions can be used to position the particles with
high precision [7,12]. An important parameter for aspherical
particles in liquid crystals is the particle orientation with
respect to the liquid-crystal order since changes in the orienta-
tion can alter the elastic energy, leading to new forms of forces
and interactions [13]. As with the pair interaction between two

particles produced by the distortions, an aspherical particle will
experience a torque that seeks to rotate it to the orientation with
the lowest distortion energy. This behavior has been explored
previously in rod-shaped inclusions and less thoroughly in
platelets, leading to a number of insights into the physical
effects liquid crystals can have on inclusions [12,14–16,23].
To understand more fully the orientation-dependent properties
of aspherical particles in liquid crystals, we have investigated
experimentally the behavior of isolated disk-shaped inclusions
with homeotropic anchoring in a nematic. One motivation for
this work is to explore how the director-field distortion around
a suspended particle can be controlled through its orientation,
thereby tuning elastically mediated colloidal interactions [12].
We find that for modest deviations in disk orientation from
the minimum energy, the disks impose an elastic energy cost
on the nematic that quantitatively follows a form similar
to that obtained previously for rod-shaped colloids with
longitudinal anchoring [14] and that can be understood in
terms of an electrostatic analogy [24]. However, unlike with
the rod-shaped colloids, the disks do not support a metastable
director distortion at larger deviations. For large deviations an
instability drives a topological transition in the director field to
a lower-energy state. Additional measurements examining the
dynamic response of disks and the surrounding director field
to changes in external torque reveal viscous properties of the
nematic that suggest the disk motion affects the director field
at surprisingly modest angular velocities.

II. EXPERIMENTAL PROCEDURES

A. Disk fabrication

Ferromagnetic Ni disks with radii R = 5 and 20 μm
and thickness L = 300 nm were fabricated using contact
photolithography. First, a thin sacrificial layer of poly(methyl
methacrylate) (PMMA) was applied via spin coating to a
glass slide, and the slide was heated to cure the PMMA.
A 300 nm thick film of nickel was sputtered on top of the
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PMMA, and a layer of a positive photoresist was applied
via spin coating atop the nickel. Disks were patterned from
the Ni film via standard photolithography and etching of the
Ni with a nitric acid solution. Detachment of the disks from
the substrate was achieved by dissolving the PMMA layer
and the remaining photoresist in acetone. A rare earth magnet
was subsequently used to separate the disks from the acetone
solution. The disks were then repeatedly sonicated and rinsed
in acetone and isopropanol to clean them thoroughly. In the
presence of sufficiently low magnetic fields, B < 10 G, the 5
μm disks possess a magnetic moment �μ in the plane of the
disk of magnitude (1.6 ± 0.3) × 10−12 A m2 as determined by
their translational response [25] to magnetic-field gradients
in silicone oil of known viscosity. The quoted uncertainty
in �μ reflects the disk-to-disk variation from measurements
on multiple disks. Measurements of �μ for the 20 μm disks
revealed a nonlinear, field-dependent moment even at applied
fields below 10 G. Therefore, all experiments requiring
quantitative knowledge of �μ were restricted to the 5 μm disks.

A silane layer of N-octadecyldimethyl[3-
(trimethoxysilyl)propyl]ammonium chloride (DMOAP;
UCT Specialties) was used to produce homeotropic anchoring
on the surfaces of the disks following a procedure described
by Noel et al. [26]. The disks were sonicated in a 2%
solution of DMOAP in deionized water. Subsequent washing
of the disks in isopropanol removed any excess DMOAP.
After washing, the alcohol was removed, and the disks
were heated at 110 ◦C for 1 h and then were resuspended in
isopropanol. The disks were suspended in the liquid crystal
4-cyano-4′-pentylbiphenyl (5CB; Kingston Chemicals; purity
>99.8%) by using a rare earth magnet to hold the disks
in place within the vial while decanting and evaporating
residual isopropanol before replacing it with 5CB. The liquid
crystal and disk solution was then sonicated and introduced
through capillary action into liquid-crystal cells composed of
parallel glass slides separated by 80 μm and treated either
with DMOAP for homeotropic anchoring or with rubbed
polyimide for uniform planar anchoring.

