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Nucleation pathway of core-shell composite nucleus in size and composition space
and in component space
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The kinetics of nucleation of a core-shell composite nucleus that consists of a core of stable final phase
surrounded by a wetting layer of intermediate metastable phase is studied using the kinetic theory of binary
nucleation not only in the size and composition space but also in the component space. The steady-state solution
of the Fokker-Planck equation is considered. Various formulas for the critical nucleus at the saddle point as well
as for the postcritical nucleus are derived. The kinetics of nucleation at the saddle point is more appropriately
characterized in the size and composition space, while the kinetics of the postcritical nucleus is more appropriately
described in the component space. Although both the free-energy landscape and the reaction rates play decisive
role to determine the kinetics of nucleation at the saddle point, the details of the free-energy landscape are
irrelevant to the kinetics of the postcritical nucleus.
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I. INTRODUCTION

Nucleation is a very basic phenomena which plays a vital
role in various material processing applications ranging from
steel production to food and beverage industries [1]. Recently
researchers have focused on the nucleation of complex
materials [1]. The nucleation of such complex materials can
also be complex and often involves intermediate metastable
phases [2–6], which appears during the course of nucleation
and growth as predicted from the Ostwald’s step rule [2].
Then, the critical nucleus often has a core-shell structure with
stable final phase surrounded by an intermediate metastable
phase.

Such a core-shell nucleus appears in various circumstances.
It is well known, for example, the nucleation of protein crystal
proceeds through the core-shell-type nucleus with the final
stable crystal surrounded by the metastable dense solution [3].
The model calculation [7] using the Monte Carlo simulation
with a simplified intermolecular interaction revealed that the
critical nucleus at the saddle point corresponds indeed to the
core-shell structure. Subsequent numerical simulation using
the Lennard-Jones system [8] and a model calculation using
the capillarity approximation [9] confirmed the core-shell
structure of critical nucleus which corresponds to the saddle
point of the free-energy landscape. A similar composite
nucleus is predicted even for a simple metal like aluminum [10]
using molecular dynamics simulation. Experimental evidence
of such a core-shell structure of critical nucleus is observed
not only in protein crystallization [3] but also in colloidal
crystallization [11,12].

A similar composite nucleus with core-shell structure is
considered in the problem of delquescence [13,14], where
the condensation of liquid from supersaturated vapor occurs
on a soluble core. This core-shell structure also appears in
various problems such as semiconductor nanocrystals [15],
polymer crystallizations [16], and nanoclusters of alloys [17].
It is also used as a model of linked-flux nucleation or
partitioning transformation when the interface-limited growth
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and diffusion of material is coupled [18–21]. In this model a
core of the final stable phase is surrounded by a shell of the
dense prenucleus environment [18].

In the previous paper [22], we have studied the nucleation
flux of composite nucleus with core-shell structure at the
saddle point in the free-energy surface using the theory of
decay of metastable phase [23–26] and of multicomponent
nucleation [27,28]. In this paper we will supplement our
previous study [22], and we will study the nucleation pathway
for the critical as well as the postcritical nucleus with core-
shell structure. We first recapture the Fokker-Planck or the
Zel’dovich-Frenkel equation [1,29] for the composite nucleus
[22] from the master equation (Sec. II) by regarding the
composite nucleus as a fully phase-separated two-component
binary system. Then the nucleation flux will be characterized
more appropriately using the size-composition representation
instead of the two-components representation [22] (Sec. III).
The nucleation pathway of the postcritical composite nucleus
will also be studied using the Zel’dovich relation [30,31].
Finally, Sec. IV will contain the conclusion of the study,
indicating the outcome as well as suggestions on further
research in the field.

II. FOKKER-PLANCK EQUATION FOR THE
COMPOSITE NUCLEUS

In order to study the nucleation kinetics of the composite
nucleus with core-shell structure, the model shown in Fig. 1 has
been used [9,22]. The model consists of a core of the stable new
phase (number of molecules n1) surrounded by an intermediate
metastable phase (number of molecules n2) nucleated in the
metastable parent phase. Kashchiev and coworkers [32,33]
have also considered this model as a model of nucleus when
there exists an intermediate metastable phase.

