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Relationship between bond-breakage correlations and four-point correlations in heterogeneous
glassy dynamics: Configuration changes and vibration modes
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We investigate the dynamic heterogeneities of glassy particle systems in the theoretical schemes of bond
breakage and four-point correlation functions. In the bond-breakage scheme, we introduce the structure factor
Sb(q,t) and the susceptibility χb(t) to detect the spatial correlations of configuration changes. Here χb(t) attains
a maximum at t = tmax

b as a function of time t , where the fraction of the particles with broken bonds φb(t) is
about 1/2. In the four-point scheme, treating the structure factor S4(q,t) and the susceptibility χ4(t), we detect
superpositions of the heterogeneity of bond breakage and that of thermal low-frequency vibration modes. While
the former grows slowly, the latter emerges quickly to exhibit complex space-time behavior. In two dimensions,
the vibration modes extending over the system yield significant contributions to the four-point correlations,
which depend on the system size logarithmically. A maximum of χ4(t) is attained at t = tmax

4 , where these two
contributions become of the same order. As a result, tmax

4 is considerably shorter than tmax
b .
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I. INTRODUCTION

Recently, much attention has been paid to the dynamics of
glasses [1]. In particular, dynamic heterogeneities exceeding
the molecular size and emerging on long time scales [2]
have been observed in a number of experiments [3–5] and
molecular dynamics simulations in two dimensions (2D) and
in three dimensions (3D) [5–21]. In simulations, they can be
detected if the spatial correlations of the particle configuration
changes or the displacements between two separated times are
calculated. In an early period, displacement heterogeneities
were observed in applied strain in model amorphous alloys
[6–8]. Harrowell and co-workers visualized them in a one-
component fluid [9] and a binary mixture [10]. Muranaka and
Hiwatari detected them on short [11] and long [12] time scales
in binary mixtures. Yamamoto and one of the present authors
[13,14,22] examined breakage of appropriately defined bonds
and identified relatively active and inactive regions without
and with applied shear flow. The bond-breakage events
are produced by the configuration changes of the particle
positions. The broken bonds accumulated in long time intervals
are heterogeneous such that their structure factor Sb(q,t) may
be fitted to the Ornstein-Zernike form (∝1/[1 + q2ξb(t)2]),
where t is the interval width taken to be of the order of the
structural relaxation time τα . The correlation length ξb(t) grows
with lowering the temperature T . Kob et al. [15] detected
stringlike motions of mobile particles as fundamental elements
of structural relaxations, whose length distribution is widened
with lowering T .

Lačević et al. [23] presented a statistical theory of the
dynamic heterogeneity in terms of the so-called four-point
dynamic correlation functions. They found that the four-point
structure factor S4(q,t) can be fitted to the Ornstein-Zernike
form and the susceptibility χ4(t) exhibits a peak at a character-
istic time tmax

4 of order τα . The correlation length ξ4 = ξ4(tmax
4 )

thus obtained grows with lowering T . Subsequently, intensive

*These two authors contributed equally to this work.

efforts have been made to construct statistical theories and/or
add further numerical results on the four-point correlations
[5,24–30].

However, there has been no systematic comparison between
the bond-breakage scheme and the four-point scheme. The
bond-breakage events occur as rare activation processes,
resulting in structural relaxations, in the absence of applied
shear. In contrast, the physical processes giving rise to the
four-point correlations have not yet been well understood. In
this paper, we show that the four-point correlations originate
twofold from the configuration changes yielding the bond-
breakage correlations and from the collective particle motions
arising from the low-frequency transverse vibration modes
[31–41]. The time scales of these two kinds of motions are
dramatically different. In the latter, clusters of relatively mobile
particles carry a large fraction of the vibrational energy and
are distributed throughout the system [36]. The vibration
modes have been studied to explain the low-temperature
thermodynamic properties of glasses [1].

In the low-frequency vibrational motions, the oscillatory
particle displacements are highly heterogeneous so that the
configuration changes should occur preferentially in more
active regions with larger displacements, as pointed out by
Schober et al. [33]. This structural relaxation mechanism
was confirmed numerically in systems with particle numbers
of about 1000 [38,39] and experimentally in quasi-two-
dimensional colloidal glasses [42]. Thus, it explains the
inseparable coupling between the structural disorder and the
slow dynamics in glass. We mention some simulations related
to this coupling. Vollmayr-Lee et al. [43] found in 3D that
mobile particles (in their definition) are surrounded by fewer
neighbors than the others. Widmer-Cooper and Harrowell [44]
detected a correlation between the short-time heterogeneity in
a local Debye-Waller factor and the long-time heterogeneity
in 2D. Kawasaki et al. [21] claimed that medium-range
crystalline order remaining in glass controls ease of vitrifi-
cation and nature of the glass transition. In polycrystal with
small grains, the relation between the structure and the slow
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dynamics is more understandable, where the particles at the
grain boundaries initiate configuration changes [45–47].

As a closely related effect, a very small applied strain
produces strongly nonaffine particle displacements in glass,
indicating highly heterogeneous elastic moduli [6–8,48,49].
Naturally, the particles in such elastically softer regions ex-
hibit larger-amplitude displacements in the thermally excited
vibration modes. Tanguy et al. [35] showed that the classical
elasticity theory holds only on spatial scales longer than
a characteristic length (∼30 molecular sizes in their 2D
model system). Moreover, in glass, irreversible plastic events
are induced even by very small stains [14,48] and plastic
deformations are highly heterogeneous often leading to shear
bands [5,47,50]. Under a fixed small strain at T = 0 in 2D,
Manning and Liu [51] numerically examined the relation
between the low-frequency vibration modes and structural soft
spots where configuration changes (particle rearrangements in
their paper) are initiated.

The organization of this paper is as follows. In Sec. II,
our simulation method will be explained. In Sec. III, the
bond-breakage scheme [13,14] will be generalized. In Sec. IV,
we will reexamine the four-point scheme [23], where the
collective particle motions arising from the vibration modes
will be identified. In Sec. V, the dynamic heterogeneities
detected by these two schemes will be compared. In Sec. VI,
3D results will be presented.

II. NUMERICAL METHOD

To illustrate consequences of the bond-breakage and four-
point theories, we will show the results of molecular dynamics
simulation of 50:50 binary mixtures composed of two species,
1 and 2, in 2D and 3D in amorphous states at low temperatures.
We imposed the periodic boundary condition without applying
shear flow. The particle numbers of the two species are N1 =
N2 = N/2. In 2D, N will be mostly 4000 or 64 000, but data
for N = 16 000 and 256 000 will also be given in Figs. 3
and 8. In 3D, results for N = 10 000 will be presented in
Sec. VI. The two species have different diameters σ1 and σ2

with σ2/σ1 = 1.4 in 2D and σ2/σ1 = 1.2 in 3D. The particles
interact via the soft-core potential,

vαβ(r) = ε

(
σαβ

r

)12

− Cαβ (r < rcut), (2.1)

where α and β represent the particle species (α,β = 1,2), r

is the particle distance, and ε is the characteristic interaction
energy. The interaction lengths are defined by

σαβ = (σα + σβ)/2. (2.2)

The potential vanishes for r > rcut, where rcut = 4.5σ1 in
2D and rcut = 3σ1 in 3D. The constants Cαβ ensure the
continuity of the potential at r = rcut. The masses of the
two species satisfy m2/m1 = (σ2/σ1)d , where d is the spatial
dimensionality. The average number density is n = N/V =
0.811σ−2

1 in 2D and 0.8σ−3
1 in 3D, where V is the system

volume. The system length L is 70.2σ1 for N = 4000 and
281σ1 for N = 64 000 in 2D, while L = 23.2σ1 in 3D. Space
and time will be measured in units of σ1 and

τ0 = σ1

√
m1/ε. (2.3)

The temperature T will be measured in units of ε/kB .

