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Numerical and experimental study of a rotating magnetic particle chain in a viscous fluid
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A simple and fast numerical method is developed capable of accurately determining the 3D rotational dynamics
of a magnetic particle chain in an infinite fluid domain. The focus is to control the alternating breakup and
reformation of the bead chain which we believe is essential to achieve effective fluid mixing at small scales.
The numerical scheme makes use of magnetic dipole moments and extended forms of the Oseen-Burgers tensor
to account for both the magnetic and hydrodynamic interactions between the particles. It is shown that the
inclusion of hydrodynamic interaction between the particles is crucial to obtain a good description of the particle
dynamics. Only a small error of deviation is observed when benchmarking the numerical scheme against a
more computationally intensive method, the direct simulation method. The numerical results are compared with
experiments and the simulated rotational dynamics correspond well with those obtained from video-microscopy
experiments qualitatively and quantitatively. In addition, a dimensionless number (RT ) is derived as the sole
control parameter for the rotational bead chain dynamics. Numerically and experimentally, RT ≈ 1 is the
boundary between rigid “rod” and dynamic “breaking and reformation” behaviors.
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I. INTRODUCTION

The development of laboratory-on-chip systems that enable
classical biochemical assays to be integrated and accomplished
on one single chip [1] is currently a hot topic. When
functionalized with biospecific surface coatings, magnetic
particles can be used inside laboratory-on-chip systems for
the selective capture and/or detection of the target molecules.
Critical reviews dealing with various applications of magnetic
particles in laboratory-on-chip systems, such as labeling,
sorting, transporting, and mixing, are presented by Gijs
et al. [2] and Pamme et al. [3].

In such systems, due to their small dimensions and low
flow rates, the selective capture of a biomolecule is limited
by diffusion [4]. It is believed that by controlled actuation
of the suspended magnetic particles, the transport of the
target molecules can be made chaotic, which will significantly
enhance the capture efficiencies and shorten the detection time.
Specifically, Suzuki et al. [5] showed that the probability of
selective binding between the coated magnetic particles and
the target biomolecules is maximized in the chaotic regime,
which can be obtained through effective fluid mixing.

Many studies, both computational and experimental, have
investigated the controlled actuation of suspended magnetic
particles as well as its potential application to chaotically mix
fluid streams at micro scale. In this study, we focus on the
controlled rotational dynamics of a single magnetic particle
chain in an infinite fluid domain. A diluted, monodispersed
and uniformly distributed superparamagnetic colloidal
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suspension is exposed to a strong, continuous, homogenous,
and unidirectional magnetic field. Under such circumstances,
the suspended magnetic particles form isolated magnetic
particle chains. When the magnetic field begins to rotate, the
isolated chains also tend to rotate in order to remain oriented
with the field.

Melle et al. [6–9] studied experimentally the global
dynamics of multiple-interacting chainlike structures. They
used the Mason number to define the observed dynamics.
At low Mason numbers, the chainlike structures rotate with
the magnetic field frequency. At higher Mason numbers, the
induced structures breakup. For comparison, Melle et al. [7–9]
conducted particle dynamics simulations. Despite neglecting
the effect of hydrodynamic interaction between the particles,
the simulations show good agreement with the experiments.

Rotational dynamics of isolated magnetic particle chains
have also been studied extensively [10–13]. The rotating
chains are observed to undergo a process of dynamic growth
and fragmentation that is dependent on the frequency of the
applied field. Typical structures such as linear chains and
S-shaped chains are noted. Yadav et al. [12] and Krishna-
murthy et al. [13] observed that the particle dynamics method
is able to predict the macroscopic chain dynamics accurately.
But, for microscopic properties, inclusion of hydrodynamic
interactions becomes important.

Recently, Kang et al. [14] conducted 2D finite element
simulations to solve the induced fluid flows actuated by a single
rotating magnetic particle chain. They concluded that, within
a limited range of the Mason numbers, periodic breaking
and reformation of the magnetic particle chain occur. This
repeating topological change of the chain is the most efficient
way to induce mixing of fluids at the micro scale. Specifically,
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the alternating breakup and reformation lead to the stretching
and folding of fluid elements, which is a manifestation of
chaos. Numerically and experimentally, Sing et al. [15] and
Franke et al. [16] have also observed the alternating chain
break and chain reformation at the chain center of a rotating
magnetic particle chain, indicating the first chain breakup
transition.

To the best of our knowledge, little attention has been
given to the numerical and experimental comparisons of such
alternating topological changes, indicating the critical control
parameter. Moreover, although there is much previous work on
modeling the dynamics of suspended magnetic particles, most
of these studies employed either a simplified but fast simulation
method (particle dynamics, pin-jointed mechanism) or a more
detailed but computationally expensive method (Stokesian
dynamics, lattice Boltzmann, and finite elements simulations).
In the present study, we expand the fast 3D particle dynamics
simulation with extended forms of the Oseen-Burgers tensor
to account for the effect of hydrodynamic interactions. Similar
numerical approaches, in some regards, have been reported by
Sing et al. [15] and Vilfan et al. [17]. This numerical scheme
is subsequently benchmarked against a more accurate but
cumbersome simulation method (3D version of the numerical
scheme developed by Kang et al. [18]). A 2D numerical
approach using the Oseen-Burgers tensor was investigated by
Cregg et al. [19]. In addition, we carried out video-microscopy
experiments to obtain the repeating topological changes of the
chain for qualitative and quantitative comparisons.