B. Optical microscopy with in situ magnetic field

The behavior of the disks in nematic 5CB was inves-
tigated with polarized light microscopy using an inverted
microscope (Nikon TE2000-E) with an extra-long working
distance (40×/0.60) objective. A two-axis set of Helmholtz
coils was mounted on the microscope to produce magnetic
fields of uniform magnitude in the field of view. One set
of coils produced fields parallel to the microscope optical
axis (i.e., vertical), and the other produced fields parallel to
the microscope focal plane (i.e., horizontal). The axis of the
horizontal coils was aligned with the horizontal component of
earth’s magnetic field to enable canceling of earth’s field. The
coils produced fields from 0 to 10 G at arbitrary angles to the
vertical with a precision of ±0.05 G. The static orientation
of disks in the 5CB and their dynamic response to applied
magnetic fields was monitored with video microscopy using
either a standard video camera (Nikon, D3100) or high-
speed camera (Photron, FASTCAM 512PCI). Transmission
microscopy images of the disks revealed elliptical shapes
whose eccentricity depended on the orientation of the normal

to the disk face â with respect to the microscope focal plane
(see inset to Fig. 2). Analysis of such images to obtain disk
orientation was performed in the software package IGOR Pro.
For orientations in which the disk was tilted significantly out of
the focal plane, the images were distorted. These distortions
were kept to a minimum by using a microscope objective
with a large depth of field but nevertheless required correction
in some cases. To correct for such distortions, images of a
disk in an isotropic fluid with applied magnetic fields of
known orientation were obtained. In the isotropic fluid, the
disk’s magnetic moment aligns with the applied field so that
the disk orientation is known. From a set of such images at
various disk orientations, a mapping between measured ellipse
eccentricity and angle of tilt of the disk out of the focal plane
was obtained. This mapping was then used to determine disk
orientations in analysis of images of the disks in nematic 5CB.
All measurements were performed at room temperature in the
nematic phase of 5CB.

III. RESULTS AND DISCUSSION

A. Elastic torque

In the absence of any external torques, disks with
homeotropic anchoring align with the normal to the disk faces,
specified by the vector â, parallel to the far field director n̂.
Neglecting the disk edges, in this orientation the homeotropic
anchoring at the disk surfaces is satisfied without any distortion
of the surrounding director field, as shown schematically in
Fig. 1(a), and indeed polarization microscopy on such disks
reveals no birefringent texture that would indicate director
distortions. When a uniform magnetic field �B is applied,
the disk experiences a torque, �τB = �μ × �B, that causes �μ
and hence â to rotate, leading to distortion of the director,
as depicted schematically in Fig. 1(b). The elastic energy
U associated with this distortion depends on the angle of
rotation θ , and therefore the disk feels a restoring elastic

FIG. 1. (Color online) Schematics of a ferromagnetic Ni disk with
homeotropic surface anchoring in a nematic liquid crystal. The thin
black lines depict the director field in the vicinity of the disk. The
disk’s permanent magnetic moment �μ is parallel to the disk face.
(a) In the absence of external torques, the disk orients such that the
unit vector â perpendicular to its face is parallel to the far-field director
n̂. (b) When a magnetic field �B is applied, the disk rotates â to an
angle θ with respect to the far-field director at which the magnetic
and elastic torques are balanced.
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FIG. 2. (Color online) Elastic torque on a 5 μm Ni disk with
homeotropic anchoring in 5CB as a function of the angle between the
normal to the disk face and the far-field director. The torque follows
a linear dependence implying a quadratic growth in elastic energy
with angle, U ∝ θ2. The three insets illustrate the projected elliptical
shape of a 5 μm disk viewed through the microscope for angles of
θ ≈ π/16, π/9, and π/3. These three disk angles were produced
by varying Bz, the component of the magnetic field parallel to the
director while keeping constant Bx , the component of the field in the
focal plane whose unit vector is denoted by the green arrow.