We started from a liquid state at a high temperature,
quenched the system to the final low temperature, and waited
for a long time of order 105. We imposed a thermostat in these
steps. However, after this preparation of the initial states, we
removed the artificial thermostat and integrated the Newton
equations under the periodic boundary condition in the time
range t > 0. This is needed to describe the effect of the
vibration modes on long time scales. [See item (3) in the
summary section for more discussions on the heat bath effect.]
Thus, the total particle number N , the total volume V , and the
total energy E are fixed in our simulation.

III. BOND-BREAKAGE THEORY

A. Background

We regard two particles i and j with positions r i(t) and
rj (t) to be bonded if [13,14]

rij (t) < A1σαβ, (3.1)

where i ∈ α and j ∈ β. Hereafter rij (t) = |r i(t) − rj (t)| is
the distance between these particles at time t . At a later time
t + 
t , this bond is treated to be broken if

rij (t + 
t) > A2σαβ. (3.2)

We assume that A1σαβ is slightly larger than the peak distance
of the pair correlation functions gαβ(r) and A2 is somewhat
larger than A1. In this paper, we set A1 = 1.15 and A2 = 1.5
in 2D and A1 = 1.3 and A2 = 1.7 in 3D.

Let us consider the bonds at t = t0 and denote their
total number as Nb(t0). A fraction of them will be broken
subsequently and the total number of the remaining bonds
Nb(t0 + 
t) at t = t0 + 
t decays as

Nb(t0 + 
t)/Nb(t0) = Fb(
t). (3.3)

For large systems, the relaxation function Fb(
t) may be
treated to depend only on the time difference 
t (being nearly
independent of the initial time t0 for large N ). It decreases with
increasing 
t , so the bond-breakage time τb may be defined
by

Fb(τb) = e−1. (3.4)

On the other hand, the self part of the density time-correlation
function is expressed as

Fs(q,t) = 1

N

〈∑
j

exp[iq · 
rj (t0,t0 + t)]

〉
, (3.5)

where 
rj (t0,t1) = rj (t1) − rj (t0) is the displacement vector
of particle j and q is the wave vector. In Eq. (3.5), the average
is taken over all the particles. In our simulation, the average
over the initial time t0 and that over a number of runs were
also taken. The structural relaxation time τα is usually defined
at q = 2π by

Fs(q,τα) = e−1. (3.6)

Wave numbers will be measured in units of σ−1
1 .

In the upper panel of Fig. 1, we display Fb(t) and Fs(q,t) at
q = 2π for T = 0.56 and N = 4000, where τα = 8.4 × 103

and τb = 2.0 × 105 ∼= 35τα . In the previous paper [14], the
relation τb

∼= 10τα was found for binary mixtures with the
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FIG. 1. (Color online) Top: Bond relaxation function Fb(t) in
Eq. (3.3), self part of density time-correlation function Fs(q,t) at q =
2π in Eq. (3.5), and fraction of non-B particles 1 − φb(t) = φB (t,0)
in Eq. (3.15) at T = 0.56 for N = 4000 in 2D. Relaxation times here
are τα = 8400 from Eq. (3.6), τb = 2.0 × 105 ∼= 35τα from Eq. (3.4),
and τbp = 4.18 × 104 ∼= 5τα from Eq. (3.16). Bottom: fractions of B
particles with k broken bonds φB (t,k) in Eq. (3.14) for k = 1, 2, and 3.

soft-core potential for τα < 104 wih N = 104 in 3D. Both
in 2D and 3D, Fb(t) may fairly be fitted to the stretched
exponential form at low T as

Fb(t) ∼= exp[−(t/τb)c], (3.7)

in the range t � τb. At T = 0.56 we obtain c ∼ 0.58 in 2D. The
exponent c increases with decreasing T . In contrast, Fs(q,t)
exhibits a plateau fp(< 1) before the α relaxation at low T due
to the thermal vibrational motions (see the Appendix).

B. Bond-breakage correlations

Here, we present a generalized formulation of the bond
breakage to introduce broken-bond correlation functions. To
this end, we define two overlap functions w

(1)
αβ (r) and w

(2)
αβ (r)

depending on the particle distance r as

w
(K)
αβ (r) = θ (AKσαβ − r), (3.8)

with A1 and A2 being defined in Eqs. (3.1) and (3.2). The θ (u)
is the step function being equal to 1 for u > 0 and to 0 for
u � 0. The fluctuating number density of the bonds may then
be defined as

n̂b(r,t) = 1

2

∑
ij

w
(1)
αβ [rij (t)]δ[r − r i(t)], (3.9)

where we multiply 1/2 because a bond is supported by two
particles in our definition. The statistical average of n̂b(r,t) is

the average bond number density,

nb = 1

V

∫
d r n̂b(r,t) = 1

V
Nb(0). (3.10)

Here, nb ∼ 3n in 2D at high densities. In fact, we numerically
obtain nb = 2.28 = 2.81n for n = 0.811 in our 2D system.
Now we may introduce the broken-bond number density in
time interval [t0,t1] as

P̂(r,t0,t1) = 1

2

∑
i

Bi(t0,t1)δ [r − r i(t0)] , (3.11)

where Bi(t0,t1) is the broken-bond number of particle i

assuming a non-negative integer quantity as

Bi(t0,t1) =
∑

j

w
(1)
αβ [rij (t0)]

{
1 − w

(2)
αβ [rij (t1)]

}
. (3.12)

This number tends to zero as t1 → t0 from A1 < A2 and
increases to 1,2, . . . upon bond breakage. Hereafter, the
particles with Bi(t0,t1) � 1 are called B particles, which are
surrounded by different particle configurations at the initial
and final times t = t0 and t1. On the other hand, those with
Bi(t0,t1) = 0 are called non-B particles, which have the same
surrounding configurations at t = t0 and t1. The statistical av-
erage 〈P̂(r,t0,t1)〉 depends on the time difference t = t1 − t0 as

pb(t) = 1

V

∫
d r P̂ (r,t0,t1) = nb[1 − Fb(t)], (3.13)

where nb is defined by Eq. (3.10) and Fb(t) by Eq. (3.6).
Let the number of the particles with Bi(t0,t1) = k be

NB(t,k) (k = 0,1, . . .) with t = t1 − t0. Then,

φB(t,k) = NB(t,k)/N (3.14)

is the fraction of the B particles with k broken bonds for
k � 1, while φB(t,0) = NB(t,0)/N is the fraction of the non-B
particles. The fraction of the total B particles is the following
sum:

φb(t) =
∑
k�1

φB(t,k) = 1 − φB(t,0). (3.15)

We define the bond-preserving time τbp as

1 − φb(τbp) = φB(τbp,0) = e−1. (3.16)

The particles have a broken bond on this time scale. Since
each particle has several bonds (∼6 in 2D), τbp is considerably
shorter than the bond breakage time τb in Eq. (3.4). For t � τbp,
the structural relaxation becomes appreciable. From Eq. (3.14)
we obtain

pb(t) = n

2

∑
k

kφb(t,k). (3.17)

From Eqs. (3.13) and (3.17) we find

2
nb

n
[1 − Fb(t)] =

∑
k

kφb(t,k). (3.18)

Setting t = t1 − t0 in steady states, we introduce the bond-
breakage space-time correlation function,