II. NUMERICAL METHODS

A complete theoretical analysis regarding the dynamics of
suspended superparamagnetic particles in Newtonian fluids
actuated by a homogeneous magnetic field involves various
contributions. Here, we consider only those contributions
which we believe are essential to capture the physics of
the problem, i.e., the alternating breakup and reformation
dynamics of an isolated rotating magnetic particle chain in
an infinite fluid domain.

A. Magnetic interactions

Given the superparamagnetic nature of the particles, we
can assume that their magnetization is always parallel to
the applied field. Moreover, we expect that the strength
and the direction of bead magnetization are not affected by
neighboring magnetic particles. Thus, each magnetic particle
is modeled as a hard sphere characterized by its induced
magnetic dipole moment,

m = VpχpH, (1)

where Vp is the spherical volume of the suspended particles,
χp the effective magnetic particle susceptibility, and H the
applied magnetic field. The spherical shape of the particles
induces an internal demagnetization field opposite to the
applied magnetic field, reducing the magnetic susceptibility
of the particle relative to the magnetic susceptibility of the
material of which it is composed. This phenomenon is included
in the Clausius-Mossoti function for the calculation of the

effective magnetic susceptibly for a spherical particle [20],

χp = χ

1 + χ

3

, (2)

where χ is the magnetic susceptibility of the material of
which the particle is composed. Since, in our simulations,
the applied magnetic field is homogeneous, there is no
magnetic gradient force due to the applied field. Thus, the
expression for the magnetic interaction force Fm

i acting on the
i th superparamagnetic particle in a collection of N particles
equals [9,13]

Fm
i = 3μ0

4π

N∑
j = 1
j �= i

mimj

r4
ij

[(1 − 5(m̂ · r̂ij )2)r̂ij + 2(m̂ · r̂ij )m̂],

(3)

where μ0 is the magnetic permeability of free space, mi the
strength of the dipole moment of the ith particle, m̂ is the unit
vector of the magnetic field, rij is the distance between the
centers of the ith and j th particles, and r̂ij the unit vector of
the corresponding two-particle chain axis.

The excluded-volume force is implemented to model “hard”
sphere particles and, thus, to prevent them from overlapping
[9,13],

Fev
i = 2

3μ0

4π (2R)4

N∑
j = 1
j �= i

mimje
−ξ (

rij

2R
−1)r̂ij , (4)

where R is the particle radius. Here, numerical simulations
are performed with ξ = 30. Using this value for ξ in a
configuration where two dipoles aligned with the magnetic
field are separated by a distance of 2.2R, the corresponding
excluded volume force acting on a single particle is 14 times
smaller than the opposing magnetic attraction force. Thus, its
influence on isolated dipoles is negligible.

B. Hydrodynamic interactions

The movement of a particle through the fluid will influence
the corresponding flow field and, consequently, the motion
of other particles. This hydrodynamic interaction between
the particles is a complex phenomenon and involves many
contributions, such as the nonlinear character of the Navier-
Stokes equation for the fluid flow. We neglect inertia of the
fluid and assume Stokes flow. In that case, a linear relationship
exists between the force F(rj ) exerted by the j th particle at
position rj on the fluid and the velocity perturbation of the
flow field �v(ri) at some other position ri . Here, the force
exerted on the fluid by the j th particle is equal in magnitude
but opposite in direction to the hydrodynamic drag force Fh

j

experienced by the corresponding particle, i.e., F(rj ) = −Fh
j .

In view of the linear Stokes equation, it is natural to assume
that the velocity perturbations caused by the different beads
can be superimposed, i.e., the total velocity perturbation of the
flow field at position ri caused by (N − 1) particles equals [21]

�v(ri) =
N∑

j = 1
j �= i

�(rij ) · F(rj ) (5)
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with �(rij ) known as the Oseen-Burgers tensor. However,
in deriving the original form of the Oseen-Burgers tensor, the
assumption of point particles with zero radius was made, which
is certainly unjustified.

Several studies proposed the use of extended forms of the
Oseen-Burgers tensor in which the influence of the finite size of
the particles with radius R is approximately taken into account.
The best known modification is the Rotne-Prager-Yamakawa
tensor valid for interacting particles of equal size [22–24],

�(r) = 3

24πηr

{[(
1 + 2R2

3r2

)
I + (

1 − 2R2

r2

) rr
r2

]
, r � 2R[

r
2R

(
8
3 − 3r

4R

)
I + rr

8R2

]
, r < 2R

,

(6)

where η is the dynamic viscosity of the nonmagnetic fluid and
I the unit tensor. Öttinger [21,22] proposed a hydrodynamic-
interaction tensor that smoothly switches off the interactions
at short distances (of order R),

�(r) = 1

8πηr
[
r2 + (

4
3

)
R2

]3

[(
r6 + 14

3
R2r4 + 8R4r2

)
I

+
(

r6 + 2R2r4 − 8

3
R4r2

)
rr
r2

]
. (7)

They argued that the above modification, due to its smooth
dependence on the position vector, can be important for the
systematic development of higher-order numerical integration
schemes for the stochastic differential equations of motion.
However, only the Rotne-Prager-Yamakawa tensor has been
proven to be valid for all configurations of chains consisting
of any number of beads [21]. In the current work, both
hydrodynamic-interaction tensors are incorporated in the
numerical model to compare their influences on the rotating
bead chain dynamics.