torque, |�τE| = ∂U
∂θ

. Following application of an applied field,
the disk comes to rest when the magnetic and elastic torques
are balanced:

|�τE(θ )| = |�τB | = | �μ|| �B| sin ψ, (1)

where ψ is the angle between �B and �μ as shown in Fig. 1(b).
By varying the magnitude and direction of the magnetic field,
we have mapped out the elastic torque on a disk as a function
of θ . Figure 2 displays results for the torque on a 5 μm disk
as a function of θ . Over a broad range of angles, the torque
grows linearly with θ , | �τE| = Aθ , implying U = 1

2Aθ2. The
solid line in Fig. 2 is the result of a linear fit over the range
0 < θ � π

4 . From these results and similar measurements on
other 5 μm disks, the proportionality constant was determined
to be A = (220 ± 70) pN μm/radian, where the uncertainty is
dominated by the variability in the magnetic moment of the
disks. Measurements of the torque at θ > π/4 were consistent
with the linear trend in Fig. 2 extending to larger angle.
However, because of the instability described in Sec. III B,
these measurements required field orientations with smaller ψ ,
leading to greater uncertainty in the resulting torque. Hence,
we restrict our quantitative analysis of the torque to θ � π/4.
The measurements include disks in both homeotropic and
planar cells, for which the disk orientation at θ = 0 with
respect to the microscope focal plane is different. Good
agreement in the torque values is seen in the two cases,
indicating that the image correction procedure mentioned in
Sec. II B is accurate.

We note that the influence of the bounding substrates could
be observed in the experiments following prolonged periods
during which θ = 0. Due to the large density of Ni, disks
at θ = 0 would sediment to the bottom substrate. However,
when rotated away from θ = 0, they would rise by several
micrometers in the cells. This effect was more clearly visible in

homeotropic cells. Due to the boundary condition at the bottom
substrate, a disk that rotates away from θ = 0 will introduce a
distortion in the director concentrated between the underside
of the disk and the substrate. The energy cost of this distortion
is reduced if the distance between the disk and substrate is
increased, leading to a repulsive force. As a result, the disk
levitates to a height at which this repulsive force is balanced
by gravity. Such levitating interactions between colloids and
substrates have been investigated previously [14,15,27], and
we did not explore it in detail in this case. Nevertheless, a
consequence of the interaction was to free disks from the
vicinity of the substrate so that they rotated freely about an
axis through their center when θ was varied. As a result, as the
good agreement in the torque values measured in homeotropic
and planar cells confirms, the measured torque was not
substantially affected by the proximity of the substrates.

A previous experiment by Hayes measuring the torque
on coagulated magnetic grains that form soft platelets in a
nematic observed a linear dependence qualitatively similar to
that in Fig. 2 [23]. However, the absolute scale of the torque
was not determined in that experiment because the magnetic
properties of the coagulations were unknown. The linear
dependence of the elastic torque on angle of rotation can
be understood quantitatively by mapping the problem of the
disk with homeotropic anchoring onto the related problem of
a rodlike inclusion with longitudinal anchoring first studied
theoretically by Brochard and de Gennes [24] and investigated
experimentally by Lapointe et al. [15]. The theory exploits
an analogy between the elastic energy of the nematic and
the electrostatic field energy of an object at fixed potential to
predict that the elastic energy varies with particle orientation as

U = 2πKCθ2, (2)

where K is the Frank elastic constant within a one-elastic-
constant approximation, and C is the capacitance of the parti-
cle. For a high-aspect-ratio disk, C ≈ 2R

π
[28]. This expression

for the energy implies the proportionality constant between
torque and angle is A = 4πKC. For comparison, using
K = 5 pN [29], the theory predicts A = 200 pN μm/radian for
a 5 μm disk, in good agreement with our experimental findings.