Gb(r,t) = 〈P̂(r + r ′,t0,t1)P̂(r ′,t0,t1)〉
= 1

4V

〈∑
ik

Bi(t0,t1)Bk(t0,t1)δ [r − r ik(t0)]

〉
, (3.19)
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where r ik(t0) = r i(t0) − rk(t0). From Eq. (3.13) we have
Gb(r,t) → pb(t)2 for large r . The structure factor of the broken
bonds is given by

Sb(q,t) = 1

V
〈|P̂q(t0,t1)|2〉

=
∫

d r[Gb(r,t) − pb(t)2]eiq·r , (3.20)

where q is the wave vector, q = |q| is the wave number,
and P̂q(t0,t1) = ∑

j Bj (t0,t1) exp[iq · r i(t0)]/2 is the Fourier

component of P̂(r,t0,t1).
As in the four-point scheme [23], we introduce the suscepti-

bility χb(t) to represent the overall degree of the bond-breakage
correlations as follows:

χb(t) = 1

4V

〈∑
ik

δBi(t0,t1)δBk(t0,t1)

〉
, (3.21)

in terms of the deviations δBi(t0,t1) = Bi(t0,t1) − 2pb(t)/n.
Here 〈Bi〉 = ∑

i Bi/N = 2pb/n from Eqs. (3.11) and (3.13).
In Sb(q,t) and χb(t), the four particle positions r i(t0), rk(t0),
rj (t1), and r�(t1) are involved. In this sense, they are four-point
correlation functions.

Rabini et al. [52] introduced the number of particles that
have left particle i’s original neighbors at time t . It involves
two times and was written as nout

i (0,t). It is similar to our
Bi(t0,t0 + t) in Eq. (3.12). Abate and Durian [53] introduced a
bond-breakage susceptibility χB (t) similar to ours in Eq. (3.21)
for a quasi-two-dimensional granular system of air-fluidized
beads.

C. Numerical results on bond breakage

We further discuss consequences of our theory using
numerical results in 2D. In Fig. 1, we plot 1 − φb(t) = φB(t,0)
in the upper panel and φB(t,k) with k = 1, 2, and 3 in
the lower panel for N = 4000, where τbp = 41 800 ∼= 5τα =
0.14τb from Eq. (3.16). At small t , φB(t,k) grow as

φB(t,k) ∝ tak , (3.22)

where a1 ∼ 0.60, a2 ∼ 1.0, and a3 ∼ 1.3. Though we cannot
derive these exponents theoretically, they should arise from
correlated occurrence of bond-breakage events.

In Fig. 2, we confirm the validity of Eq. (3.18) from
simulation at T = 0.56, where nb/n = 3.17. We find that
(2nb/n)[1 − Fb(t)] nearly coincides with φB(t,1) for t < 200
and with φB(t,1) + 2φB(t,2) + 3φB(t,3) for t < 4000 within
a few percent differences. The first relation for k = 1 in
Eq. (3.22) is consistent with Eq. (3.18) since a1

∼= c. In fact,
for t 	 τb, Eqs. (3.7) and (3.18) yield

φB(t,1) ∼= (2nb/n)(t/τb)c. (3.23)

In Fig. 3, we plot χb(t) in Eq. (3.21) as a function of t for
N = 16 000, which exhibits a peak at t = tmax

b . Here, we have
φb(t) ∼ 0.5 at t = tmax

b , which can be seen in Fig. 1 for N =
4000 and T = 0.56. Here, however, χb(t) begins to increase for
t > tmax

b , because the B particles with Bi = 2,3, . . . become
appreciable at very long times (see Fig. 1). In Fig. 4(a), we
show Sb(q,tmax

b ) vs q for various T with N = 64 000. In its
calculation we took the average over the initial time t0 in a
wide range of [0,106] for T � 0.64 and that of [0,2 × 106]

FIG. 2. (Color online) Numerical results of (2nb/n)[1 − Fb(t)],
φB (t,1), and φB (t,1) + 2φB (t,2) + 3φB (t,3) as functions of t in the
early stage at T = 0.56 for N = 4000, which confirm Eq. (3.18).

for T = 0.56, which was needed because of the slow bond
breakage. We may fairly fit Sb(q,t) to the Ornstein-Zernike
form [13,14],

Sb(q,t) = χ0
b (t)/[1 + q2ξb(t)2], (3.24)

where χ0
b (t) = limq→0 Sb(q,t) is the long-wavelength limit of

Sb(q,t) and ξb = ξb(t) is the correlation length representing
the spatial scale of the correlated configuration changes. Fur-
thermore, in Fig. 4(b), we show Sb(q,tmax

b ) vs q at T = 0.56 for
various N , which demonstrates weak system-size dependence
of the bond-breakage correlations. For N = 256 000, however,
the averaging over the initial time t0 is still insufficient because
of very large tmax

b ∼ 4 × 104 as compared to the simulation
time (∼105). As a result, the corresponding Sb(q,tmax

b ) exhibit
noticeable fluctuations at small q. In (c), the correlation length
ξb vs T is plotted at t = tmax

b for N = 64 000, which increases
with lowering T . Note that ξb = ξb(tmax

b ) is nearly independent
of the system size from (b) as long as 1 	 ξb 	 L.

In the original papers [13,14], the broken-bond structure
factor was defined differently, so it is written as SYO

b (q,t) here.
It was calculated for the Fourier component of the following

FIG. 3. (Color online) Susceptibility χb(t) in Eq. (3.21) vs t

exhibiting a peak at t = tmax
b for N = 16 000.
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FIG. 4. (Color online) (a) Structure factor Sb(q,tmax
b ) for bond

breakage in Eq. (3.20) at various T for N = 64 000, (b) Sb(q,tmax
b )

at T = 0.56 for various N , and (c) correlation lengths ξb = ξb(tmax
b )

vs T for N = 64 000. Sb(q,t) is approximately on a single curve
independent of N , leading to weak system-size dependence of ξb for
1 	 ξb 	 L.

broken-bond number density,

P̂YO(r,t0,t1) = 1

2

∑
ij

w
(1)
αβ [rij (t0)]

{
1 − w

(2)
αβ [rij (t1)]

}

× δ[r − Rij (t0)], (3.25)

where t = t1 − t0 was set equal to 0.05τb or 0.1τb. Here,
the midpoint position Rij (t0) = 1

2 [r i(t0) + rj (t0)] of the two
particles i and j is used instead of the position r i(t0) in
δ[r − r i(t0)] in Eq. (3.11). Note that the particle pairs with
a common broken bond are included in Sb(q,t). As a result,
the interparticle peak at q ∼= 2π appears in Sb(q,t) (which is
not shown in Fig. 4), while it does not apppear in SYO

b (q,t).
However, there is no essential difference between these two
definitions for q < 2. In addition, in the previous work [14],
the dynamic scaling relation of the form τb ∼ ξz

b was obtained,
where z = 4 in 2D and z = 2 in 3D.

IV. FOUR-POINT THEORY

Lačević et al. [23] introduced the four-point correlation
function to analyze the dynamic heterogeneity in glassy
systems. In their numerical analysis of a 3D binary mixture
in the NVE ensemble, they used the Lennard-Jones potential,
where the particle size ratio was σ2/σ1 = 1.2 and the particle
numbers were N1 = N2 = 4000. We critically review their
theory comparing it with our theory of bond breakage using
some numerical analysis.

