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Yield loci for an anisotropic granular assembly
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Yield loci of a granular material are derived in case of triaxial compression carried out at constant pressure.
The theory is based upon a simple micromechanical model in which particles move according to an average,
homogeneous deformation. We show how the presence of an inherent anisotropy in the aggregate (typical of
laboratory samples due to depositional processes) produces a deviation of the yield loci in the stress space from
the expected Mohr-Coulomb prediction. That is, when the compaction pressure in an anisotropic aggregate is
increased, irreversibility associated with sliding between particles occurs and this will influence the yield function
in the subsequent triaxial test. Numerical simulations support the theoretical result.
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I. INTRODUCTION

Physical experiments in granular materials show the pres-
ence of inherent anisotropy and its influence on the mechan-
ical behavior of the aggregate (e.g., Refs. [1–4]). Preferred
orientation of particles, due to the depositional processes,
characterizes this kind of anisotropy that turns out to affect the
elastic response [5–8] as well as the shear stress and the volume
change during any triaxial test (e.g., Refs. [9–13]). Here,
we focus our attention on the correlation between inherent
anisotropy and yield. In particular, the purpose of the paper is
to show how inherent anisotropy can modify the yield loci of a
granular assembly, typically a straight line in the stress space
(the Mohr-Coulomb criterion). We do this in the context of
the effective medium theory (EMT) supported by numerical
simulations results.

The loading condition considered, after the specimen has
been filled by raining particles, is an initial compression
followed by shearing at constant pressure. In the initial
compression, because of the inherent anisotropy, shear strain
along with volume strain occur. Then particles can slide and
this leads to a relaxation of the normal component of the
contact displacement. Consequently, in the subsequent triaxial
compression, sliding occurs earlier and this influences the yield
function. That is, yield loci are not aligned along a straight line,
as the Mohr-Coulomb criterion would have predicted, but they
are along a curve with a reduction of the elastic range for the
aggregate.

II. THEORY

We consider an ideal granular material made by a random
aggregate of identical elastic, glass spheres with diameter D,

shear modulus G, and Poisson’s ratio ν. We refer to the typical
process adopted in laboratory to prepare a granular sample,
before any loading is applied, by raining particles through air
under gravity. Consequently, the sample is characterized by an
initial, inherent anisotropy whose vertical direction is h, while
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the isotropic plane is y1-y2. We focus on a dense aggregate,
confined under a pressure p and then triaxial compressed
at constant pressure. We assume a homogeneous, average
deformation E and follow a previous analysis employed in
Refs. [14,15]. The displacement u of a contact point relative
to the particle center is given by ui = (D/2)Eijαj , where
α (sin θ cos ϕ, sin θ sin ϕ, cos θ ) is the unit vector directed
from the particle center to the contact point, θ is the polar
angle from the axis of symmetry h, and ϕ is the angle about
this axis. The contact force, Fi = Pαi − Ti, has a normal
component P = 2GD2 (δ6/D)3/2 /[9

√
3 (1 − ν)] that follows

the Hertz law, where δ is the normal component of the
contact displacement, and a tangential component T with a
bilinear behavior, an elastic resistance followed by a frictional
sliding, where s is the tangential component of the contact
displacement. So, Ti = (25/2GD1/2)δ1/2s/(2 − ν)t̂i (t̂iαi = 0
with t̂i in the direction of increasing θ ), as long as contacting
particles deform elastically; otherwise, when T reaches the
limit value μP (μ is the interparticle friction coefficient)
sliding occurs, and the tangential component of the contact
force does not vary. This is quite a simplified model [16–18]
that captures the main mechanism of the overall behavior of
the aggregate. For the stress, we write

σij = −nD

2

∫
�

A (α) Fiαjd�, (1)

where n is the number of particle per unit volume, � is the solid
angle, and A (α) is the orientational distribution of contacts,
defined so that the coordination number k, the average number
of contacts per particle, is equal to

∫
�

A (α) d�. The initial
inherent anisotropy is accounted for in the model through an
expression for the orientational distribution of contacts,

A (α) = k

4π
a(ε,θ ), (2)

with a(ε,θ ) = (1 − ε) + 3ε (hiαi)2 in which ε is the strength
of the anisotropy [15,19].