This core-shell nucleus is considered to form by the
two-step mechanism: First, the nucleus of the metastable
intermediate phase appears within the metastable parent phase.
Next, the core of the stable new phase starts to nucleate inside
the nucleus of the metastable intermediate phase to form the
core-shell structure shown in Fig. 1. However, in contrast to the
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FIG. 1. A core-shell critical nucleus model that consists of a
stable new phase (number of molecules n1) surrounded by an
intermediate metastable phase (number of molecules n2) nucleated in
the metastable parent phase [9]. Transformation rates κ+ and κ− are
the reaction rates between the stable new phase and the metastable
intermediate phase. Attachment rates α+ and α− are the reaction
rate from the metastable parent phase to the intermediate metastable
phase.

naı̈ve expectation [33] the computer simulation [7], mean-field
calculation [9], as well as the experimental result in colloidal
crystallization [12] have shown that this two-step mechanism
is in fact the single-step nucleation characterized by a single
activation energy and, therefore, by a single saddle point.
This saddle point corresponds to the core-shell critical nucleus
[7,9,11] of the specific size and composition. Therefore, we
will consider the simplest example of the core-shell nucleus
of a single-component system. More complex scenarios will
be expected for multicomponent system such as the problem
of deliquiescence [13,14] and of semiconductor nanocrystals
[15].

Transformation rates κ+ and κ− in Fig. 1 are the reaction
rates between the stable new phase and the metastable
intermediate phase. Attachment rates α+ and α− are the
reaction rate from the metastable parent phase to the inter-
mediate metastable phase. The formation of stable final phase
(core) is assume to occur only through the transformation of
surrounding metastable phase (shell).

The master equation for the time dependence of the
concentration of clusters f (n1,n2,t) that consists of n1

molecules of the stable phase in the core and n2 molecules
of the intermediate metastable phase in the surrounding shell
is written generally [1,29,34] in the form

∂f (n1,n2,t)

∂t
= α+ (n1,n2 − 1) f (n1,n2 − 1,t)

− [α+ (n1,n2) + α− (n1,n2)]f (n1,n2,t)

+α− (n1,n2 + 1) f (n1,n2 + 1,t)

+ κ+ (n1 − 1,n2 + 1) f (n1 − 1,n2 + 1,t)

− [κ+ (n1,n2) + κ− (n1,n2)]f (n1,n2,t)

+ κ− (n1 + 1,n2 − 1) f (n1 + 1,n2 − 1,t).

(1)

Using the detailed balance condition

κ− (n1 + 1,n2 − 1) = κ+ (n1,n2)
feq (n1,n2)

feq (n1 + 1,n2 − 1)
,

(2)

α− (n1,n2 + 1) = α+ (n1,n2)
feq (n1,n2)

feq (n1,n2 + 1)
,

and the usual equilibrium cluster distribution feq (n) given by

feq (n) = f0 exp [−βG (n)] , (3)

where G (n) is the work of cluster formation for a cluster with
composition n = (n1,n2), we obtain

∂f (n1,n2,t)

∂t
= −κ+ (n1,n2) feq (n1,n2)

×
[
f (n1,n2,t)

feq (n1,n2)
− f (n1 + 1,n2 − 1,t)

feq (n1 + 1,n2 − 1)

]
+ κ+ (n1 − 1,n2 + 1) feq (n1 − 1,n2 + 1)

×
[
f (n1 − 1,n2 + 1,t)

feq (n1 − 1,n2 + 1)
− f (n1,n2,t)

feq (n1,n2)

]
−α+ (n1,n2) feq (n1,n2)

×
[
f (n1,n2,t)

feq (n1,n2)
− f (n1,n2 + 1,t)

feq (n1,n2 + 1)

]
+α+ (n1,n2 − 1) feq (n1,n2 − 1)

×
[
f (n1,n2 − 1,t)

feq (n1,n2 − 1)
− f (n1,n2,t)

feq (n1,n2)

]
, (4)

which can be written in the form of a continuum equation:

∂N (n)