A. Overlap and nonoverlap with initial regions

For a time interval [t0,t1] (t = t1 − t0 > 0), we introduce a
fluctuating density variable,

Q̂(r,t0,t1) =
∑

i

Fi(t0,t1)δ [r − r i(t0)] . (4.1)

For each i we define a non-negative integer,

Fi(t0,t1) =
∑

j

w[|r i(t0) − rj (t1)|], (4.2)

using the following overlap function [23]:

w(r) = θ (A4σ1 − r). (4.3)

The overlap length A4σ1 is common for the two particle
species for simplicity. In Eq. (4.2) the particle positions r i(t0)
and rj (t1) are those at different times. Thus Fi(t0,t1) is the
number of overlapping particles in the initial circle (or sphere
in 3D) |r − r i(t0)| < A4σ1 in two configurations separated by
time t = t1 − t0. We may call Q̂(r,t0,t1) the two-point overlap
density.

In the original analysis [23], the overlap function was
written as w(r) = θ (aσ2 − r) with aσ2 = 1.2aσ1, where the
parameter a was set equal to 0.3 maximizing the four-point
susceptibility χ4(t) [see the discussion around Eq. (4.17)
below]. In numerical analysis in this paper, we set A4 = 0.3
in Eq. (4.3). These selected values are considerably shorter
than the particle radii, but somewhat exceed the square root
of the plateau value of the mean square displacement [23].
Thus, as t1 → t0, the distinct terms with j 
= i vanish in
the summation of Eq. (4.2), leading to Fi(t0,t1) → 1 and
Q̂(r,t0,t1) → ρ̂(r,t0), where ρ̂(r,t) = ∑

i δ [r − r i(t)] is the
usual fluctuating number density. For t1 > t0,Fi(t0,t1) is either
0 or 1. We did not detect the particles with Fi � 2 in our
simulation.

In the definition of Q̂(r,t0,t1), the terms in Eqs. (4.1) and
(4.2) may be divided into the self part with i = j and the
distinct part with i 
= j . The self part of Q̂ reads

Q̂s(r,t0,t1) =
∑

i

w [
ri(t0,t1)] δ [r − r i(t0)] , (4.4)

where 
ri(t0,t1) is the displacement length of particle i,


ri(t0,t1) = |r i(t1) − r i(t0)|. (4.5)

Setting a = 0.3, Lačević et al. [23] found that the self part
gives rise to the dominant contributions in the four-point
correlations. Also in our simulation, the self part dominates
over the distinct part. We consider the particles with 
ri > 0.3
and Fi = 1, for which another particle j has moved within the
initial circle of particle i giving rise to the distinct contribution.
We compare their number with the number of the particles with

ri > 0.3. For example, in a 2D simulation run for T = 0.56
and N = 4000 (which yielded Fig. 13 and the left panels of
Fig. 14), these numbers are 256 and 2195, respectively, at
t = 10 200 (see Table II). In a 3D simulation run for T = 0.24
and N = 104 (which yielded Figs. 15 and 16), they are 366
and 1452, respectively, at t = 104 (see Table IV). More than
90% of these distinct particles (with 
ri > 0.3 and Fi = 1)
are B particles having broken bonds.
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B. Background vibrational fluctuations

We first examine the fluctuations of the particle positions
due to the thermally excited low-frequency vibration modes at
low T before the onset of the structural relaxation. They exhibit
significant heterogeneity, as found by Muranaka and Hiwatari
in a very short time interval of width 5 in a 2D soft-core system
with N = 104 [11].

For t 	 τbp, we may neglect the configuration changes from
the discussion below Eq. (3.16) and define the displacement
vector ui(t) = r i(t) − r̄ i , where r̄ i is the time-averaged
position in a time interval with width much shorter than τbp.
The equal-time variance 〈|u|2〉 = ∑

i〈|ui |2〉/N is a half of the
plateau value Mp of the mean square displacement at low T

[see Eq. (A5) below]. From the Appendix, 〈|u|2〉 increases with
increasing the system length L logarithmically in 2D as [54]

〈|u|2〉 = Mp/2 ∼= C0 + C1 ln(L/σ1), (4.6)

where C0 and C1 are functions of T and are independent of L.
In terms of the shear modulus μ and the bulk modulus K , the
coefficient C1 is expressed as

C1 = kBT

2π

(
1

μ
+ 1

K + μ

)
. (4.7)

In our 2D system, we obtained μ ∼= 18 and K ∼= 67.5 at T =
0.56 from the initial linear growth of the stress-strain relation
and the density-pressure relation (not shown in this paper) [55].
Then we find C1

∼= 0.0060 at T = 0.56. If the total particle
number is increased from 4000 to 64 000, Eq. (4.6) yields
the incremental increase C1 ln 4 ∼= 0.0083 in 〈|u|2〉. In fair
agreement with this estimate, we numerically calculated 〈|u|2〉
to be 0.02266 for N = 4000 and 0.03305 for N = 64 000,
where r̄ i was equated with the time average of r i(t) in a time
interval of width 200.

With Eq. (4.6), we need to examine how the particles remain
within or go outside their initial circle. In Fig. 5, we display

ri(t0,t1) in Eq. (4.5) for five particles in time range t =
t1 − t0 < 18 000 with N = 4000. These particles are separated
from one another with distances longer than 10. We recognize
that these displacements undergo rapid thermal fluctuations
with magnitudes nearly equal to the overlap length 0.3. In the
early stage (t < τbp), most of Fi fluctuate between 1 and 0. In
this example, two of them escape from their initial circle, where
one has a broken bond at t ∼ 8000 and the other has two broken
bonds at t ∼ 10 000 (see Fig. 6). Each jump itself occurs on a
short time of order 10. Figure 6(a) gives the trajectory of the
particle escaping from a cage at t ∼ 104 in Fig. 5. In Fig. 6(b),
this escape take place as a stringlike motion involving several
particles as in 3D [15,33]. See Fig. 13(a) below for other
examples. In Fig. 6(b), we can see that most of the particles
involved have only one broken bond, which is particularly
the case for isolated configuration changes. Therefore, these
motions may also be treated as small slips in 2D.

Removing the rapid temporal fluctuations, we calculated
the smoothed displacement lengths,


r̄i(t) = |r̄ i(t + t0) − r̄ i(t0)|, (4.8)

for the time-smoothed positions,

r̄ i(t) = 1

tsm

∫ tsm

0
dt ′ r i(t + t ′). (4.9)

FIG. 5. (Color online) Time evolution of 
ri(t0,t0 + t) for five
particles among 4000 particles. They exhibit thermal fluctuations
with magnitudes on the order of the overlap length 0.3. Two particles
escape from the initial circle at t ∼ 8000 (blue �) and ∼104 (red �).
They have a broken bond with Bi(t0,t0 + t) = 1 and Fi(t0,t0 + t) = 0
in later times. For the other three particles, the bonds are preserved, but
Fi frequently fluctuate between 1 and 0 in the time range displayed.
Inset: Time evolution of the time-smoothed distance 
r̄i(t) defined
in Eqs. (4.8) and (4.10) in the range 4000 < t < 8000.

In the inset of Fig. 5, the smoothing time tsm is 500. Even
on this time scale, the particles move considerably, even
across their initial circle. Note that this tsm is much longer
than the traversal time of the transverse sounds across the
system ta = L/c⊥ ∼ 17 for N = 4000 [55]. These complex
fluctuations can arise from bond breakage events close to
these particles and from superposition of weakly coupled,
low-frequency vibration modes [31–41].

In Fig. 7, we show the particles with Fi = 0 at very early
times t = 200 and 400 for T = 0.56 and N = 4000, where
their initial circles contain no particle. The fraction of the
particles withFi = 0, written as φ4(t), is soon about 0.2 for t �
10. That is, a considerable amount of the non-B particles with
Fi = 0 already appear from very early times. However, some
of the B particles depicted at t = 200 are changed to those with
Fi = 1 at t = 400 (see the sentences at the end of Sec. IV A).