Furthermore, if we assume that the hydrodynamic drag
force acting on the ith particle equals the Stokes drag, the
following relationship can be derived between the hydrody-
namic drag force, the ith particle velocity vi , and the fluid
velocity at the particle position ri , v(ri),

Fh
i = −6πηR[vi − v(ri)] (8)

In general, there are three contributions to the fluid velocity
v(ri): (a) the externally imposed fluid velocity field, (b) the
motion driven by the forces exerted by the other particles in
the system [see Eq. (5)], and (c) the correction to the velocity
experienced by the particle due to the presence of confining
walls [25]. In the simulation of suspended magnetic particles
in an infinite medium, the fluid velocity at position ri is due to
contribution (b), i.e., v(ri) = �v(ri).

C. The numerical system

Ignoring the negligible inertia of the particles, the governing
equation for the ith superparamagnetic particle is given by

Fm
i + Fev

i + Fh
i = 0, (9)

where Fm
i is the magnetic force, Fev

i the excluded-volume
force, and Fh

i the hydrodynamic force. Melle et al. [7] defined
a dimensionless number λ that calculates the ratio between

magnetic and thermal energies,

λ = πμ0R
3χ2

pH 2
0

9κBT
, (10)

where H0 is the magnitude of the magnetic field, κB the
Boltzmann constant, and T the temperature. The values of
λ that correspond to the conducted experiments reported here
are between 1400 and 3800. Therefore, the magnetic force was
the dominating force during the experiments and Brownian
motion was, thus, neglected in the simulations. Since we are
interested in the dynamic behavior of a rotating magnetic
particle chain in an infinite fluid domain, chain sedimentation
is of no importance. The corresponding numerical scheme can
be found in Appendix A.

In this paper, a 3D particle dynamics model is developed
that is capable of predicting the dynamic behavior of magnetic
colloids in an infinite medium exposed to an externally applied
magnetic field. While this method is simple, it includes the hy-
drodynamic interactions between the particles. In other words,
the motion of a particle depends on the motion of the other par-
ticles. For comparison, we will also perform particle dynamics
simulations where hydrodynamic interaction is neglected.

III. NUMERICAL BENCHMARKING

First, we benchmarked the obtained numerical model
against a more accurate but computationally expensive
method, the direct simulation method introduced by Kang et al.
[18]. The direct simulation method uses the Maxwell stress ten-
sor and a fictitious domain method to solve both magnetic and
hydrodynamic interactions between the particles in a fully cou-
pled manner. Both simulation methods are formulated in 3D.

The model problem (Fig. 1) involves two spherical mag-
netic particles (with radius R) suspended in a Newtonian fluid
with negligible wall boundary effects. The initial distance
between the two particle centers equals 4R. The resulting
particle-center trajectory is dependent on the initial phase lag
α, formed between the direction of the magnetic field H and
the axis of the bead chain.

The particles with radius R = 1 are modeled with a
material magnetic susceptibility χ = 1 which corresponds to
an effective magnetic particle susceptibility χp = 0.75. The
particles are suspended in a Newtonian fluid with a dynamic
viscosity η = 0.001 and are subjected to a static, homogenous

FIG. 1. The model problem used to benchmark particle dynamics
simulation method against the direct simulation method.
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magnetic field with a magnitude H0 = 1000. Using the direct
simulation method as a point of reference, two types of particle
dynamics simulations are carried out to study the effect of
hydrodynamic interaction between the particles. One includes
the implementation of the hydrodynamic-interaction tensors,
whereas in the other one hydrodynamic interaction is not
considered. Discrete time steps �t = 10−6 are used for all
the conducted simulations.

In Figs. 2(a)–2(c), particle-center trajectories as a func-
tion of the initial phase lags are plotted using particle
dynamics simulations (symbols) and the direct simulation
method (lines). The Rotne-Prager-Yamakawa tensor [Eq. (6),
Fig. 2(a)] and the Öttinger tensor [Eq. (7), Fig. 2(b)] are used to
approximate the effect of hydrodynamic interaction between
the particles. The variation in initial phase lags is represented
by a difference in symbols and colors. Regardless of the initial
particle configuration (α < 90◦), the two particles eventually
move towards each other, forming a chain aligned with
the magnetic field. Apart from close interparticle distances,

the simulated results correspond very well with each other.
The deviation seen at the end of the trajectories is caused
by the lubrication phenomenon, which is not included in the
particle dynamics simulations.

On the other hand, if hydrodynamic interaction is not
considered, significant deviations can be found between the
particle dynamics simulation and the direct simulation method.
In Fig. 2(c), it is seen that discrepancies exist even if the two
particles are relatively far from each other (α = 80 ◦). Thus,
we can conclude that inclusion of hydrodynamic interaction
between the particles is crucial to accurately determine the
trajectories of suspended magnetic particles. In addition,
first-order approximations regarding the magnetic and hydro-
dynamic interactions between the particles are shown to yield
similar results with respect to the simulation method in which
hydrodynamic interactions and high-order mutual magnetic
interactions are solved in a fully coupled manner.