A. Consolidation process

Before any shearing loading is applied, we compress the
aggregate under a given pressure p with the deviatoric stress
q ≡ (σ11 − σ33)/2 kept equal to zero. In this loading condition,
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because of the presence of an inherent anisotropy, shear strain,
γ̂ = −1/2 (E11 − E33) , occurs along with the volume strain,
�̂ = − (2E11 + E33) , and both the strains are positive. By
definition, δ = −(D/2)Eijαiαj and s = (D/2)Eijαj ti , or

δ = D

6
(�̂ + 2γ̂ − 6γ̂ cos2 θ ), and s = −D

2
γ̂ sin 2θ, (3)

where the strain γ̂ is a measure of the anisotropy. As the
aggregate is compressed, both γ̂ and �̂ increase. At contact
level, the limit of elasticity is reached when the tangential
component of the contact force, at a given θ, equals μP.

Equivalently, s = μ̂δ (see Ref. [15] for more details), where
μ̂ = μ (2 − ν) / (3 − 3ν) , or, with Eq. (3),

g(θ ) = D

2

[
γ̂ sin 2θ − 1

3
μ̂(�̂ + 2γ̂ − 6γ̂ cos2 θ )

]
. (4)

We identify the angle θc where the sliding first occurs when
dg/dθ = 0 or

cot 2θc = μ̂. (5)

Then, the value of the strains, γ̂ (1) and �̂(1), at which sliding
first occurs, are obtained from the condition g(θc) = 0, or

6γ̂ (1)

�̂(1) + 2γ̂ (1)
= 2μ̂

√
1 + μ̂2

1 + μ̂2 + μ̂
√

1 + μ̂2
. (6)

Given p, with q = 0, we have two equations to determine the
unknowns �̂ and γ̂ . By definition, p ≡ −σkk/3, or

p = kφG

9π
√

3(1 − ν)

×
∫ π

0
a(ε,θ )(�̂ + 2γ̂ − 6γ̂ cos2 θ )3/2 sin θdθ, (7)

with the solid volume fraction φ = nπD3/6; the shear stress
is

q = 3φkG

πD1/221/2

∫ π

0
a(ε,θ )δ1/2

[
(3 cos2 θ − 1)

3(1 − ν)

(
δ

D

)

− 3γ̂

2 − ν
cos2 θ sin2 θ

]
sin θdθ. (8)

or, q = 0,

0 =
∫ π

0
a(ε,θ )(�̂ − 2γ̂ − 6γ̂ cos2 θ )1/2 sin θ

×
[

(�̂ − 2γ̂ − 6γ̂ cos2 θ )(3 cos2 θ − 1)

9(1 − ν)

−6γ̂ cos2 θ sin2 θ

(2 − ν)

]
dθ. (9)

When the condition of Eq. (6) is met, q = 0 becomes

0 =
∫ π

0
a(ε,θ )

[
(�̂ − 2γ̂ − 6γ̂ cos2 θ )3/2(3 cos2 θ − 1)

9(1 − ν)

−6γ̂ (1)(�̂(1) − 2γ̂ (1) − 6γ̂ (1) cos2 θ )1/2 cos2 θ sin2 θ

(2 − ν)

]

× sin θdθ. (10)
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FIG. 1. (Color online) Shear strain versus pressure during the
consolidation process for different value of ε. The case ε = 0
corresponds to the x axis.

Note that when sliding first occurs, the tangential component
of the contact force in q reaches its limiting value and it will
not change as compression is continued [the second line in
Eq. (10) does not vary with the strain]. This is how we relate the
local yield (particle sliding) to the global yield function (yield
loci). Certainly this is a rather simplified model to describe
the impact of sliding into the mechanical response of the
aggregate. However, numerical simulations (e.g., Ref. [20])
support this idea, even when a distribution of particle sliding
is present; that is, initially only weakly loaded contacts slide
and the overall response of the aggregate is marginally affected
until stronger contacts slide. We conclude that the tangential
component of the shear stress can be approximated with a
bilinear elastic-perfectly plastic law.

The pressure preserves its expression, as it depends only
on the normal component of the contact force. In the range of
pressures of our interest, deletion does not occur although this
can happen, first at θ = 0, when δ = 0. Therefore, given ε, the
pressure p, and the condition q = 0, we determine γ̂ and �̂.
In Figs. 1 and 2 we plot, respectively, γ̂ and �̂ as p increases,
for different values of ε (the friction coefficient is μ = 0.2). In
the range 0 � ε � 0.4, no sliding occurs during the isotropic
compression and both γ̂ and �̂ increase with p. For ε � 0.4,
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FIG. 2. (Color online) Volume strain versus pressure during the
consolidation process for different value of ε.
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inelasticity occurs, as the aggregate is compressed, at p = p1,
γ̂ = γ̂ (1), and �̂ = �̂(1).