In Fig. 8, we show the particles withFi = 0 at t = 104 ∼ τα

for T = 0.56 in a much larger system of N = 64 000. Some
heterogeneities have sizes of order 50. Among the displayed
particles, the B and non-B particles amount to 22 034 and
18 122, respectively. The patterns of the latter are more
extended than those of the former. Moreover, their time scales
are distinctly separated (see Fig. 14 below). These indicate the
presence of thermally excited large-scale vibration modes.

C. Four-point correlations

The average of Q̂(r,t0,t1) in Eq. (4.1) is written as

q4(t) = 〈Q̂(r,t0,t1)〉
= 1

V

∑
ij

w[|r i(t0) − rj (t1)|], (4.10)
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FIG. 6. (Color online) (a) Trajectory of the particle escaping
from a cage (red � in Fig. 5). Data points at t = 8000 + 20k

(k = 0,1, . . . ,180) are written. Its position is (x,y) = (23.36,67.00)
at t = 10 140 (point A) and (x,y) = (24.44,67.16) at t = 10 160
(point B). Between these times, the particle escapes from the circle
|r − r i(t0)| < 0.3 (red loop line). (b) Displacements between this
short time interval [10 140,10 160]. Several particles undergo a
stringlike motion, where the particle (A) in the upper panel has two
broken bonds and the others have one broken bond.

which is a function of t = t1 − t0. In our simulation, Fi = 1 or
0, so q4(t) is related to the fraction φ4(t) of the particles with
Fi = 0 as

q4(t) = n[1 − φ4(t)]. (4.11)

(a) Δt=200 (b)Δt=400

FIG. 7. (Color online) Early-stage snapshots of particles with
Fi = 0 at t = 200 (left) and 400 (right), which are classified into
those with Bi = 0 (full circle symbol in red) and those with Bi = 1
(crescentic symbol in blue). Here T = 0.56 and N = 4000. Numbers
of the former (Bi = 0) and the latter (Bi = 1) are (766,75) in (a)
and (535,81) in (b). The former arise from the collective vibrational
modes emerging for t � 10.

FIG. 8. (Color online) Late-stage snapshot of particles with Fi =
0 in a large system of N = 64 000 and L = 281, where t = 104 and
T = 0.56. Depicted particles are classified into those withBi = 0 (red
or lighter gray) and those with Bi � 1 (blue or darker gray). Numbers
of the former (Bi = 0) and the latter (Bi � 1) are (22 034,18 122),
respectively. The former arise from the low-frequency vibration
modes. Subsequent time evolution in the upper box region will be
given in the right of Fig. 14.

Here, q4(0) = n and q4(∞) = v0n
2, where v0 is the area or

volume of the overlap region [v0 = π (A4σ1)2 in 2D and v0 =
4π (A4σ1)3/3 in 3D].

As in Eq. (3.19) for Gb(r,t), the four-point space-time
correlation function is given by

G4(r,t) = 〈Q̂(r + r ′,t0,t1)Q̂(r ′,t0,t1)〉
= 1

V

〈∑
ik

Fi(t0,t1)Fk(t0,t1)δ(r − r ik(t0))

〉
, (4.12)

where r ik(t0) = r i(t0) − rk(t0). The four-point structure factor
is defined by

S4(q,t) = 1

V
〈|Q̂q(t0,t1)|2〉

=
∫

d r[G4(r,t) − q4(t)2]eiq·r , (4.13)

where Q̂q(t0,t1) = ∑
j Fj (t0,t1) exp[iq · rj (t0)] is the Fourier

component of Q̂(r,t0,t1). We define the four-point susceptibil-
ity χ4(t) by

χ4(t) = 1

V

〈∑
ik

δFi(t0,t1)δFk(t0,t1)

〉
(4.14)

in terms of the deviation δFi(t0,t1) = Fi(t0,t1) − q4(t)/n. In
these correlation functions, the four particle positions r i(t0),
rk(t0), rj (t1), and r�(t1) are involved. However, as discussed
around Eq. (4.4), the self parts with i = j and k = � dominate
over the distinct parts with i 
= j and k 
= � [23].
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FIG. 9. (Color online) Susceptibility χ4(t) in Eq. (4.14) vs t for
N = 4000.

Berthier et al. [24,25] showed that the four-point suscepti-
bility χ4(t) depends on the ensemble (NV E or NV T ) and the
dynamics (Newtonian or Brownian). Our χ4(tmax

4 ) in the NV E

ensemble is roughly 60% of the long-wavelength limit of
the four-point structure factor χ0

4 (tmax
4 ) = limq→0 S4(q,tmax

4 ),
which is consistent with the previous calculations [24–28].
However, in our calculation, the long-wavelength limit of the
bond-breakage structure factor χ0

b (tmax
b ) = limq→0 Sb(q,tmax

b )
cannot be determined reliably because of the very long tmax

b

at low T (see Fig. 4) and our maximum bond-breakage
susceptibility χb(tmax

b ) in Fig. 3 apparently exceeds χ0
b (tmax

b )
by a few tens of percent. Thus, we cannot draw a definite
conclusion on the relation between χb(tmax

b ) and χ0
b (tmax

b ).
In Fig. 9, we give χ4(t) in Eq. (4.14) as a function of

t for various T , which is calculated in the NV E ensemble
with N = 4000. It is maximized at t = tmax

4 . Here, due to the
transverse sound propagation, a smaller acoustic peak emerges
with lowering T at t = ta/2 ∼ 8.6 [55], whose existence has
not been reported in the previous papers. It becomes more
evident at lower T , where the acoustic damping is weaker. We
also calculated χ4(t) for other N . For N = 64 000, the acoustic
peak was at t ∼ 34 and its height even exceeded the first peak
height for low T . For N = 1000, there was no acoustic peak.
[See item (3) in the summary for more discussions.]

Lačević et al. [23] determined the overlap length aσ2 to
maximize the peak height of the four-point susceptibility
χ4(tmax

4 ) as a function of the parameter a at T = 0.59 in
3D. They then obtained a = 0.3 and used it also at other low
T . Following their method, we also maximized χ4(tmax

4 ) as a
function of the overlap length to obtain A4 = 0.3 in Eq. (4.3)
for T = 0.64 and N = 4000. Then tmax

4 ∼ 104 at T = 0.56
both for N = 4000 and 64 000.

In Fig. 10(a), we plot S4(q,tmax
4 ) vs q for various T

with N = 64 000. In its calculation, we took the average
over the initial time t0 in the wide range [0,106]. As in
the case of Sb(q,t) in Eq. (3.20), we may fit S4(q,t) to the
Ornstein-Zernike form as [23]

S4(q,t) = χ0
4 (t)/[1 + q2ξ4(t)2], (4.15)

where χ0
4 (t) = limq→0 S4(q,t) is the long-wavelength limit

of S4(q,t) and ξ4(t) is the four-point correlation length.
Furthermore, in Fig. 10(b), we show S4(q,tmax

4 ) at T = 0.56
for various N up to N = 256 000 to demonstrate its significant
system-size dependence at small q. In Fig. 10(c), we display
ξ4(tmax

4 ) vs T for N = 64 000 as an example, which increases

FIG. 10. (Color online) (a) Four-point structure factor S4(q,tmax
4 )

vs q in Eq. (4.13) for various T , where N = 64 000. (b) S4(q,tmax
4 )

vs q for various N at T = 0.56. (c) ξ4(tmax
4 ) for N = 64 000. Marked

system-size dependence appears at small q due to the low-frequency
vibration modes.

with lowering T . We recognize that the ratio ξ4(tmax
4 )/ξb(tmax

b )
exceeds unity and increases with increasing N . For example,
it is about 3 for T = 0.56 and N = 64 000. Thus, on our 2D
simulation, the effect of the low-frequency vibration modes on
the four-point correlations becomes stronger for larger N .