In Fig. 2(d), the obtained particle-center trajectories are
plotted as a function of time in a system configuration where

FIG. 2. (Color online) Benchmarking results between particle dynamics simulations (symbols) and the direct simulation method (lines).
[(a)–(c)] Particle-center trajectories as function of the initial phase lags. The initial phase lags are 0◦ (black cross), 20◦ (cyan triangle), 45◦ (red
circle), 54.7◦ (blue square), and, finally, 80◦ (magenta diamond). (d) Particle-center trajectories as function of time in which the initial phase
lag equals 80◦. The x and y coordinates of particle 1 are calculated using the Rotne-Prager-Yamakawa tensor (square) or the Öttinger tensor
(circle).
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the initial phase lag was 80◦. Here, we follow the x and
y coordinates of particle 1 (Fig. 1) calculated using either
hydrodynamic-interaction tensors or the direct simulation
method. A small deviation of 4.5% in the time scale can be
seen between the two types of simulation methods. We believe
that the cause is due to the first-order approximations made for
both the magnetic and the hydrodynamic forces.

Summarizing, although the direct simulation method pro-
vides a more accurate description of the magnetic and hydrody-
namic interactions between the particles, it is computationally
expensive, cumbersome, and even practically unfeasible when
calculating the three-dimensional dynamics of multiple parti-
cles (N > 2). In contrast, the 3D particle dynamics simulation
method implemented with a hydrodynamic-interaction tensor
has the capacity to simulate a large collection of suspended
particles in a relatively short time. Moreover, first-order
approximations cause a deviation error of only around 4.5%,
which, we believe, is still small enough to give an accurate
prediction of the suspended particle dynamics.

IV. EXPERIMENTAL METHODS

Experiments were carried out with diluted suspensions
of superparamagnetic particles at room temperature (T =
293 K). A magnetic actuation setup was realized capable of
manipulating the magnetic particles triaxially, i.e., by generat-
ing a user-specified magnetic field both in the horizontal as well
as in the vertical plane [Figs. 3(a) and 3(b)]. The setup consists
of eight individually controlled coils (brown) together with
eight soft-iron (ARMCO) poles (gray) connected by soft-iron
frames (blue and red). Magnetic fields are produced by the
flow of electrical currents through the coils and by following
the soft-iron frames, and they are guided to the sample area as
indicated by a cross sign at the center of the setup.

In the current study, we are interested in the biaxial actua-
tion of the suspended magnetic particles and their subsequent
breakup and reformation dynamics. Therefore, only the part
of the setup (blue) capable of creating a horizontal rotating
homogeneous magnetic field is of importance here. Using that
part of the setup [Fig. 3(c)], a magnetic field was generated
and was measured using a Gauss meter (F. W. Bell). Within
the sample area (2 × 2 mm), the generated magnetic field is
homogenous and has a linear relationship with the actuation
current, i.e., electrical currents with amplitudes of 0.2 and
0.1 A produce constant magnetic fields of 13 (±0.4) and 6.5
(±0.3) mT, respectively.

The fluid chamber (which is placed in the center of the
setup) has a diameter of 9 mm and a depth of 1 mm and is
made using polystyrene substrates and Secure-Seal spacers
(Grace BIO-LABS) [Fig. 3(d)]. The bead suspension was
placed inside the fluid chamber, which was then closed with
a cover glass. All experiments were conducted at a constant
magnetic field strength while varying the frequency of the
rotation. During each experiment, the setup was placed under
a microscope (Leica) and the dynamics of induced bead chains
were subsequently analyzed using video microscopy. Only
free-floating bead chains were considered, i.e., bead chains
without any interactions with each other and the surrounding
walls of the reservoir.

FIG. 3. (Color online) Magnetic actuation setup and fluid cham-
ber. [(a) and (b)] CAD figures of the setup. (c) The part of the setup
capable of creating a horizontal rotating homogeneous magnetic field.
(d) The fluid chamber that is placed in the center of the setup.

We chose to work with particles coated with carboxylic acid
(COOH) groups to prevent particle aggregation and clogging
and to obtain stable and repeatable bead chain dynamics. Two
different polymer-based superparamagnetic particles were
used in the experiments, i.e., Micromer particles (3 μm,
Micromod) and M-270 Dynabeads (2.8 μm, Invitrogen). The
magnetic properties of the particles were determined using
vibrating sample magnetometer (VSM) measurements for
both the Micromer particles (χp ≈ 0.19) as well as for the
Dynabeads (χp ≈ 0.69) at the field strengths applied in the
experiments.

V. A PARTICLE CHAIN MODEL

Three-dimensional particle dynamics simulations were
carried out to determine the dynamic behavior of magnetic
colloids under the influence of a rotating magnetic field. We are
interested in the alternating breakup and reformation behavior
of an isolated magnetic particle chain suspended in an infinite
medium.