B. Topological transition at large θ

The symmetry of the director field dictates that the torque
on a disk should be symmetric about θ = π/2. However, in
previous experiments with colloidal rods with longitudinal
anchoring, where the same symmetry argument applies, the
torque was observed to continue to increase linearly with
θ to angles exceeding π/2, so that the director assumed a
highly distorted, metastable configuration for θ > π/2 [14].
In contrast, we have observed director configurations around
a disk at θ > π/2 to be unstable, leading to a topological
transition in which θ → π − θ . This transition is observed
when the applied magnetic field is changed so that the disk
passes through θ = π/2. We have tracked this process in
measurements in which the field is changed suddenly, causing
the disk to rotate to angles above π/2. Figure 3(a) shows a
series of images of a disk in a homeotropic cell during the
transition. As the disk rotates through π/2, a defect loop is
shed from the disk edge as seen in Fig. 3(a) at t = 0.5 s.
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FIG. 3. (Color online) Time-lapse representations of a 20 μm disk undergoing spontaneous spinning motion that accompanies the topological
transition following the disk being rotated past θ = π/2: (a) optical microscopy images and (b) schematic diagrams illustrating the orientation
of the disk. At time t < 0 s the disk is in a stable orientation with θ ≈ 5π/22. At t = 0 s the disk is rotated to an angle θ > π/2. The images
at t = 0.5 s show the disk immediately after its rotation past π/2. The rotation is accompanied by a pronounced distortion of the director and
the shedding of a dislocation loop from the disk surface. The images at t > 0.5 s show the disk undergoing the spinning motion in which the
component of â perpendicular to the director traverses π radians while the defect loop collapses back on the disk surface. The final state of the
disk shown at t = 61 s is stable and resembles the initial state with θ −→ π − θ .

The disk then proceeds to spin such that the projection
of â onto the plane perpendicular to n̂ sweeps through π

radians, as depicted schematically in Fig. 3(b). As the disk
spins, the defect loop collapses back onto the disk surface.
Disks appear to show no preference for the direction of this
spinning; repeated experiments on the same disk show the
disk spinning clockwise and counterclockwise with equal
probability. As a consequence of this process, the surrounding
director field is reconfigured, so that after it spins the disk
no longer experiences a torque seeking to rotate it back to
θ = 0, but instead to θ = π . The magnitude of the new torque
is linear with the difference in θ from π . That is, the elastic
energy follows a form specified by Eq. (2), with θ → π − θ .
The effect of this transition on the director field is depicted
schematically in Fig. 4.

To understand better the complicated spinning motion of
the disk during this topological transition, we have measured
the time dependence of the angle β, specified in the inset to
Fig. 5(a), through which the projection of â onto the plane
perpendicular to n̂ changes as the disk spins. Results for β are
shown in Figs. 5(a) and 5(b) for sets of measurements on a 5
and 20 μm disk, respectively. Each measurement is initiated
by a sudden change in magnetic field direction that rapidly
rotates the disk through θ = π/2. We specify the orientation
before rotation by θi , as shown in Fig. 4(a), and the final
equilibrium orientation by θf , where θf is measured with
respect to the new θ = 0 following the topological transition,
as shown in Fig. 4(c). The change in magnetic field in the
measurement is set so that the equilibrium orientations of the
disk before and after spinning are symmetric about π/2, so
that θf = θi . That is, the change in �B is made such that the
initial and final configurations are mirror images of each other.
We further specify the initial and final orientations by the angle
φ = π

2 − θ shown in Figs. 4(a) and 4(c). As described below, φ
provides a convenient measure of the extent to which the disk is
rotated into the unstable region by the change in magnetic field.
Immediately following the change in magnetic field, before
the disk begins spinning, it rotates into the unstable region to

θu > π/2, as depicted in Fig. 4(b). The degree to which the
disk ventures into the unstable region (θ > π/2) can further
be specified by φu = θu − π

2 , as shown in Fig. 4(b). Following
the rotation, the disk proceeds to spin such that β changes by
π until it reaches the final orientation shown in Fig. 4(c).

Figure 5 shows sets of results for β as a function of time
for different values of φu. As the results indicate, the rate of
spinning depends on the degree to which the disk has been
rotated into the unstable region; i.e., the spinning is faster
for larger φu. In addition, β assumes a sigmoidal shape as a
function of time. To model this behavior, we hypothesize that
the torque on the disk that drives the transition varies with β

as

|�τs | = As sin β. (3)