V. COMPARISON OF THE TWO
THEORETICAL SCHEMES

A. Time scales

In Fig. 11, we display φb(t), φ4(t), χb(t), and χ4(t) at T =
0.64 for N = 4000 in the two theoretical schemes. Here, φb(t)
is the fraction of the particles withBi > 0 and φ4(t) is that with
Fi = 0. We can see that φb ∼ 1/2 at t = tmax

b and φ4 ∼ 1/2
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FIG. 11. (Color online) Fraction φb(t) and susceptibility χb(t) for
bond breakage and those φ4(t) and χ4(t) for four-point correlations
for T = 0.64 and N = 4000. Here, χb(t) and χ4(t) are maximized
for φb(t) ∼ 1/2 and φ4(t) ∼ 1/2, respectively.
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FIG. 12. (Color online) Relaxation times as functions of T for
the soft-core potential for N = 4000 in 2D. From above, they are τb

in Eq. (3.4), τbp in Eq. (3.16), tmax
b from the maximum of χb(t), tmax

4

from the maximum of χ4(t), and τα in Eq. (3.6).

at t = tmax
4 . If φb(t) [or φ4(t)] is close to 0 or 1, Sb(q,t) [or

S4(q,t)] becomes very small.
So far we have introduced the bond-breakage time τb in

Eq. (3.4), the relaxation time τα from Fs(q,t) in Eq. (3.6), the
bond-preserving time τbp in Eq. (3.16), the maximization time
tmax
b of χb(t) in Fig. 3(a), and the maximization time tmax

4 of
χ4(t) in Fig. 9. In Fig. 12, these times are in the following order:

τα < tmax
4 < tmax

b ∼ τbp < τb, (5.1)

with 35 � τb/τα � 102 in the range 0.56 � T � 0.96 for
N = 4000. In our 2D simulation, τα and tmax

4 exhibit strong
system-size dependence due to the low-frequency vibration
modes. In fact, we numerically obtained τα = 8400 for
N = 4000 and τα = 2140 for N = 64 000 (see the Appendix).
It is worth noting that significant system-size dependence
of the plateau behavior of Fs(q,t) [and τα from Eq. (3.6)]
has been reported in 2D and 3D simulations [27,56,57].
Furthermore, Karmakar et al. [27] examined system-size
dependence of ξ4 and S4(q,t) up to N = 351 232 in 3D.

In addition, we comment on the stress-time-correlation
function, which considerably decreases in the early stage due
to the thermal motions as well as Fs(q,t). As a result, its
relaxation time is of order τα [30], while the nonlinear flow
behavior is characterized by τb [14].

B. Time evolution on long and short time scales

In Fig. 13(a), the arrows represent relatively large displace-
ments 
r i = r i(t1) − r i(t0) with 
r i = |
r i | > 0.3 [11,17].
We can see both large-amplitude stringlike motions and
smaller-amplitude collective motions. In Fig. 13(b), all the
B particles are displayed. In Fig. 13(c), those with Fi = 0
are divided into B and non-B particles, where the former
exhibit patterns closely resembling those of the B particles in
Fig. 13(b). The number of B particles with Fi = 0 is about
70% of that of the total B particles in Fig. 13(b).

From Figs. 13(a) and 13(c), the non-B particles withFi = 0
mostly arise from the collective motions on large scales, as has
been the case at short times in Fig. 7. Their selection is very
sensitive to the overlap length, aσ2 in the original work [23] and
A4σ1 in this paper, while the B particles (even with Fi = 0)
are relatively insensitive to it. In the four-point theory [23], the
overlap length was chosen to maximize χmax

4 = χ4(tmax
4 ), as

discussed above Eq. (4.15). Roughly speaking, their method
is to maximize the contribution from the thermal collective
motions of non-B particles to χ4(t) (see Fig. 11).

We next examine time evolution at two consecutive times
t = 10 200 and 10 400 for N = 4000 (left) and 64 000 (right) at
T = 0.56. The four upper panels of Fig. 14 display the particles
with Fi(t0,t0 + t) = 0 grouped into B and non-B particles.
These snapshots are subsequent to that in Fig. 13(c) for
N = 4000 and that in the box region in Fig. 8 for N = 64 000
in the same runs. The four lower panels of Fig. 14 give the
corresponding displacements 
r i(t0 + t ′,t0 + t ′ + 200) with
t ′ = 100 00 or 10 200, which exceed 0.3 in this short time
interval of 200. The differences between the consecutive
patterns are evidently larger for N = 64 000 than for N =
4000. We can see that this system-size dependence originates
from the large-scale vibrational motions.

In Table I, we give the numbers of the particles with (a)Bi >

0, (b) Bi > 0 and Fi = 0, (c) Bi = Fi = 0, and (d) 
ri > 0.3

(c)(b)(a)

FIG. 13. (Color online) Snapshots at t = t1 − t0 = 104 for T = 0.56 and N = 4000 in 2D. System length is L = 70.2. (a) Displacements

r i(t0,t1) with |
r i | > 0.3, (b) B particles, and (c) those with Fi = 0 classified into B particles (crescentic symbol in blue) and non-B
particles (full circle symbol in red). Non-B particles with Fi = 0 are produced by collective motions, while most B particles participate in
stringlike motions and satisfy Fi = 0.
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FIG. 14. (Color online) Snapshots at t = 10 000 + 200k (k = 1,2) at T = 0.56 for N = 4000 (left) and for N = 64 000 (right). Top:
Particles with Fi = 0 classified into non-B particles (full circle symbol in red) and B particles (crescentic symbol in blue), where the
former significantly change but the latter little change in this short time interval. The change of the former is larger for the larger N in the
right. See the preceding snapshots in (c) of Fig. 13 for N = 4000 and in the black box of Fig. 8 for N = 64 000. Bottom: Displacements

r i = 
r i(t0 + t ′,t0 + t ′ + 200) multiplied by 5 with |
r i | > 0.3 in short time intervals of 200, where t ′ = 10 000 or 10 200.

in the four snapshots in Fig. 14. We also give those of the
particles commonly depicted in the consecutive snapshots. In
Table II, the numbers of the B and non-B particles are given at
t = 10 200 for (a) 
ri > 0.3 and Fi = 0, (b) 
ri > 0.3 and
Fi = 1, and (c) 
ri < 0.3 and Fi = 1. There is no particle
with 
ri < 0.3 and Fi = 0. We recognize the following: (i)
About 20%–30% of the particles withFi = 0 change into those
with Fi = 1 and vice versa in a short time of 200. (ii) About
30% of the B particles satisfy Fi = 1 at each time because of
the presence of another particle j within their initial circles.
As stated at the end of Sec. IV A, most of the particles with

ri > 0.3 and Fi = 1 are B particles having broken bonds
(which is 97% in the example of Table II). (iii) About 5% of
the B particles become the non-B particles and vice versa in
a short time of 200. (iv) About 85% of the B particles move
outside their initial circle to have 
ri > 0.3. The remaining

TABLE I. Particle numbers with (a) Bi > 0, (b) Bi > 0 and
Fi = 0, (c) Bi = Fi = 0, and (d) 
ri > 0.3 in Fig. 14 at t = 10 200
and 10 400 for N = 4000 and 64 000 in 2D. Those of the particles
common in these two shots are also given. Subscript i is omitted from

ri , Bi , and Fi .

t (N ) B > 0 B > 0,F = 0 B = F = 0 
r > 0.3

10200 (4000) 1629 1104 1091 2451
10400 (4000) 1667 1180 1221 2643
Common (4000) 1576 925 823 1923
10200 (64000) 26 188 18 336 20 884 43 544
10400 (64000) 26 413 18 678 21 785 44 693
Common (64000) 25 192 14 149 14 349 31 790

15% of the B particles stay within their initial circle having
broken bonds after long-distance motions of the neighboring
particles.