With reference to several authors [6,10,11,18,26,27], the
integrity of a chain is determined by its phase lag, which
is defined as the angle between the long axis of the chain
and the externally applied magnetic field. When this phase
lag increases above a critical number, the radial component
of the dipolar magnetic force [Eq. (3)] responsible for chain
formation becomes negative, causing the chain to fragment.
This phase lag is due to competition between two opposing
angular torques: a driven magnetic torque counteracted by
a viscous drag torque. In the case when the viscous torque
is larger than the maximum possible magnetic torque, the
phase lag grows beyond its critical number and the chain
subsequently fragments.
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Generally, rotating magnetic particle chain dynamics have
been characterized by the use of the Mason number [7,9–14,
26,28]. Although this dimensionless parameter is described
using different proportionality factors in the literature, it is
always defined as the ratio of hydrodynamic to magnetic
forces for a two-particles-in-contact configuration. In contrast,
the alternating breakup and reformation configuration is the
result of two competing angular torques rather than forces
and is significantly influenced by the amount of particles
forming the chain. Thus, we have derived a new dimensionless
number (Appendix B) to characterize this special region of
interest,

RT = 16
ηω

μ0χ2
pH 2

0

N3

(N − 1)
(

ln
(

N
2

) + 2.4
N

) , (11)

where ω is the angular velocity of the applied magnetic field
and N the amount of particles forming the chain. RT is
obtained by dividing the viscous drag torque [11,27,29] by the
driven magnetic torque [11]. Just prior to chain fragmentation,
the viscous torque equals the maximum obtainable magnetic
torque, so RT = 1 and the chain rotates following the magnetic
field.

This dimensionless number leads to the subdivision of the
rotating chain dynamics into two global regimes in agreement
with the ones proposed by Melle et al. [7,9] and Kang et al.
[14]. If RT < 1, the magnetic torque balances the viscous
torque and a steady phase lag is achieved, i.e., the bead chain
rotates as a rigid rod following the field. But, if RT grows
beyond unity, chain fragmentation occurs. Thus, we define a
critical RT , RT c at which a bead chain begins to fragment and
reform and based on the simplified theory for deriving RT

(Appendix B), RT c should be equal to 1 for any sizes of the
chain.

The proposed dimensionless number RT is consistent with
the findings by Sing et al. [15]. They characterized the
fragmentation (chain breakup) transition to be dependent on
the square of the magnetic field magnitude and, inversely, on
the square of the total amount of particles making up the chain.
In addition, Melle et al. [9] concluded from experiments that
the dynamics of chain rotation does not depend on particle
volume fraction in diluted suspensions, which justifies the
role of RT as the sole control parameter in our simulations and
experiments.

The model reflects an infinite liquid medium with sus-
pended superparamagnetic particles subjected to a biaxial
rotating homogeneous magnetic field. The initial spatial
configuration of the colloids is an arrangement where the
particles form chains aligned with the field. The externally
applied magnetic field is the only driving force to actuate the
particles. Its strength is constant but its direction varies with a
constant angular velocity. All the simulated parameters, e.g.,
particle dimensional and magnetic properties, magnetic field
strength, and fluid medium viscosity, are comparable to the
ones used in the experiments.

VI. RESULTS AND DISCUSSION

Qualitative and quantitative comparisons are made between
3D numerical and experimental results of rotating chains of
magnetic particles in an infinite fluid medium. As a first step,

we investigate qualitatively and quantitatively the first breakup
transition of a rotating magnetic particle chain, i.e., we obtain
the critical RT , RT c, at which a bead chain begins to fragment
and reform. As a second step, we examine the higher-order
breakup transitions experienced by a rotating magnetic particle
chain as its RT is increased above 1. Since the importance of
including hydrodynamic-interactions is already pointed out in
Sec. III, all the following numerical results take the effect of
hydrodynamic interactions into account, calculated using the
Rotne-Prager-Yamakawa tensor [Eq. (6)].

A. The first breakup transition

In Fig. 4, experimental [Figs. 4(a), 4(c), and 4(e)] and
numerical [Figs. 4(b), 4(d), and 4(f)] results are depicted for
a 14-bead chain. The RT c for a 14-bead chain equals 1.13
(±0.1) experimentally and 0.92 numerically. By varying RT ,
the bead chain either rotates as a rigid rod following the field or
it periodically breaks and reforms at the chain center in stable
and predictable manner.

At relatively small values of RT (RT < RT c), the rotating
bead chain has a linear shape. As the dimensionless number
approaches the critical number (RT � RT c), the bead chain
deforms to obtain a stable S-shape with its ends following
the field (as indicated by the black arrows) more closely than
the rest of the chain. This phenomenon has been extensively
studied by Petousis et al. [11]. Finally, when RT � RT c,
the bead chain breaks up and reconnects in an alternate
manner.

A peculiarity is the breaking and reformation of an uneven
magnetic particle chain that cannot break at the center, as is the
case with the 14-bead chain. In Fig. 5, measured [Figs. 5(a) and
5(c)] and simulated [Figs. 5(b) and 5(d)] results are depicted
for a 13-bead chain at RT > RT c. Experimentally, the critical
RT for a 13-bead chain equals 1.05 (±0.05) and, numerically,
it equals 0.94. If the experiment is conducted under ideal
conditions, i.e., the magnetic particles have identical magnetic
and dimensional properties without any external disturbances,
the forces acting on the center particle due to its left and

FIG. 4. (Color online) Rotational dynamics of a 14-bead (Dyn-
abeads) chain characterized experimentally [(a), (c), and (e)] and
numerically [(b), (d), and (f)]. By varying RT , the bead chain either
rotates as a rigid rod following the field or it periodically breaks and
reforms at the chain center in stable and predictable manner. The
black arrows indicate the directions of the magnetic field.
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FIG. 5. (Color online) Breaking and reformation of a 13-bead
(Dynabeads) chain studied experimentally [(a) and (c)] and numeri-
cally [(b) and (d)]. In (a) and (b), the observed dynamics occur only
in ideal systems, whereas the dynamics in (c) and (d) correspond to
systems with asymmetrical effects.

right neighbor bead chains have opposite directions and equal
magnitudes and, hence, add to zero. The center particle
therefore remains static while the outer bead chains tend to
rotate [Fig. 5(a)].