FIG. 4. (Color online) Schematic of a disk with homeotropic
surface anchoring and surrounding director configuration. (a) When
a disk is rotated to an angle θi < π/2, the director field surrounding
the disk adopts a stable configuration that maintains long range order
and local surface anchoring conditions on the disk’s surface. (b) If the
disk is rotated to a larger angle, θu > π/2, the director configuration
becomes highly distorted. (c) The spinning of the disk placed at
θu > π/2 accompanies a topological transition that results in a new
stable configuration with θf < π/2.
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FIG. 5. (Color online) Angle through which the projection of â

onto the plane perpendicular to n̂ spins as a function of time following
rotation of the disk past θ = π/2 for (a) a 5 μm disk after being rotated
to θ = 0.55π (red diamond), 0.59π (black square), 0.61π (green
triangle), and 0.706π (blue circle) and for (b) a 20 μm disk after
being rotated to θ = 0.59π (red diamond), 0.606π (black square),
0.656π (green triangle), and 0.767π (blue circle). Solid lines show
the results of fits to the form β = 2 tan−1(e	(t−t0)) as described in the
text. The inset to (a) shows a schematic of the disk and its projection
onto the plane perpendicular to n̂ with β specified.

Since the spinning motion is at low Reynolds number, we
assume that this torque is balanced by a drag torque, |�τD| =
Dsηβ̇, where Ds is the effective geometric drag coefficient
and η is a drag viscosity. This balance of torques leads to the
predicted time dependence

β = 2 tan−1(e	(t−t0)), (4)

where t0 is the time at which β passes through π/2 and 	 = As

Dsη

[30]. The solid lines in Fig. 3 show the results of fits to Eq. (4),
which describes the time dependence well, indicating that Eq.
(3) approximates accurately the form of the torque that causes
the spinning. Figures 6(a) and 6(b) display results for the
spinning rate 	 extracted from such fits. For both disk sizes, the
rate grows approximately linearly with φu. The rate is also sig-
nificantly slower for 20 μm disks compared with 5 μm disks.

Assuming that Eq. (2) continues to describe the elastic
energy even as the disk is rotated into the unstable region,
we can identify a simple approximation that accounts for the
trends in Fig. 6. Within this assumption, the elastic energy of

FIG. 6. (Color online) (a) The spinning rate 	 as a function of
φu = θ − π/2 for (a) a 5 μm disk and (b) a 20 μm disk. The solid
lines are the results of linear fits.

the unstable configuration immediately after rotation through
π/2 is

Uu = 2πKCθ2
u = 2πKC

(
π

2
+ φu

)2

. (5)

Meanwhile, the elastic energy after the topological transition is

Uf = 2πKCθ2
f = 2πKC

(
π

2
− φ

)2

. (6)

Since the magnetic field remains unchanged between when
the disk is in the unstable state [Fig. 4(b)] and in the final
stable state [Fig. 4(c)], balance between the magnetic and
elastic torques in the two configurations dictates that θu is
slightly less than π − θf , as depicted in Figs. 4(b) and 4(c).
Thus, φu < φ, the exact difference between the two depending
on the magnitude of the applied field. However, if we neglect
this difference and make the approximation φu = φ, then
comparison of Eqs. (5) and (6) gives the change in stored
elastic energy due to the topological transition as

�U = Uf − Uu ≈ −4π2KCφ. (7)

When the disk spins, this energy is presumably lost to
viscous dissipation, which we can approximate as

Ed ≈
∫ π

0
|�τD| dβ. (8)
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Converting this expression to an integral over time and using
Eq. (4) gives

Ed =
∫ ∞

−∞
Dsηβ̇2 dt =

∫ ∞

−∞

4Dsη	2e2	(t−t0)

(1 + e2	(t−t0))2
dt. (9)

Using the relation
∫ ∞
−∞

eu

(1+eu)2 du = 1 and Ds = 32
3 R3, which

is the geometric coefficient for rotation of the symmetry axis
of a highly oblate ellipsoid [31,32], leads to

Ed = 64
3 ηR3	. (10)

Equating this dissipation with the change in stored energy,
Ed = −�U , hence predicts that 	 and φ are proportional,
consistent with the results in Fig. 6, and further that the
proportionality constant is

	

φ
= 3πK

8ηR2
. (11)

Using K = 5 pN and η = 69 mPa s (the average of the three
Miescowicz coefficients of 5CB at room temperature [33])
leads to 	

φ
= 3.4 s−1 for R = 5 μm and 	

φ
= 0.21 s−1 for

R = 20 μm. The experimental values determined from the
fits shown in Fig. 6 are 2.0 and 0.29 s−1 for R = 5 and R =
20 μm, respectively, in reasonable agreement with these
calculated values considering the approximations entering the
calculation. The outstanding question that this analysis raises,
however, is why the spinning torque that drives the topological
transition follows the sinusoidal form given in Eq. (3).