∂t
= −

(
∂Jn1

∂n1
+ ∂Jn2

∂n2

)
= −div J = −∇ · J, (5)

where the components of the nucleation flux J are given by

Jn1 = − κ+feq

{
∂�

∂n1
− ∂�

∂n2

}
, (6)

Jn2 = −α+feq

{
∂�

∂n2

}
− κ+feq

{
− ∂�

∂n1
+ ∂�

∂n2

}
, (7)

and simplified notations κ+ = κ+ (n1,n2), α+ = α+ (n1,n2),
and feq = feq (n1,n2) and � = � (n1,n2,t) are used, where

� (n1,n2,t) = f (n1,n2,t)

feq (n1,n2)
. (8)

Apparently,

Jn1 + Jn2 = −α+feq
∂�

∂n2
. (9)

Therefore, the net flux coming into this composite nucleus is
the incoming flux to the wetting layer of the intermediate phase
from surrounding parent phase whose magnitude is determined
from the rate constant α+, since all materials are supplied from
surrounding parent phase.

Equations (6) and (7) can be put in the form of matrix
equation using the short-hand notation ∂n1 = ∂/∂n1 and ∂n2 =
∂/∂n2 as(

Jn1

Jn2

)
= −feq

(
κ+ −κ+

−κ+ κ+ + α+

)(
∂n1

∂n2

)
�, (10)
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which will be written in short

J n = −feq (n) R (n)∇n� (n), (11)

where J n, �, and ∇n are row vectors, and R is a symmetric
square matrix defined through Eq. (10). The two flux Jn1

and Jn2 are linked [18] by the nondiagonal rate matrix R.
By introducing the unit row vector eT

n = (en1 ,en2 ), where the
superscript T indicates the transpose vector, the nucleation
current vector is written as

�J = eT
n J = en1Jn1 + en2Jn2 (12)

using the unit vectors en1 and en2 along the Cartesian
coordinate (n1,n2).

Since the Fokker-Planck equation given by Eqs. (5)–(7)
for the growth of composite nucleus has the same form as
that used to study the binary nucleation, we will extend the
theory [27–29,34–37] developed for the binary nucleation to
study the scenario of nucleation and growth of a composite
nucleus in the next section.

III. CRITICAL NUCLEUS AND POSTCRITICAL
NUCLEUS

A. Critical nucleus in the size and composition space

In this section we extend the theory of nucleation flux of
binary nucleation in the size and composition space developed
by Fisenko and Wilemski [38] to the composite nucleus shown
in Fig. 1 for which the rate matrix R is nondiagonal.

At this point we introduce a new coordinate, the size n and
the composition x defined by

n = n1 + n2, (13)

x = n2/n. (14)

Then the covariant formulation [39–41] of the Fokker-Planck
equation can be used, and the distribution function is given by

ϕ (n,x) = nf (n1,n2) , (15)

where the factor n comes from the Jacobian
∂ (n1,n2) /∂ (n,x) = n. Then the Fokker-Planck equation (5)
in the size-composition space is written as

∂ϕ (n,x)

∂t
= −

(
∂Jn

∂n
+ ∂Jx

∂x

)
= −div J, (16)

where the flux components are defined through

Jn = n
(
Jn1 + Jn2

)
, (17)

Jx = (1 − x) Jn2 − xJn1 , (18)

and Eq. (11) is transformed into

(
Jn

Jx

)
= −feq

(
R̃n,n R̃n,x

R̃x,n R̃x,x

)(
∂n

∂x

)
�, (19)

where the elements of the reaction rate matrix R̃ defined
through Eq. (19) are given explicitly by

R̃n,n = n
∑
i,j

Rij = nRtot, (20)

R̃n,x = R̃x,n = −x (R11 + R21) + (1 − x) (R12 + R22) ,

(21)

R̃x,x = 1

n

[
x2R11 + (1 − x)2 R22 − 2x (1 − x) R12

]
, (22)

using the elements of the matrix R, which will be written in
short

J x = −feq (x) R̃ (x)∇x� (x), (23)

where J x and ∇x are the column vectors given explicitly
in Eq. (19). Equation (23) is formally the same as Eq. (11).
Therefore, various formulas for the steady-state flux in the
binary nucleation can be used just by changing the suffices
n = (n1,n2) to x = (n,x). Then it is apparent from Eqs. (20)–
(22) that R̃n,n plays the role of Brownian diffusion coefficient
in the size space, while R̃x,x the Brownian diffusion coefficient
in the composition space [38].