This state of particle dynamics is very unstable: The
experimental particles are not perfectly monodispersed nor
do they have identical magnetic susceptibilities. Moreover,
the particle surface interactions along with environmental
disturbances such as the (small) nonhomogeneity of the
applied magnetic field have to be taken into account. Thus,
after two cycles of breaking and reformation, the symmetry of
the system disappears and the bead chain quickly adapts to the
behavior as depicted in Fig. 5(c).

Particle dynamics simulations were conducted under ideal
conditions and the resulting configuration is a static particle
in the center with two outer rotating bead chains [Fig. 5(b)].
In a next step, variability was incorporated in the simulation
system by varying the magnetic properties of the particles
[Fig. 5(d)]. Here, the magnetic susceptibility for each particle
was randomly assigned from a uniform distribution in the
interval [0.68, 0.7]. In this case, the bead chain breaks into two
chains with an even and uneven amount of magnetic particles.
For both systems, the obtained particle dynamics are very
similar.

B. Quantitative comparisons of RT c

Quantitative comparisons between experiments and 3D
particle dynamics simulations were obtained by observing the
critical RT for each rotating bead chain with length varying
from 5 to 17 beads. In Fig. 6, the observed RT c is plotted as a
function of the bead chain length. Experimentally, Micromer
particles (due to their low magnetic susceptibility) form
short bead chains (5–10 particles), whereas Dynabeads form
relatively long bead chains (11–17 particles). Numerically
[Fig. 6(a)], the effect of hydrodynamic interactions between
particles is approximated using either the Rotne-Prager-
Yamakawa tensor [Eq. (6)] or the Öttinger tensor [Eq. (7)].
For both hydrodynamic-interaction tensors, the obtained RT c’s
(red square) are similar.

In addition, to emphasize the importance of implement-
ing hydrodynamic-interaction tensors, numerical simulations
[Fig. 6(b), purple diamond] were also conducted where
Stokes drag was considered as the sole contribution to the
hydrodynamic force acting on the particles, i.e., RT c’s were

FIG. 6. (Color online) In (a), quantitative comparisons are shown
between numerical and experimental results of rotating bead chains
at the point of fragmentation, characterized by the dimensionless
number RT c. RT c’s of experimental bead chains are indicated by
blue circles, whereas RT c’s of simulated bead chains are indicated
by red squares. Here, the effect of hydrodynamic interactions is
approximated using the Rotne-Prager-Yamakawa tensor [Eq. (6)].
In (b) simulations are conducted where the effect of hydrodynamic
interactions is not considered (purple diamond).

obtained for simulated bead chains where hydrodynamic
interaction between the particles was neglected.

In Fig. 6(a), it is seen that for both experiments and
simulations, RT c ≈ 1 is the boundary between rigid and
dynamic behaviors, as we anticipated. Without the effect of
hydrodynamic interactions [Fig. 6(b), purple diamond], RT c

decreases from 0.8 for short chains to a value around 0.5
for long chains. This confirms the importance of including
hydrodynamic interaction between the suspended magnetic
particles.

In order to accurately determine the dynamics of the
proposed particle chain model, one must take into account
that the motion of a particle is dependent on the motion
of other particles. We believe that the standard deviations
[Fig. 6(a)] of the measurements are caused by the variations
in the magnetic properties of the experimental microparticles.
Nevertheless, we can conclude that, for both the experiments
and the simulations, the critical RT is around 1 and is
independent of the chain length and taking the variations
of the experiments into account, the numerical predictions
are close to the experimental results. Thus, RT seems to
be an appropriate dimensionless number to characterize the
rotational dynamics of a magnetic particle chain.
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FIG. 7. (Color online) Dynamic behavior of a rotating 12-bead
(Dynabeads) chain at the second breakup transition, studied numer-
ically [(a) and (b)] and experimentally (c). The depicted topological
changes are in sequence of the amount of chain fragments. Under
assumption of identical magnetic properties (a), the 12-bead chain
breaks alternately into two or four chain fragments. By varying the
magnetic properties of the particles (b), asymmetric breakups occur.
Movies corresponding to the rotational dynamics can be found in
Supplemental Material [30].

C. The higher-order breakup transitions

For increasing RT , we observed higher-order transitions at
which additional chain dynamics appear with chains breaking
into multiple pieces. Such higher-order breakup transitions
of rotating magnetic particle chains were investigated both
numerically and experimentally. In Fig. 7, rotational dynamics
corresponding to the second breakup transition are shown
for a 12-bead chain. The topological changes are depicted
in sequence of the amount of chain fragments. Numerical
simulations were conducted for both (1) the ideal case
[Fig. 7(a)], i.e., the situation where the magnetic particles
have identical magnetic properties and (2) the case where
asymmetry was incorporated into the simulation system by
varying the magnetic properties of the particles from a uniform
distribution in the interval [0.68, 0.7] [Fig. 7(b)].