For pressures greater than p1, while the behavior of �̂

resembles the trend seen at lower values of ε, γ̂ experiences
a clear variation. In fact, while for p � p1, γ̂ and �̂ are given
as solutions of the Eqs. (7) and (9), when p � p1, they are
obtained from Eqs. (7) and (10). That is, in order to keep q = 0
when the tangential component of the contact force does not
vary, γ associated with δ needs to increase. Consequently,
δ, the normal component of the contact displacement that
depends on both γ̂ and �̂ [see Eq. (3)], is influenced by
particle sliding. Inelasticity will affect not only the tangential
component of the contact displacement, as naturally expected,
but also the normal component δ. The problem is coupled;
in the range of θ where δ decreases, because of the sharp
increments of γ̂ after γ̂ (1), the overlap between particles will
be even smaller.

B. Triaxial compression at constant pressure: Yield loci

In the subsequent triaxial compression, we identify the yield
loci in the stress space. It is arguable for an aggregate of
particles to define a proper elastic limit, as, in general, weakly
loaded particles may experience sliding before the heavily
loaded one [20]. However, within a modeling approximation,
we can attempt to distinguish the elastic from the plastic
zone in the average sense, as pointed out in Sec. II A. For
a granular material, this limit is often associated with the
Mohr-Coulomb criterion, which is given by, in the q-p plane,
a straight line through the origin, when cohesion is zero.
However, as emphasized in Ref. [21], experiments suggest
a “rounded drop-like shape” for the yield function that may
find a justification with the presence of plastic deformation
associated with crushing particles at relatively high confining
pressure [22]. Here we suggest that the presence of inherent
anisotropy, which is peculiar to many experimental samples,
produces plastic deformations in the consolidation process that
are responsible, in the subsequent triaxial test, for different
shape of the yield loci.

For p < p1, when ε = 0.38, and in all range of p when ε <

0.38, the elastic displacement is given by two contributions

ui = D

2
Ẽijαj + D

2
Êijαj , (11)

where Ê is the elastic strain associated with the isotropic
compression

Êij = 2γ̂ hihj − 1
3 (2γ̂ + �̂)δij , (12)

and Ẽ is the applied elastic strain in the triaxial compression

Ẽij = 2γ̃ hihj − 1
3 (2γ̃ + �̃)δij , (13)

where γ̃ is now negative. In the triaxial compression test (now
we label the quantity with subscript t), the normal component
of the contact displacement δt and the tangential part st are

δt = D

6
[(�̂ + �̃) + 2(γ̂ + γ̃ ) − 6(γ̃ + γ̂ ) cos2 θ ] (14)

and

st= −D

2
(γ̃ + γ̂ ) sin 2θ. (15)

Again the yield condition, at contact level, is

ϕ ≡ |T | − μP = 0, (16)

or in terms of the components of the contact displacement
st = μ̂δt [with the minus sign in Eq. (15) as the sum of the
two shear strains becomes negative]; following Eqs. (4)–(6),
we obtain the relation between γ̃ and �̃, for a given �̂ and γ̂ ,

when ϕ = 0

6(γ̃ + γ̂ )

(�̂ + �̃) + 2(γ̃ + γ̂ )
= −ρ, (17)

with

cot 2θ t
c = −μ̂ (18)

and ρ = 2μ̂
√

1 + μ̂2/(1 + μ̂2 − μ̂
√

1 + μ̂2). The shear stress
along with the pressure, in case of triaxial compression, are
given by Eqs. (7) and (8) with the normal and tangential
component of the contact displacement given, respectively,
by Eqs. (14) and (15). When sliding occurs, ϕ = 0, the yield
loci are obtained in the stress space through the limit value of
the ratio q/p, with Eq. (17) incorporated (see Appendix A):

q

p
= ω(ε,μ). (19)

For a given ε and μ, Eq. (19) represents a straight line in
the p-q plane. That is, because no plastic deformation occurs
during the consolidation process, the yield loci will depend
only on the ratio of the stress components.