Since R̃x,x → 0 as n → ∞, the fluctuation of the compo-
sition x will be suppressed and x will become constant as
the size of the nucleus n increases. The growth of nucleus is
governed mainly by the reaction rate R̃n,n, and only the size of
the nucleus increases. The coupling of the flux in size Jn and
that in the composition Jx disappears when R̃n,x = 0, which
is attained for the composition

xk = R12 + R22

Rtot
, (24)

where Rtot is defined through Eq. (20). The diffusion coeffi-
cient in the composition space R̃x,x given by Eq. (22) is also
minimized for the composition xk given by Eq. (24). Therefore,
the composition xk is the kinetically optimum composition
of nucleation, which is solely determined from the kinetic
factor R.

Next we will consider the nucleation flux at the saddle point
(n∗,x∗) in the size and composition space and (n∗

1,n
∗
2) in the

component space characterized by(
∂G

∂n

)
x

=
(

∂G

∂x

)
n

= 0 (25)

or (
∂G

∂n1

)
n2

=
(

∂G

∂n2

)
n1

= 0, (26)

where these two sets of equations are equivalent.
From Eqs. (11) and (23), it is obvious that we can use the

results of the previous work [22] simply by replacing the matrix
R by R̃. First, the angle ω for the direction of the gradient of
� in the size and composition space is given by the formula

tan ω = s ±
√

s2 + r, (27)
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where

s = R̃x,xG̃x,x − R̃n,nG̃n,n

2(R̃n,xG̃n,n + R̃x,xG̃n,x)
, (28)

r = R̃n,nG̃n,x + R̃n,xG̃x,x

R̃n,xG̃n,n + R̃x,xG̃n,x

, (29)

and

G̃n,n = ∂2G

∂n2
, G̃x,x = ∂2G

∂x2
, G̃n,x = ∂2G

∂n∂x
(30)

are the derivative (Hessian) of the free energy G (n,x) in the
size and composition space at the saddle point (n∗,x∗). These
quantities are related to the derivative in the component space

G11 = ∂2G

∂n2
1

, G22 = ∂2G

∂n2
2

, G12 = ∂2G

∂n1∂n2
(31)

through

G̃n,n = (1 − x)2 G11 + 2x (1 − x) G12 + x2G22, (32)

G̃x,x = n2 (G11 − 2G12 + G22) , (33)

G̃n,x = −n (1 − x) G11 + n (1 − 2x) G12 + nxG22

− ∂G

∂n1
+ ∂G

∂n2
. (34)

The last two terms in Eq. (34) vanish at the critical point from
Eq. (26).

Equations (27)–(29) are slightly different in definition from
those used by others [28,35] since we have off-diagonal
elements R̃n,x = R̃x,n. Among the sign ±, the + sign must
be chosen when R̃n,xGn,n + R̃x,xGn,x < 0; otherwise the −
sign must be chosen. For a sufficiently large critical nucleus
n∗ � 1, we have R̃n,n � R̃n,x � R̃x,x . Also R̃n,x = 0 when
the composition is the kinetically optimum composition x∗ =
xk . Then we have s2 � r in Eq. (27), which results in ω = 0.
Therefore, the gradient of � (∇x�) will be nearly parallel
to the size axis n when the size of the critical nucleus n∗ is
large. Therefore, only the size rather than the composition is
expected to increase.

Using the result of the previous paper [22], we can derive
the formula for the angle φ of the direction of nucleation flux
J x , which is given by

tan φ = R̃n,x + R̃x,x tan ω

R̃n,n + R̃n,x tan ω
. (35)

Again, for a sufficiently large critical nucleus n∗ � 1, we can
approximate

tan φ ∼ R̃n,x + R̃x,x tan ω

R̃n,n

(36)

and φ � 0 as Rn,n � Rx,x . Then the nucleation flux J x also
becomes parallel to the size axis n as expected.