C. Angular relaxation

When a disk held at θ > 0 is released, the elastic torque
will rotate it back to θ = 0. Figure 7 shows the results of
measurements of θ as a function of time during this motion
for a 5 and a 20 μm disk. As the results indicate, θ follows
a quasi-exponential decay during this relaxation. Since the
motion is at low Reynolds number (Re ∼ 10−6), inertial effects
can be neglected, and hence balance between the elastic torque
and viscous drag torque is maintained during relaxation. A
second dimensionless parameter that is important in dictating
the motion is the Ericksen number Er, which is the ratio of
the viscous forces to elastic forces acting on the nematic. For
a colloid of size R moving through a nematic, Er = ηRv

K
[34],

where v is the velocity of the colloid. Theory and simulations
studies of colloidal motion in nematics, which have primarily
focused on the translational motion of spheres, have found that
the director becomes significantly affected by the flow above
an Ericksen number in the range Er ∼ 1 − 10, depending
on details of the calculations [34–36]. Using v = Rθ̇ for
the disks undergoing angular relaxation, we find Er ≈ 1 for
R = 5 μm and Er ≈ 2 for R = 20 μm when θ is near π/2
where the angular velocities are largest, and Er progressively
decreases as θ relaxes toward zero. Thus, the Ericksen numbers
characterizing the disk’s motion during the angular relaxation
are modest, but not so small that one can dismiss possible
effects of the motion on the director. To test whether such
effects are present, we assume the motion is in the limit of small
Er, and determine whether the measurements are consistent
with this assumption. At low Er, the elastic torque on the disk
as it rotates should match the torque on the disk when it is
static. In this case, the torque balance at low Re implies that θ

FIG. 7. (Color online) (a) Angle between the disk normal and
the unperturbed director for 5 μm (blue cross) and 20 μm (red line)
disks as a function of time as the disks relax to the minimum energy
orientation θ = 0. (b) Results for the angle plotted with time scaled
by the square of the disk radius. t = 0 is taken when θ = π/2.

follows the equation of motion

4πKCθ + Dη(θ )θ̇ = 0, (12)

where again D = 32
3 R3 is the geometric drag coefficient for

rotation of the symmetry axis of a highly oblate ellipsoid, and
η(θ ) is the drag viscosity, which in general can depend on the
disk orientation due to the anisotropy of the nematic.

For an isotropic fluid with uniform viscosity [η(θ ) = con-
stant], Eq. (12) leads to an exponential decay in θ (t) with decay
rate γ = 3K

4ηR2 . As the results in Fig. 7(a) indicate, the angular
relaxation of the disks follows roughly such an exponential
decay but also shows clear deviations from it. One possible
interpretation for these deviations is that they result from
the nematic’s anisotropic viscosity [15]. However, a second
interpretation is that they reflect velocity-dependent elastic
torque and drag viscosity as a consequence of the motion being
outside the limit of small Er. To test whether the small-Er
approximation and hence Eq. (12) are indeed valid, we note
that Eq. (12) implies that the rate of relaxation scales as R−2.
Figure 7(b) shows the results from Fig. 7(a) plotted with the
time axis scaled accordingly. Contrary to this expectation, the
scaled data do not collapse. Instead, θ for the 20 μm disk,
whose motion corresponds to larger Er, relaxes at a faster
rate compared with the 5 μm disk than expected based on
this small-Er approximation, suggesting that the director is
sufficiently affected by the flow created by the disk rotation
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FIG. 8. (Color online) Polarization images of a (a) 5 μm and (b) 20 μm disk with homeotropic anchoring turning about the symmetry
axis of the disk at various rates. Above a critical frequency a characteristic, four-lobed birefringent pattern appears indicating formation of a
flow-induced vortex alignment of the director.

to alter the elastic torque and viscous drag. This conclusion
is further supported by the values of effective drag viscosity
extracted from the results in Fig. 7. Using best fits to an
exponential decay over the span θ < π/4, we obtain values
for γ that correspond to drag viscosities of 50 and 24 mPa s
for the 5 and 20 μm disks, respectively. The value for the
20 μm disk is noticeably smaller than 69 mPa s, the average
of the Miescowicz coefficients of 5CB at room temperature.
Such “shear thinning” is an expected consequence of flow
that reorders the director.