In Fig. 7(a), at RT = 1.8, the 12-bead chain begins to
breakup alternately into two or four chain fragments. Since
particle dynamics simulations were conducted under ideal
conditions, the resulting rotational dynamics of the magnetic
particle chain is expected to be symmetric, which is indeed
the case. In contrast, by varying the magnetic properties
of the particles [Fig. 7(b)], a bead exists at the chain center
with the lowest susceptibility and it is eventually released
as the magnetic particle chain breaks into three fragments.
When the chain center is occupied by magnetic particles
with similar magnetic properties, the chain fragments into
four pieces. Petousis et al. [11] suggested a bead of lower
susceptibility to act as the weakest link. Such dynamic
behavior, the alternating chain breakup and chain reformation
with two, three, or four chain fragments, was also observed
experimentally [Fig. 7(c)]. In real-life experiments, we also
have to consider that both magnetic as well as dimensional

FIG. 8. (Color online) Dynamic behavior of a rotating 12-
bead (Dynabeads) chain at the third breakup transition, studied
numerically [(a) and (b)] and experimentally (c). Under assumption
of identical magnetic properties (a), the 12-bead chain breaks
into two, three, four, and five fragments. By varying the mag-
netic properties of the particles (b), asymmetric breakups occur.
Movies corresponding to the rotational dynamics can be found in
Supplemental Material [30].

variations along with particle surface interactions and environ-
mental disturbances (small nonhomogeneity of the magnetic
field) have additional effects on the rotational dynamics
of the magnetic particle chains and they, consequently,
account for the observed differences between experiments and
simulations.

At even higher RT , a third (Fig. 8) transition region
was observed. Similarly as above, Fig. 8(a) corresponds to
numerical simulations conducted under ideal conditions and
Fig. 8(b) corresponds to ones conducted with varying magnetic
particle properties. In the ideal case [Fig. 8(a)], in accordance
with the above, the 12-bead chain symmetrically breaks up in
two, three, four, and five chain fragments. Again, by varying
the magnetic properties of the particles [Fig. 8(b)], asymmetric
breakups occur which are indeed more similar to the obtained
experimental results [Fig. 8(c)]. In Supplemental Material
[30], movies corresponding to the rotational dynamics of
a 12-bead chain can be found for both experiments and
simulations.

Sing et al. [15] characterized the higher breakup transitions
using numerical modeling and tracking the time-average num-
ber of chain fragments (〈n〉) at an increasing dimensionless
number, i.e., ∼ωN2H−2

0 which scales with RT . They con-
cluded that a master curve exists between the time-averaged
number of chain fragments and the dimensionless number.
It is interesting to see whether this can be confirmed by our
experiments. In Fig. 9, the time-averaged number of chain
fragments, with chain size varying from 9 to 14 beads, is
plotted with respect to RT . Here, the external magnetic field
is kept constant at 5 and 9 mT while the chain length and
field rotational frequency are varied. In accordance with the
findings of Sing et al., the data collapse to a master curve at
different field strengths, different chain lengths, and different
rotational frequencies.

The results obtained from experiments and simulations
agree very well. More importantly, we found that the
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FIG. 9. (Color online) The time-average number of chain frag-
ments with respect to RT . The external magnetic field is kept constant
at 5 mT (square, diamond, triangle, circle, rectangular) and 9 mT
(crosses). The experimental rotating chains were varied from N = 9
to N = 14.

inclusion of asymmetric effects by varying the magnetic
particle properties is crucial to obtain a good description of
the particle dynamics at higher breakup transitions. Although
the dimensionless number RT is derived for the first breakup
transition, i.e., the case when the viscous torque is larger
than the maximum possible magnetic torque (RT > 1), we
believe that RT can also be used to indicate the thresholds for
higher-order breakup transitions.

VII. CONCLUSION

In the current work, we proposed a fast, easy-to-implement
numerical method to accurately describe the dynamics
of a rotating magnetic particle chain in an infinite fluid
domain.

The numerical method, implemented using dipolar mag-
netic interactions and hydrodynamic-interaction tensors, was
shown to yield a small error of 4.5% when bench-
marked against the direct simulation method. Inclusion
of hydrodynamic-interaction tensors was crucial to obtain
such a small error of deviation. Although the direct sim-
ulation method provides a more accurate description of
the magnetic and hydrodynamic interactions between the
particles, it is practically unfeasible when calculating the
3D dynamics of multiple particles. In contrast, 3D parti-
cle dynamics simulations have the capacity to simulate a
large collection of suspended particles in a relatively short
time.

We derived a dimensionless number RT that is capable of
characterizing the dynamics of a rotating magnetic particle
chain, i.e., if RT is smaller than a critical number RT c,
the chain rotates as a rigid rod following the field. But,
if RT grows beyond RT c, the chain periodically fragments
and reforms. According to basic theoretic considerations,
RT c should be equal to 1. Numerically and experimentally,
RT c ≈ 1 was indeed found as the boundary between rigid
and dynamic behaviors. In addition, in accordance with the
numerical findings of Sing et al. [15], a master curve is
found to exist between experimental chain fragmentation
behavior and the proposed dimensionless number RT . Thus,

we can conclude from both the experiments and simulations
that RT is a dimensionless number that can be used to
characterize the rotational dynamics of a magnetic particle
chain.