Finally, the nucleation rate is given by

I = f0e
−βG∗

√
detR̃

|λ̃1|
λ̃2

, (37)

where λ̃1 and λ̃2 are the negative and the positive eigenvalue
of the matrix product G̃ R̃ where

G̃ =
(

G̃n,n G̃n,x

G̃x,n G̃x,x

)
, (38)

and R̃ is defined through Eq. (19). The matrices R̃ and G̃ must
be calculated at the saddle point. Therefore the last two terms
in Eq. (34) are zero.

It can be shown directly by calculating the eigenvalues λ̃1

and λ̃2 that they are related to the eigenvalues λ1 and λ2 of the
matrix products G R through

λ̃1,2 = nλ1,2. (39)

Also, it can be easily shown that detR̃ = detR. Therefore, the
nucleation rate Eq. (37) is also given by the original formula

I = f0e
−βG∗

√
detR

|λ1|
λ2

(40)

in the original (n1,n2) composition space as expected.
Qualitative assessment of the relative magnitude of the

composition fluctuation and the size fluctuation near the saddle
point can be possible. We follow the argument of Fisenko and
Wilemski [38] and write Eq. (19) as

Jn � −feq

(
R̃n,n

��

�n
+ R̃n,x

��

�x

)

= −feqR̃n,n

��

�n
(1 + Z) , (41)

Jx � −feq

(
R̃n,x

��

�n
+ R̃x,x

��

�x

)

= −feqR̃x,x

��

�x
(1 + H ) , (42)

where

Z = R̃n,x�n

R̃n,n�x
, (43)

H = R̃n,x�x

R̃x,x�n
, (44)

measure the relative magnitude of the cross-terms in Eqs. (41)
and (42). Since

�n �
√

1/β|∂2� (n∗,x∗) /∂n2|, (45)

�x �
√

1/β|∂2� (n∗,x∗) /∂x2| (46)

are the curvatures of the free-energy landscape at the saddle
point, and

R̃n,x = R̃x,n = Rtot (xk − x) , (47)

we find

Z � (xk − x∗)

n∗

√
∂2� (n∗,x∗) /∂x2

−∂2� (n∗,x∗) /∂n2
, (48)
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H � n∗Rtot (xk − x∗)

(1 − x∗)2 R22 + x2R11 − 2x∗ (1 − x∗) R21

×
√

−∂2� (n∗,x∗) /∂n2

∂2� (n∗,x∗) /∂x2
. (49)

When Z 	 1 and H 	 1, the cross-terms in Eqs. (41) can be
neglected, and we can study the time scale of the relaxation in
size space τn by approximating Eqs. (16) and (41) by

∂ϕ

∂t
∼ �ϕ

τn

� ∂

∂n
feqR̃n,n

∂�

∂n
∼ R̃n,n

n�n2
�ϕ, (50)

from Eq. (45), which yields

τn ∼ n�n2

R̃n,n

= �n2

Rtot
, (51)

for the relaxation time in the size space. Similarly, the time
scale of the relaxation in the composition space τx is obtained
by approximating Eqs. (16) and (41) by

∂ϕ

∂t
∼ �ϕ

τx

� ∂

∂x
feqR̃x,x

∂�

∂x
∼ R̃x,x

n�x2
�ϕ, (52)

which yields

τx ∼ n�x2

R̃x,x

. (53)

Therefore, the parameter

W = τx

τn

= R̃n,n�x2

R̃x,x�n2
= H

Z
(54)

will determine the relative magnitude of the relaxation times
τn and τx . If

W � (n∗)2 Rtot

(1 − x∗)2 R22 + (x∗)2 R11 − 2x∗ (1 − x∗) R21

×−∂2� (n∗,x∗) /∂n2

∂2� (n∗,x∗) /∂x2
(55)

calculated from Eqs. (48) and (49) satisfies W 	 1, then
τx 	 τn, and the Brownian diffusion along the composition
axis is the fastest process and that along the size axis is the
slowest process. Then the fluctuation of the composition will
be suppressed and the nucleation flux will be narrow along
the composition axis. On the other hand, when W � 1, the
nucleation flux will spread along the composition axis even at
the saddle point. In fact, since W � 1 in the model calculation
by Wyslouzil and Wilemski [42] which shows ridge crossing,
Fisenko and Wilemski [38] argued that we can expect some
effect related to the ridge crossing when W � 1.