For ε = 0.38 and p > p1, in the subsequent triaxial test,
the elastic displacement is given by

ui = D

2
Ẽijαj + D

2
Eijαj , (20)

where

Eij = 2γ̂ (1)hihj − 1
3 [6(γ̂ (1) − γ̂ ) cos2 θ + 2γ̂ + �̂]δij . (21)

The normal component of the contact displacement is given
by Eq. (14) while the tangential part is

s̆t= −D

2
(γ̃ + γ̂ (1)) sin 2θ. (22)

The first yield, again, occurs when s̆t = μ̂δt and the angle at
which sliding first occurs is

cot 2θ̆ t
c = − μ̂(γ̃ + γ̂ )

(γ̃ + γ̂ (1))
, (23)

where now θ̆ t
c depends on the strain. As before, we determine

the value of the strains during the triaxial compression, γ̃ and
�̃, associated with θ̆ t

c , from the following equation:

−(γ̃ + γ̂ (1))2

μ̂
√

(γ̃ + γ̂ (1))2 + μ̂2 (γ̃ + γ̂ )2

= �̂+�̃

3
−(γ̃ + γ̂ )

[
1

3
− μ̂(γ̃ + γ̂ )√

(γ̃ + γ̂ (1))2 + μ̂2(γ̃ + γ̂ )2

]
,

as we know γ̂ (1),γ̂ , and �̂. Unlike Eq. (17), the local yield
condition now has a term that does not increase with the
pressure, γ̂ (1). Again, the yield loci are obtained, in the stress
space, through the ratio q/p where in the shear stress q, we
now substitute γ̂ with γ̂ (1) and where the pressure, Eq. (7), has
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FIG. 3. (Color online) Yield loci in the stress plane for different
values of ε. Both q and p are in kPa.

the normal component of the contact displacement given by
Eq. (14). Consequently, we obtain (see Appendix B)

q

p
= χ (μ,ε,γ̂ (1)), (25)

and it is evident how particle sliding in the consolidation
process, through the parameter γ̂ (1), influences the yield loci.

In order to plot Eq. (25), we equate Eq. (7) with Eq. (27)
as we consider a triaxial test at constant pressure and we then
obtain an implicit relation between �̃ and γ̃ , as we know �̂,
γ̂ , and γ̂ (1). In Fig. 3 we show the yield loci. Clearly, for
ε = 0.38 and p = p1, there is a departure from the straight
line. Because of the plastic deformations in the initial state,
the elastic limit in the triaxial compression is lower than what
we would predict following the Mohr-Coulomb criterion.

Notice that when the local yield condition is independent of
the strain, Eq. (18), the global yield function is a straight line,
Eq. (19); conversely, when the local yield condition depends
on the strain, Eq. (23), the yield loci are not along a straight
line, Eq. (25). As underlined before, this is the consequence
of the correlation between sliding and normal component
of the contact displacement during the initial compression.
That is, because of anisotropy, particles may slide during the
initial compression loading and the tangential contact force
may reach its limiting value; under further compression, only
the normal component of the contact force will vary to keep
q = 0 and, consequently, the elastic shear strain in the normal
component of the contact displacement sharply increases; see
Fig. 1. This leads to a further relaxation of the overlapping
between particles for some contacts orientation. At the same
time, the elastic component of the tangential displacement is
not increased with p because of sliding [γ (1) is the limiting
value, Eq. (22), when γ̃ = 0]. Therefore, lower values for
both components of the contact displacement allow to meet the
local and, then, global yield condition earlier in the subsequent
triaxial compression.

III. NUMERICAL SIMULATION

In order to test the prediction of the model we employ a
numerical simulation based upon a classical discrete element
method (DEM). The mechanical interaction is also taken from
the literature and it is defined as the “Spring-Dashpot” model.

We have used two different initial geometrical procedures to
model two different structural anisotropies.