We note another possible reason for the breakdown in the
scaling in Fig. 7(b) is the proximity of the substrates and its
effect on the hydrodynamic drag of the rotating disks. As
mentioned above, the measurements were performed on disks
that were levitated away from the bottom substrate, so that they
rotated freely about an axis through their center. Nevertheless,
we cannot rule out the possibility of the nearby substrates’ in-
fluencing the disks’ rotational mobilities. However, we expect
that any effects from the proximity of the substrates would
increase the hydrodynamic drag and hence slow the rotation
rate and that such effects would be more prominent on the 20
μm disks than on the 5 μm disks. Specifically, the levitation
left the larger disks closer to the substrate, relative to their
size, than the smaller disks and the larger disks sedimented
faster than the smaller disks. Contrary to this expectation, the
measured rotational mobility of the 20 μm disks relative to
the 5 μm disks is greater than expected. Combined with the
evidence for flow-induced director reorientation described in
the next section, we believe this enhancement is evidence that
the rotational motion falls outside the regime of small Er.

D. Vortex deformations formed by turning disks

Direct evidence that the rotation of the disks undergoing
angular relaxation alters the director field from the static,
low-Er configurations is difficult to obtain. However, images
of such alterations are clearly apparent in measurements in
which the disk remains at θ = 0 but turns at a constant
angular velocity about the symmetry axis. In the static case,
this disk orientation leads to no distortion of the director, as
illustrated schematically in Fig 1(a). However, above a certain
turning rate, the director in proximity to the disk undergoes

flow-induced alignment into a vortex-shaped pattern. To image
the director around disks turning in this way, we have
performed polarization microscopy measurements employing
a four-axis magnetic tweezer stage described previously [37].
The stage can generate spatially uniform fields with time-
independent magnitude that rotate at a constant rate either
in the microscope focal plane or in a plane perpendicular to
the focal plane. Figure 8(a) displays a series of polarization
images showing the birefringent texture around a 5 μm disk
turning at various frequencies ω in a cell with homeotropic
anchoring. Figure 8(b) displays a similar series for a 20 μm
disk. At low frequency (e.g., ω = 1.9 rad s−1 for the 5 μm
disk), the region around the disk remains uniformly dark
when viewed through crossed polarizers, indicating that the
uniformly aligned director is unaffected by the flow induced
by the turning disk. Above some critical frequency, however, a
characteristic four-lobed birefringent texture develops around
the disk. The size and intensity of this pattern grows with
increasing ω. Figure 9 shows a polarization image of a 20 μm
disk turning in the same way in a planar cell, where the

FIG. 9. (Color online) Polarization image of a 20 μm disk
with homeotropic anchoring turning about the symmetry axis in a
planar liquid-crystal cell in which the optical axis of the microscope
is parallel to the disk’s face. Produced is a pattern with eight
bright regions surrounding the disk illustrative of the director-field
deformations generated by the fluid flow.
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FIG. 10. (Color online) Time-lapse series of polarization images of a 20 μm disk with homeotropic anchoring showing the shrinking and
decay of the flow-induced birefringent texture after the disk stops turning about its symmetry axis. The disk, initially turning at ω = 6.3 rad s−1,
is stopped at t = 0 and is stationary at later times.

distortion pattern above and below the disk is observable.
Identifying precisely the critical frequency that marks the
onset of the flow-induced director distortions is difficult and
somewhat subjective because at frequencies near the onset
the spatial extent of the affected region is small [see, e.g.,
ω = 3.8 rad s−1 for the 5 μm disk in Fig. 8(a)], and its
visibility depends on factors such as the microscope condenser
brightness. Nevertheless, we estimate the critical frequencies
to be roughly ωc ≈ 3 and 0.3 rad s−1 for 5 and 20 μm
disks, respectively. From the relation for the Ericksen number,
Er = ηωR2

K
, these critical frequencies correspond to critical

Ericksen numbers of 1.0 and 1.6 for 5 and 20 μm, respectively.
Thus, these observations illustrate that, albeit for a different
motion of the disk than in the angular relaxation described
in Sec. III C, the director becomes affected by the motion at
Ericksen numbers comparable to those realized in the angular
relaxation measurements.