From Eqs. (41) and (42), we have

Jx

Jn

� (1 + H ) �x

W (1 + Z) �n
, (56)

and (�x/�n) 	 1 in usual condition [38] when the saddle
point is located within a narrow deep valley, we may expect
Jx/Jn 	 1. Then the nucleation flux at the saddle point along
the size axis is much larger than that along the composition
axis.

Returning to our original problem of composite nucleus for
which the reaction matrix R is given by Eq. (10), we find

R̃n,n = nα+, (57)

R̃n,x = (1 − x) α+, (58)

R̃x,x = 1

n
[κ+ + (1 − x)2 α+], (59)

and Rtot = α+, and the kinetically optimum composition is
given by xk = 1 from Eq. (24). We need information of the
Hessian of the free-energy G to calculate the angle ω of the
gradient of � from Eq. (27) and the angle φ of the direction of
the nucleation flux from Eq. (35). However, it is apparent that
φ → 0 as n → ∞ from Eqs. (57)–(59) and (36). Nucleation
rate is proportional to I ∝ √

α+κ+ from Eq. (40) [22]. The
time scale given by Eqs. (51) and (53) can be written more
explicitly by

τn ∼ �n2

α+ , (60)

τx ∼ n2�x2

κ+ + (1 − x)2 α+ . (61)

Therefore, the time scale of nucleation τn in the size space is
determined from the curvature �n of the free-energy surface
along the size axis and the attachment rate α+ from the parent
phase to the intermediate metastable phase. The time scale τx

in the composition space, on the other hand, is determined
from the curvature n�x of the free-energy surface along
the composition axis and α+ as well as the transformation
rate κ+ from the intermediate metastable phase to the final
stable phase. At the kinetically optimum composition xk = 1,
however, the size and the composition is decoupled and τx is
determined solely from n�x and κ+.

Figure 2 shows an example of the free-energy surface
calculated from our model [9] in the size n and the composition
x space. The size n is scaled by the typical size of the critical
nucleus n∗. There are two saddle points of almost the same
size with different composition indicated by two points in
Fig. 2: the one that corresponds to the critical nucleus of the
metastable intermediate phase only (x = 1) and the other that
corresponds to the core-shell nucleus (Fig. 1) that consists
of a core of the stable phase surrounded by a shell of the
intermediate phase (x � 0.3). These two saddle points are
not crossed sequentially by a single nucleation pathway.
Rather these are crossed in parallel by two nucleation
pathways shown by two heavy lines in Fig. 2 independently.
These nucleation pathways are the minimum-free-energy
path (MFEP) [43] that corresponds to the steepest-descent
direction of the free-energy surface.

In our model [9], Fig. 2 seems to suggest �n/n ∼ �x since
the size n is scaled by the typical size of critical nucleus n∗ ∼
10–1000, but we also need the magnitude of the attachment
rate α+ and the transformation rate κ+ to determine the time
scale τn and τx of the nucleation quantitatively around these
critical points from Eqs. (60) and (61).

B. Postcritical nucleus in the component space

So far, we have considered the critical nucleus at the saddle
point. In order to study the nucleation pathway of not only
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FIG. 2. An example of the free-energy surface in the size (n)
and composition (x) space calculated from the model based on the
capillarity approximation [9]. The size n is scaled by the size of the
critical nucleus n∗. There exist two saddle points indicated by two
points. The one on the x = 1 axis is the critical nucleus that consists
only of the intermediate phase, and the other is the core-shell nucleus
that consists of a core of the final stable phase surrounded by a shell
of the intermediate phase shown schematically in Fig. 1. Two heavy
lines are two independent nucleation pathways that correspond to the
minimum-free-energy paths.