A. Anisotropic case

The preparation of the first sample is obtained by two
consecutive procedures to mimic the real process of a box
filling. The box filling is partially defined as under gravity
(directional effect) [23]. The first layer is made by touching
spheres sitting on the bottom wall. Then each new sphere is
placed randomly on three already placed spheres. The choice
is made considering stable contacts and the idea that its center
is inside a given layer close to the upper surface. Each new
sphere has its center inside an horizontal XY periodic box (i.e.,
the center is inside the box but the volume of the sphere can
exit in one side in order to reappear in the opposite side). So,
the packing is built layer by layer and the layer thickness is on
the order 1/10 of the sphere radius. This Powell’s algorithm
will produce a rather dense solid volume fraction, φ, about
0.58–0.60. The sample contains 16 000 spheres with a mean
radius (D = 0.3 mm) and a linear distribution of 5%. The
material properties, typical of glass beads, are: G = 17 GPa,
ν = 0.2, and μ = 0.2. The box has a square bottom with
vertical dimension close as possible to obtain a cubic structure.
We can already notice that in order to continue the compression
process, we need to modify the lateral walls from the initial
periodic conditions to some perfectly rigid walls at a distance
larger than the initial box (i.e., plus almost one radius). This
condition is defined by the fact that the walls do not have to
overlap the spheres in order to work for the DEM following
step. Indeed, the second step consists of a switching on the
gravity field to generate the standard compression gradient due
to the amount of grains present on top of the packing (seen as
ρgH with ρ the density, g the gravity field, and H the packing
height). Due to the difference of the local arrangements close
to the walls, some small displacements can occur and produce
a slight increase of the number of contacts behind each sphere.
Indeed, the initial algorithm needs three contacts under each
sphere and each contact belongs to two neighbors so the mean
value for the coordination number will be six minus the wall
perturbation (see Table I). Here we obtain a value of 5.47
before this gravitational step.

B. Isotropic case

In the isotropic case, the sample is prepared by using the
classical Jodrey-Tory’s algorithm [24]. A given series of seed
of very small nonoverlapping spheres are generated inside a
perfect cubic box with three-periodic boundary conditions.
Then these spheres are slowly increased without overlap.
When two or more spheres have some chances to overlap, their

TABLE I. Summary of the measures for the two numerical
packings.

Packing Coordination Packing Fabric
case number fraction (ε)

Homogeneous 6.27 0.646 0.002
Gravitational 5.47 0.581 0.107
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FIG. 4. Evolution of ε as a measure of the fabric tensor for the
compression of the anisotropic packing up to the packing fraction
equal to 0.64.

centers are moved apart according to the opposite direction
of the overlaps in order to be just in contact. Each step
is finished when all the possible overlaps are eliminated.
Then we can continue to increase the sphere diameters. The
program stops when we have reached a given φ or when the
number of time steps has reached a given value. This program
can generate very dense packing (φ close to 0.64) with a
perfectly homogeneous disorder [24]. In the same manner as
the previous case and in order to use the sample inside the
three-axial compression program described later, we assumed
also that the sample is inside a cubic box with all the walls just
touching the external spheres (i.e., no overlaps). This constraint
implies that the “real” packing fraction becomes lower (i.e.,
empty spaces close to the new walls due to the periodicity of
the sphere volumes).

C. Geometrical measures of the two packing structures
at φ = 0.64

We measure the strength of anisotropy of the packings
through the knowledge of the component of the fabric
tensor Aij = ∫

A (α) αiαjd�, or A11 = A22 = 1/3 − 2ε/15
and A33 = 1/3 + 4ε/15. In Table I we report the geometrical
and structural measures for the two different packings. We
note a difference in the initial configuration for the two series
of samples either by their packing fraction or by their fabric
measure (ε).

In order to start the triaxial test in the same conditions, we
apply an isotropic compression to obtain the chosen φ � 0.64
in both cases. This compression is made under uniform strain
constraint at low rate to allow local reorganization of contacts
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FIG. 5. Normalized deviatoric stress partition for the isotropic
aggregate versus the deviatoric strain during the triaxial test (confin-
ing pressure p = 800 kPa).
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FIG. 6. Normalized deviatoric stress partition, for the anisotropic
aggregate, versus the deviatoric strain during the triaxial test (confin-
ing pressures p = 800 kPa).

between grains. In the anisotropic packing we observe that this
stage produces some changes in the local contacts network; the
fabric measure decreases regularly from the value in Table I
down to values close to 0.02–0.04 before increasing again
(Fig. 4). Then we can conclude that the two packings remain
different at the beginning of the triaxial test (at least ε has a
factor 10 between the two cases). This difference is, in fact,
higher if we only consider the forces that are really active in
the aggregate. Therefore, in this consolidation process we see
an evolution of the contact network that becomes negligible
during the subsequent triaxial test. For the sake of simplicity,
we have neglected this change in the theoretical model and
the aggregate is characterized by its initial structure; however,
this assumption seems to be more consistent in the triaxial test
where the induced anisotropy is taken into account through
the evolution of the contact stiffness and where the contact
network stays almost unchanged, as seen in simulation.