Qualitatively, the numerical and experimental results agree
very well, i.e., the simulated rotational dynamics of a magnetic
particle chain correspond well with those obtained from
video-microscopy experiments. Quantitatively, the numerical
scheme incorporated with the effect of hydrodynamic interac-
tions is able to determine accurately the transitional behavior
of a rotating bead chain. In addition, variability effects were
incorporated into the numerical work to approach real-life
experiments. In particular, varying the magnetic particle
properties statistically between beads in a simulation is found
to be crucial to obtain rotational dynamics at higher breakup
transitions.

Concluding, the combination of a fast 3D numerical method
along with a new dimensionless number and our experimental
setup allows us to experimentally control a rotating magnetic
particle chain and design the optimum parameters for real
laboratory-on-chip applications. In the end, this can be
utilized to effectively mix fluids and effectively capture low
concentrations of biomolecules.
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APPENDIX A: THE NUMERICAL SCHEME

The numerical scheme used to calculate ith superparam-
agnetic particle trajectory is as follows. As a first step, the
hydrodynamic drag force acting on the ith particle is obtained
from Eq. (9),

Fh
i = −(

Fm
i + Fev

i

)
. (A1)

As a second step, we obtain the net velocity of the ith
superparamagnetic particle with respect to the surrounding
fluid from Eq. (8),

vi − v(ri) = − Fh
i

6πηR
. (A2)

As a third step, the total velocity perturbation of the flow field
surrounding the particle is calculated using F(rj ) = −Fh

j and
Eqs. (5) and (A1),

v(ri) =
N∑

j = 1
j �= i

�(rij ) · (
Fm

j + Fev
j

)
. (A3)

From Eq. (A2), the particle velocity vi is obtained. As a last
step, discrete time steps �t are used to obtain the ith particle
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FIG. 10. (Color online) A three-bead chain.

trajectory using the following equation:

ri = ri + vi�t, (A4)

which is a forward Euler method.

APPENDIX B: DERIVATION OF RT

The motion of a rotating magnetic particle chain is due to
the tangential components of the dipolar magnetic interaction
force [Eq. (3)]. Moreover, the corresponding magnetic force
has an inverse dependence on particle center-center distance
to the power 4. It is, therefore, justified to consider only
nearest-neighbor dipole interactions for the calculation of
the driving magnetic torque acting on a rotating magnetic
particle chain. Assuming the suspended magnetic colloids
to be identical both magnetically as well as dimensionally,
the expression for the tangential component of the magnetic
force Fθ

2, acting on the second superparamagnetic particle in a
collection of three particles forming a rigid and straight chain
is

Fθ
2 = 3μ0m

2

4π (2R)4

3∑
j = 1
j �= 2

[2 sin(α)(m̂ · r̂2j )θ̂], (B1)

where θ̂ is the unit vector perpendicular to the corresponding
particle chain axis. In Fig. 10, a three-bead chain is depicted
along with some of the parameters in Eq. (B1). The dot product
term causes the tangential forces acting on a bead due to its left
and right neighbors to have opposite directions and, hence, the
total tangential force acting on the particle equals zero. Only
for the outer particles that have just one direct neighbor is the
net tangential force nonzero.

3D particle dynamics simulations with hydrodynamic-
interaction tensors were conducted to validate the above
assumption, i.e., only the outer particles of a chain have
significant contributions to the driven magnetic torque. In
Fig. 11(a), torque contribution (i.e., the cross product between
the tangential force component acting on the particle and the
position vector between the center of the chain and the center
of the corresponding particle) of each particle in a 5-bead chain
is plotted against time steps. Torque contributions of the outer
particles are depicted by blue squares, whereas the rest of the

FIG. 11. (Color online) Torque contributions of the particles
forming a chain are plotted against time steps. Torque contributions
of the outer beads are depicted by blue squares, whereas the rest of
the particles are represented by black lines.

particles are represented by black lines. A similar action is done
for a 17-bead chain [Fig. 11(b)]. Again, torque contributions
of the outer particles are depicted by the blue squares. For both
figures, it is seen that beads with two neighboring particles have
a negligible influence on the driven magnetic torque. Thus, we
can conclude that the driven magnetic torque is determined by
the tangential forces acting on the outer particles of a chain.
Using the above statements, the driven magnetic torque is
derived for an N -bead chain [11],

Tm = 3μ0m
2(N − 1)

4π (2R)3
sin(2α). (B2)

The maximum possible torque occurs when the chain follows
the rotating magnetic field with a constant phase lag of 45◦.

The opposing viscous drag torque consists of four factors
[11,27,29]. The first factor is the shape factor κ for a
linear chain of spherical particles, including the effect of
hydrodynamic interactions. Specifically, Wilhelm et al. [29]
empirically derived a shape factor valid for any size of the
chain,

κ = 2N2

ln
(

N
2

) + 2.4
N

. (B3)

The second and third factors are the rotating chain volume and
fluid viscosity, respectively. The fourth factor deals with the
angular velocity of the rotating chain and equals the angular
velocity of the rotating field when chain breaking did not occur.
Combining the mentioned factors, the viscous drag torque
equals

Tv = 8πR3

3

N3

ln
(

N
2

) + 2.4
N

ηω. (B4)

Just prior to chain fragmentation, the phase lag equals 45◦ and
the chain rotates following the magnetic field. RT [Eq. (11)] is
obtained by dividing the viscous drag torque Tv by the driven
magnetic torque Tm.
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