the nucleation but also the growth of postcritical nucleus, it
is more convenient to study Eq. (11) in the original (n1,n2)
component space. This equation is rewritten in the form

J n = −feq R∇n� = −R∇nf + f ṅ, (62)

where the first term in the right-hand side is termed the
diffusion flux and the second term the drift flux. The latter
is given explicitly by

ṅ = −β R∇nG, (63)

which determine the growth of postcritical nucleus though this
drift flux is negligible compared to the diffusion flux near the
saddle point as ∂G/∂ni = 0. Equation (63) is known as the
Zel’dovich relation [30,31].

Explicitly, Eq. (63) is written by

ṅ1 = −β

(
R11

∂G

∂n1
+ R12

∂G

∂n2

)
, (64)

ṅ2 = −β

(
R12

∂G

∂n1
+ R2

∂G

∂n2

)
. (65)

However, as pointed out by Stauffer [35], the continuous
equation (11) is originally derived from the discrete mas-
ter equation (4) of the attachment and the detachment of
monomers, therefore we should use the difference equations

−∂βG

∂n1
= 1

feq

∂feq

∂n1
� 1 − eβ[G(n1+1,n2)−G(n1,n2)], (66)

−∂βG

∂n2
= 1

feq

∂feq

∂n2
� 1 − eβ(G[n1,n2+1)−G(n1,n2)], (67)

instead of the partial derivatives ∂G/∂n1 and ∂G/∂n2. Then
Eqs. (64) and (65) are written more appropriately by

ṅ1 = R11(1 − eβ[G(n1+1,n2)−G(n1,n2)])

+R12(1 − eβ[G(n1,n2+1)−G(n1,n2)]), (68)

ṅ2 = R12(1 − eβ[G(n1+1,n2)−G(n1,n2)])

+R22(1 − eβ[G(n1,n2+1)−G(n1,n2)]). (69)
For sufficiently large clusters (n1 → ∞,n2 → ∞), we can

neglect the surface tension of the spherical nucleus and the
free energy of the nucleus is approximately given by [35]
G (n1,n2) � −�μ1n1 − �μ2n2, where �μ1 > 0 and �μ2 >

0 are the chemical potential of the stable phase and the
metastable intermediate phase relative to the metastable parent
phase. Then Eqs. (68) and (69) are approximately given by

ṅ1 = R11(1 − e−β�μ1 ) + R12(1 − e−β�μ2 ), (70)

ṅ2 = R12(1 − e−β�μ1 ) + R22(1 − e−β�μ2 ). (71)

Therefore, the angle φ of the direction of the nucleation flux
is given by

tan φ = ṅ2

ṅ1

= R12(1 − e−β�μ1 ) + R22(1 − e−β�μ2 )

R11(1 − e−β�μ1 ) + R12(1 − e−β�μ2 )
. (72)

Since the number of molecule changes linearly in time t as
n1 = ṅ1t and n2 = ṅ2t , the final composition

x2 = n2

n1 + n2
(73)

satisfies
x2

1 − x2
= n2

n1
= ṅ2

ṅ1
= tan φ (74)

given by Eq. (72). For large supersaturations �μ1 → ∞ and
�μ2 → ∞, we find

x2

1 − x2
= tan φ → R12 + R22

R12 + R11
= xk

1 − xk

. (75)

Therefore, the final composition becomes the kinetically
optimal composition xk given by Eq. (24).

Returning to our original problem with the reaction matrix
R given by Eq. (10), we find R12 + R22 = α+ and R12 +
R11 = 0. Equation (75) predicts that the final composition is
x2 = xk = 1. Then, the postcritical nucleus consists only of
the metastable intermediate phase and cannot reach the final
stable phase with x = 0.