D. Triaxial mechanical process and determination of yield loci

The isotropic and anisotropic aggregates have now the same
φ and we continue with the classical three-axial uniform com-
pression procedure in order to reach the requested confining
pressure. At given pressure, we increase the wall displacement
along the gravitational direction. We record the normal and
tangential contact force contributions at 20 000 time steps each.
As in Ref. [20], we distinguish the contribution of the normal
component of the contact force on the deviatoric stress, qN ,
from the tangential part, qT . In Fig. 5 we plot the normalized
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FIG. 7. Normalized deviatoric stress partition, for the anisotropic
aggregate, versus the deviatoric strain during the triaxial test (confin-
ing pressures p = 5000 kPa).
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FIG. 8. (Color online) Numerical results for the anisotropic
sample (square) and isotropic one (diamond). Both q and p are in
kPa.

deviatoric stress partition for the isotropic aggregate, versus
the deviatoric strain during the triaxial test for a confining
pressure p = 800 kPa. There is no significant change as the
pressure increases. In Figs. 6 and 7 we plot the normalized
deviatoric stress partition, for the anisotropic aggregate, versus
the deviatoric strain during the triaxial test for a confining
pressure, respectively, of p = 800 kPa and p = 5000 kPa.
Here we note substantial difference as the pressure increases.

When qT becomes constant, we record the pair p and q. In
Fig. 8 we plot the results. As the pressure increases, it is clear
that the initial, anisotropic packing shows a different behavior
than the expected Mohr-Coulomb trend that we confirm for the
isotropic packing. Consistent with the well-known limitation
of the EMT [25–27], a comparison between Figs. 3 and 8
shows the qualitative but not quantitative feature predicted by
the model for different values of ε.

IV. CONCLUSION

In spite of the crude model employed that permits a simpler
analysis, we show how inherent anisotropy may strongly
influence the shape of the yield loci of a granular aggregate.
It is possible to obtain inelasticity during the consolidation
process that allows the aggregate to lower its elastic limit in
the subsequent triaxial test. Numerical simulation supports
the theoretical prediction although with a different ε. The
difference can be explained by the fact that the average strain
theory is a rather simple model and the local yield criterion, at
contact level, is too crude.
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APPENDIX A

The shear stress along with the pressure, in case of triaxial
compression, are given by

q = 3φkG

πD1/221/2

∫ π

0
a(ε,θ )δ1/2

t

[
(3 cos2 θ − 1)

3(1 − ν)

(
δt

D

)

−3 (γ̂ + γ̃ )

2 − ν
cos2 θ sin2 θ

]
sin θdθ, (A1)

p = Gkφ

π9
√

3(1 − ν)

∫ π

0
a(ε,θ )

(
6δt

D

)3/2

sin θdθ. (A2)

By substituting Eq. (17) in Eqs. (A1) and (A2), we obtain
q

p
= ω(ε,μ), (A3)

where

ω(ε,μ) = 3

4

∫ π

0 a(ε,θ )z3/2(3 cos2 θ − 1) sin θdθ∫ π

0 a(ε,θ )z3/2 sin θdθ

+27ρν∗

4

∫ π

0 a(ε,θ )z1/2 cos2 θ sin3 θdθ∫ π

0 a(ε,θ )z3/2 sin θdθ
, (A4)

z = 1 + ρ cos2 θ and ν∗ = (1 − ν)/(2 − ν).

APPENDIX B

The stress ratio, at yield condition, is given by
q

p
= χ (μ,ε,γ̂ (1)),

where

χ (μ,ε,γ̂ (1))

= 3
∫ π

0 a(ε,θ )
( 6δt

D

)3/2
(3 cos2 θ − 1) sin θdθ

4
∫ π

0 a(ε,θ )
( 6δt

D

)3/2
sin θdθ

−81ν∗

2
(γ̃ + γ̂ (1))

∫ π

0 a(ε,θ )
( 6δt

D

)1/2
cos2 θ sin2 θ sin θdθ∫ π

0 a(ε,θ )
( 6δt

D

)3/2
sin θdθ

.
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