Dauchot et al. [58] performed an experiment on a 2D
dense granular packing under cyclic shear near the jamming
transition. Their snapshots of 
r i and 1 − Fi (q̂a

s in their
notation) resemble those in Fig. 13.

VI. THREE-DIMENSIONAL RESULTS

Also in 3D, the four-point correlations arise from the bond-
breakage motions and the thermal vibrational motions. The
former grow slowly with structural relaxations, while the latter
fluctuate relatively rapidly.

In Fig. 15, we give snapshots of the particles at t = 10 000
and 10 200 for T = 0.24 and N = 104, where τα ∼ 105. The
system length is L = 23.2. Here, the fraction of the B particles
is φB(t) ∼ 0.24 and that with Fi = 0 is φ4(t) ∼ 0.15. In
Fig. 15(a), we display the relatively large displacements 
r i =
r i(t0 + t) − r i(t0) with 
ri > 0.3. Stringlike motions are
conspicuous [14,15,23,33], around which collective motions

TABLE II. Numbers of non-B and B particles for three categories
in Fig. 14 at t = 10 200 for N = 4000 in 2D.


r > 0.3 
r > 0.3 
r < 0.3
F = 0 F = 1 F = 1 Total

B = 0 1091 7 1273 2371
B > 0 1104 249 276 1629
Total 2195 256 1549 4000
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[ , ]t t +10000 [ , ]t0 t0+10000 [ , ]t0 t0+10200>0 >0(a) (b) (c)

FIG. 15. (Color online) Snapshots in 3D for T = 0.24 and N = 10 000. (a) Arrows indicate displacements 
r i(t0,t0 + 10 000) with
|
r i | > 0.3, whose number is 1818. Particles with Fi = 0 classified into B particles (red or dark) and non-B particles (yellow or bright)
for time intervals [t0,t0 + 10 000] in (b) and [t0,t0 + 10 200] in (c). Depicted non-B particles are produced by the vibration modes and are
fluctuatiing in time, while B particles are not much changed between these two times.

with 
ri > 0.3 tend to be induced. We also display the
particles with Fi = 0 grouping them into B particles (in
red or dark gray) and non-B particles (in yellow or bright
gray) in time intervals [t0,t0 + 10 000] in Fig. 15(b) and
[t0,t0 + 10 200] in Fig. 15(c).

In Fig. 16, we display the B particles in (a) and (a′), the B
particles with Fi = 0 in (b) and (b′), and the non-B particles

[ , ]t t +10000 [ , ]t t +10200

=0

=0

=0

=0 =0=0

>0 >0

=0 =0

>0 >0

[ , ]t t +10200

[ , ]t t +10200

[ , ]t t +10000

[ , ]t t +10000(a) (a’)

(b) (b’)

(c) (c’)

FIG. 16. (Color online) Snapshots using the data in Fig. 15
for time intervals [t0,t0 + 10 000] (left) and [t0,t0 + 10 200] (right).
Displayed are particles with Bi > 0 in (a), those with Bi > 0 and
Fi = 0 in (b), and those with Bi = Fi = 0 in (c).

with Fi = 0 in (c) and (c′) for t = 10 000 in the left and 10 200
in the right. We use the same data as in Fig. 15. We can see that
the B particles little change, but the non-B particles greatly
change in a time interval of 200. The aggregates of the B
particles have grown from the strings in Fig. 15(a). The number
of the total B particles (in the top panels) is considerably larger
than that of the B particles with Fi = 0 (in the middle panels),
which are 2351 and 641, respectively, at t = 10 000. This is
because the particles surrounding each string can have broken
bonds without their long-disance motions.

Table III gives the numbers of the particles with (a) Bi > 0,
(b) Bi > 0 and Fi = 0, (c) Bi = Fi = 0, and (d) 
ri > 0.3
in the two snapshots in Figs. 15 and 16. Also given in the
last line are those of the particles commonly depicted in the
consecutive snapshots. On the other hand, Table IV presents
the numbers of the B and non-B particles at t = 10 200 for
(a) 
ri > 0.3 and Fi = 0, (b) 
ri > 0.3 and Fi = 1, and (c)

ri < 0.3 and Fi = 1. Conspicuous features are as follows:
(i) About 50% of the particles with 
ri > 0.3 change into
those with 
ri < 0.3 and vice versa in a short time interval
of 200. Only 30% of the non-B particles are common in the
two consecutive snapshots. (ii) About 60% of the B particles
satisfy 
ri < 0.3 and Fi = 0. (The corresponding percentage
is about 15% in 2D in Table II.) This is because of the larger
coordination number or the larger bonded particles around
each particle in 3D. That is, there are about ten bonded particles
around a particle which has participated in a stringlike motion
and moved over a molecular distance. (iii) The particles with

ri > 0.3 andFi = 1 amount to 366 and their fraction in those
with 
ri > 0.3 is about 0.2. This means that the distinct part
is negligible as compared to the self part in Fi in Eq. (4.2), in
accord with the calculation by Lačević et al. [23]. (iv) Among

TABLE III. Particle numbers in Figs. 15 and 16 at t = 10 000 and
10 200 for N = 104 in 3D.

t B > 0 B > 0,F = 0 B = F = 0 
r > 0.3

10 000 2351 641 811 1818
10 200 2393 675 898 1943
Common 2094 400 268 980
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TABLE IV. Numbers of non-B and B particles for three cate-
gories at t = 10 000 for N = 104 in 3D in Figs. 15 and 16.


r > 0.3 
r > 0.3 
r < 0.3
F = 0 F = 1 F = 1 Total

B = 0 811 27 6811 7649
B > 0 641 339 1371 2351
Total 1452 366 8182 10 000

366 particles with 
ri > 0.3 and Fi = 1, most of them (339)
are B particles.

VII. SUMMARY AND REMARKS

We have examined the dynamic heterogeneity of glassy
particle systems in the bond-breakage scheme [13,14] and in
the four-point scheme [23]. The former treats the irreversible
configuration changes, while in the latter also included are
the reversible particle displacements due to the low-frequency
vibrational modes. These two kinds of motions are both highly
heterogeneous in glassy states.