We stress that the nematic distortions created by the
turning disks illustrated in Figs. 8 and 9 have a purely
hydrodynamic origin. When the magnetic field is removed,
the disks stop turning essentially immediately (consistent with
low-Re hydrodynamics) and display no measurable recoil that
would indicate any elastic energy stored in the nematic. After
a disk stops turning, the surrounding deformation pattern
steadily shrinks in size and fades away. This process is
illustrated in Fig. 10, which displays a series of polarization
images of the director field around a 20 μm disk at various
times after the disk has stopped turning. A very similar process
follows the cessation of turning of the 5 μm disks, except
more quickly. We identify the time scale for the decay of
the distortion with the elastic relaxation time ηR2/K [1],
which is approximately 0.35 and 5.5 s for 5 and 20 μm disks,
respectively. We note that these values for the elastic relaxation
time are comparable with the time during which the disks
rotate back to θ = 0 in the angular relaxation, as shown in
Fig. 7(a), further suggesting a breakdown in the static, low-Er
approximation underlying Eq. (12) as an explanation for the
failure of the scaling in Fig. 7(b). These observations of disks
turning about their axis and the nematohydrodynamic response
that is induced hence provide a helpful illustration of the limits
to low-Er colloidal motion in nematics.

IV. CONCLUSION

In conclusion, these experiments to investigate the static
and dynamic behavior of disk-shaped colloids in a nematic
illustrate several important points regarding the properties
of aspherical particles dispersed in liquid crystals. The
electrostatic analogy, which quantitatively accounts for the
elastic torque on a disk as described in Sec. III A, provides a
straightforward framework to determine the distorted director
field in the surrounding fluid. A key feature of this distortion is
its predictable dependence on disk orientation, which suggests
a potential new avenue for engineering colloidal interactions
in liquid crystals. To date, a number of approaches have
been explored for varying liquid-crystal-mediated interactions,
and hence the type of ordered structures colloids form
when they self-assemble, by altering the director distortion
around particles. For instance, extensive previous research
on spherical colloids has demonstrated how changes in
anchoring conditions at the particle surfaces lead to different
self-assembled structures [6]. Additional recent studies have
shown [7] how aspherical colloids can be subject to shape-
specific interactions in liquid crystals by virtue of the shape
dependence to the distortion, and exploiting this dependence
has been proposed as another approach for engineering
colloidal interactions and self-assembled structures [18]. The
orientation-dependent distortions around aspherical particles
illustrated in our experiments on disks thus introduce a third
possible mechanism for controlling colloidal interactions, and
an interesting next step for research in this area would be to
investigate pair interactions engendered by these distortions.
Indeed, the ability to tune the distortions by adjusting particle
orientation, such as with a magnetic field for magnetic colloids,
suggests that this mechanism for engineering interactions
could be particularly versatile. However, as the topological
transition in the director field described in Sec. III B illustrates,
the range of stable deformations that can be achieved by
controlling orientation has limits. Another important con-
sideration in employing liquid-crystal-mediated interactions
for colloidal self-assembly is the dynamics of the process.
As such interactions are exploited to construct increasingly
intricate colloidal assemblies [38–40], which in many cases
are metastable, the details of the colloids’ motion during the

041702-8



ELASTIC AND HYDRODYNAMIC TORQUES ON A . . . PHYSICAL REVIEW E 86, 041702 (2012)

assembly become increasingly important. The effect of this
motion on the director field, which the results in Sec. III D
indicate can occur at modest Ericksen number, hence has
potential implications for the interactions. Further study of
such colloidal dynamics should be a focus of future work on
particle dispersions in liquid crystals.
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Science 313, 954 (2006).
[39] U. Ognysta, A. Nych, V. Nazarenko, I. Muševič, M. Škarabot,
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