These seemingly unphysical results are due to the assump-
tion that both the stable phase and the metastable intermediate
phase are comparably stable (�μ1 → ∞,�μ2 → ∞). In fact,
we should have �μ1 > �μ2 ∼ 0. Using the explicit form R
in Eq. (10), Eqs. (70) and (71) are given by

ṅ1 = κ+(e−β�μ2 − e−β�μ1 ), (76)

ṅ2 = −κ+(e−β�μ2 − e−β�μ1 ) + α+(1 − e−β�μ2 ). (77)

Therefore, the number of molecules n1 of the stable phase will
increase as ṅ1 > 0, while n2 of the intermediate metastable
phase may increase or decrease depending not only on the
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chemical potentials �μ1 and �μ2 but also on the reaction
rates α+ and κ+ In the late stage of the postcritical nucleus
when the depletion of monomer starts to occur, the incoming
flux will stop and α+ � 0, and the second term of Eq. (77)
can be neglected. Then the number of molecules n2 of the
metastable intermediate phase will decrease to compensate
the increase of the number of molecules n1 of the final stable
phase since ṅ2 = −ṅ1 < 0. Finally the supercritical nucleus
will composed only of the molecules of the stable phase n1,
and the final stable phase with x = 0 will be reached.

In contrast to two minimum-free-energy paths indicated by
two heavy curves in Fig. 2, the two real nucleation paths should
gradually turn toward x = 0 axis after they overcome saddle
points indicated by two points. They should merge into the x =
0 axis as the size n increases according to Eqs. (76) and (77)
since x = 0 (n2 = 0) in the stable bulk phase. This evolution
of the supercritical nucleus will not involve saddle points and,
therefore, must be a barrier-less gradual change. The time scale
of evolution is determined mainly by the reaction rate κ+ and
α+ from Eqs. (76) and (77). Although both the free-energy
landscape and the reaction rates play decisive role to determine
the kinetics of nucleation at the saddle point, the details of
the free-energy landscape are irrelevant to the kinetics of the
postcritical nucleus.

Of course, if the metastable phase is as stable as the final
stable phase (�μ1 � �μ2), prediction of Eq. (75) suggests
that the nucleus made of metastable phase (upper nucleation
route with x = 1 in Fig. 2) could have a long lifetime since
the kinetically optimum composition is xk = 1. Then the
metastable intermediate phase would be macroscopically ob-
servable. The observability of the metastable phase around the
core stable phase as the core-shell structure (lower nucleation
route in Fig. 2) also depends sensitively on the difference of
the chemical potential �μ1 and �μ2 from Eq. (77).

IV. CONCLUSION

In this paper, we have studied the nucleation pathway of
the critical and the postcritical composite nucleus with core-
shell structure not only in the size and composition space but
also in the component space. By extending the results of the
previous paper [22], we could study the critical nucleus at the

saddle point in the size and composition space. Our results
suggested that the critical nucleus can be more appropriately
characterized in the size and composition space. However, the
kinetics of postcritical nucleus can be studied more easily in
the original component space.

Recent theoretical [7–10] as well as experimental [11,12]
results suggest that the appearance of the composite core-shell
nucleus does not necessarily mean two successive activations
by crossing two saddle points sequentially [3,11,32,33].
Rather, the word two-step simply means that the nucleation
pathway takes a roundabout course on the free-energy land-
scape via the single saddle point, which corresponds to the
composite nucleus with core-shell structure. Our result in this
paper will be useful to understand the nucleation pathway of
such a two-step nucleation not only at the saddle point but also
at the late stage of growth after crossing the saddle point.

It must be noted, however, our analysis is completely
confined to the steady-state process. The transient properties
can only be studied numerically by solving coupled Master
Equations [19,21,44]. In addition, our analysis is conducted
under the assumption that the nucleation flux goes through
the saddle point. Saddle point avoidance [27,42,45,46] will be
important if the anisotropy of the reaction matrix R is large
or the ridge between saddle point is low, which can occur at
high temperatures or near the spinodal point. In such a case,
the ridge-crossing rather than the saddle-crossing may occur.
Then the nucleation flux will spread over the whole phase
space and the picture used in this study may break down. Also
the growth of composite nucleus will be expected to be more
complex. Finally, it should be noted that the recent progress
to extract the reaction matrix R from simulation data [26,47]
makes it possible to apply our formulation directly to a more
realistic situation.
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