Our main results are as follows:
(i) In Sec. III, we have generalized the bond-breakage

theory [13,14] to define the broken bond number Bi(t0,t1),
the fractions of the particles with k broken bonds φb(t,k),
the correlation function Gb(r,t), the structure factor Sb(q,t),
and the susceptibility χb(t) in Eqs. (3.12), (3.14), and
(3.19)–(3.21). We have defined the bond-breakage time τb in
Eq. (3.4) and the bond-preserving time τbp in Eq. (3.16) in
addition to the relaxation time τα from Fs(q,t) in Eq. (3.6). In
Fig. 3, χb(t) exhibits a maximum as a function of t , yielding the
maximization time tmax

b , while the Ornstein-Zernike fitting of
Sb(q,tmax

b ) yields ξb = ξb(tmax
b ) in Fig. 4. These quantities are

nearly independent of the system size as long as 1 	 ξb 	 L.
(ii) In Sec. IV, we have discussed the four-point theory,

where the overlap function w(r) in Eq. (4.3) defines the initial
circles (spheres) in 2D (3D). The overlap number Fi(t0,t1)
in Eq. (4.2) determines the correlation function G4(r,t),
the structure factor S4(q,t), and the susceptibility χ4(t) in
Eqs. (4.12)–(4.14). Maximization of χ4(t) with respect to t

yields the characteristic time tmax
4 . We have shown that the

nonoverlap motions from the initial circles stem from the
thermal excitation of the low-frequency vibrational modes and
the escape jumps from temporary cages as in Figs. 5, 6, 11,
and 13. The thermal collective motions appear from the initial
stage (t � 10) as in Fig. 7, while the jump motions emerge very
slowly. The maximization procedure of χ4(t) with respect to
the overlap length [23] is to maximize the contribution from
the thermal collective motions to χ4(t). In 2D, the system-size
dependence of the four-point correlations is strong at long
wavelengths even for ξ4 	 L.

(iii) In Sec. V, we have compared the relaxation times τb,
τpb, τα , tmax

b , and tmax
4 in Fig. 12 to obtain the sequence (5.1),

where τα(∼ tmax
4 ) is considerably shorter than τb. Next we

have presented snapshots of the displacements Bi , and Fi at
t = 104 for N = 4000 with marked large-scale heterogeneities
in Fig. 13. We have grouped the particles with Fi = 0 into B
and non-B particles, where they are those with and without
broken bonds, respectively. The patterns of the B particles with

Fi = 0 closely resemble those of the total B particles. The non-
B particles withFi = 0 arise from the low-frequency vibration
modes undergoing relatively rapid temporal variations, as can
be seen in the inset of Fig. 5 and in Fig. 14.

(iv) Also in 3D, the four-point correlations arise from the
thermal collective motions withBi = 0 and the bond-breakage
motions with Bi � 1 as in Figs. 15 and 16. As a characteristic
feature in 3D, Table IV shows that about 60% of the B particles
satisfy 
ri < 0.3 and Fi = 1. These particles surround the
particles which have undergone stringlike motions.

We make some remarks in the following.
(1) The heterogeneity exhibited by the low-frequency

vibration modes still remains largely unexplored [35–41]. In
future work, we should examine how it depends on the size
ratio and the composition [45–47].

(2) The vibration modes determine the plateaus of the time-
correlation function Fs(q,t) in Eq. (3.5) and the mean square
displacement M(t) in Eq. (A4), resulting in significant system-
size effects [56,57]. They also give rise to the system-size
dependence of the four-point structure S4(q,t) at small q in
Fig. 10(b). Our present analysis is mostly for 2D, but Eqs. (A2)
and (A8) provide one possible source of the finite size effect
in 3D.

(3) We also comment on the effect of a thermostat, which
was used only in preparing the initial states. We have found that
a thermostat can strongly affect the low-frequency vibration
modes (not shown in this paper). For example, the second peak
of χ4(t) at t ∼= L/2c⊥ for T � 0.80 in Fig. 9 disappeared in
the presence of a thermostat, presumably because it effectively
increases the acoustic damping.

ACKNOWLEDGMENTS

This work was supported by Grant-in-Aid for Scientific
Research from the Ministry of Education, Culture, Sports,
Science and Technology of Japan. T.K. was supported by the
Japan Society for Promotion of Science. The authors would
like to thank Ryoichi Yamamoto, Kunimasa Miyazaki, Shin-
ichi Sasa, and Kang Kim for informative discussions. The
numerical calculations were carried out on SR16000 at YITP in
Kyoto University and Altix ICE 8400EX at ISSP in University
of Tokyo.

APPENDIX: THERMAL POSITIONAL FLUCTUATIONS
AND FINITE SIZE EFFECT

In solids, the vibration modes give rise to the thermal
fluctuations of the particle displacements ui(t) = r i(t) − r̄ i

with r̄ i being the time-averaged positions. In our theory, we
may define r̄ i on time scales shorter than the bond-preserving
time τbp in Eq. (3.16). The contributions from the large-scale
modes may be calculated using the classical linear elasticity
theory, which should be valid at sufficiently long wavelengths
even in glass [35].

In 2D, we may express the displacement variance 〈|u|2〉 =∑
i〈|ui |2〉/N as in Eqs. (4.6) and (4.7). For 2D solids [54], use

has been made of the relation

〈|ui(t) − uj (t)|2〉 = 2C1 ln(rij /a0), (A1)

where C1 is given in Eq. (4.7), rij is the distance between
particles i and j , and a0 is a microscopic length. Thus,
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Eq. (A1) represents the anomalous long-range correlation in
2D solids. These expressions follow if the discrete sums over
the long-wavelength vibration modes (

∑
q |q|−2) are replaced

by the wave-number integral (
∫

dq qd−3). In 3D, there is no
long-wavelength divergence, but the lower bound of the wave
number (∝L−1) yields the following L dependence:

〈|u|2〉 = D0 − D1/L, (A2)

where D0 and D1 are functions of T . If we perform the
corresponding discrete summation over the modes under the
periodic boundary condition, we obtain

D1 = 0.21kBT

(
2

μ
+ 1

K + 4μ/3

)
. (A3)

For t 	 τbp, we may set r i(t0) − r i(t0 + t) = ui(t0) −
ui(t0 + t) by neglecting the configuration changes. The mean
square displacement M(t) is written as

M(t) =
∑

i

〈|r i(t0) − r i(t0 + t)|2〉/N

∼=
∑

i

〈|ui(t0) − ui(t0 + t)|2〉/N. (A4)

If the cross correlation
∑

i〈ui(t0 + t) · ui(t0)〉/N decays to
zero due to the acoustic damping before the α relaxation, a
well-defined plateau Mp appears in M(t) with

M(t) ∼= Mp = 2〈|u|2〉, (A5)

for 1 	 t 	 τbp as already given in Eq. (4.6).

The time correlation function Fs(q,t) in Eq. (3.5) also
assumes a well-defined plateau value fp = fp(T ,N ) at low
T . For the Gaussian distribution of ui , we have [59]

fp
∼= exp[−q2Mp/2d] = exp[−q2〈|u|2〉/d]. (A6)

If the structural relaxation time τα is defined by Eq. (3.6), its
dependence on N (∝ N1/d ) can arise from Eq. (4.6) in 2D and
from Eq. (A2) in 3D.

For 2D, fp depends on N as

fp ∝ L−q2C1/2 ∝ N−q2C1/4. (A7)

For T = 0.56 and q = 2π , our numerical analysis gives fp =
0.6 for N = 4000 in Fig. 1 and fp = 0.5 for N = 64 000.
The ratio of these two values 0.6/0.5 = 1.2 is close to the
theoretical ratio 16q2C1/4 = 1.17 from Eq. (A7).

For 3D, Eqs. (A2), (A5), and (A6) yield

fp(T ,N )/fp(T ,∞) = exp[Bf N−1/3]. (A8)

Under the periodic boundary condition, Eq. (A3) gives

Bf
∼= 0.14q2kBT n1/3/μ, (A9)

where K is assumed to be considerably larger than μ. Kim and
Yamamoto [57] studied the finite size effect using the soft-core
potential for N = 108,103, and 104 in 3D. Their data of Fs(q,t)
at t = 10 for q = 2π and T = 0.267 may be approximately
fitted to the form ∝exp[0.25N−1/3], while Eqs. (A8) and (A9)
give fp ∝ exp[0.29N−1/3] (where we obtain μ = 5 from the
stress-strain relation).
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