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Nonlinear effects of particle shape angularity in sheared granular media
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We analyze the effects of particle shape angularity on the macroscopic shear behavior and texture of granular
packings simulated by means of the contact dynamics method. The particles are regular polygons with an
increasing number of sides ranging from 3 (triangles) to 60. The packings are analyzed in the steady shear state
in terms of their shear strength, packing fraction, connectivity, and fabric and force anisotropies, as functions of
the angularity. An interesting finding is that the shear strength increases with angularity up to a maximum value
and saturates as the particles become more angular (below six sides). In contrast, the packing fraction declines
towards a constant value, so that the packings of more angular particles are looser but have higher shear strength.
We show that the increase of the shear strength at low angularity is due to an increase of both contact and force
anisotropies and the saturation of the shear strength for higher angularities is a consequence of a rapid falloff of
the contact and normal force anisotropies compensated for by an increase of the tangential force anisotropy. This
transition reflects clearly the rather special geometrical properties of these highly angular shapes, implying that
the stability of the packing relies strongly on the side-side contacts and the mobilization of friction forces.
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I. INTRODUCTION

Granular materials composed of particles of complex shape
are common in nature and also in various fields of science and
engineering. Some examples are angular-shaped particles of
soils and rocks, elongated or platy particles of pharmaceutical
products, and nonconvex particles of metallurgical and sintered
powders. These shape characteristics strongly affect the
rheology and texture of granular materials. This has been
recently evidenced by a number of numerical and experimental
studies carried out using angular particles [1–12] and by a
number of investigations that have focused on other important
characteristics such as elongation [13–20] or nonconvexity
[21,22]. The existing research results suggest that the effect of
shape parameters is often nonlinear and counterintuitive, as in
the case of the unmonotonic relation between the elongation
of the particles and the packing fraction [13,14,18].

Hence, in order to obtain a clear picture of the complex
behavior exhibited by real granular materials, it is crucial to
understand and quantify the effects of particle shape. However,
this is not an easy task, which is why systematic studies
on the subject are scarce. One of the underlying issues is
that it is difficult to control particle shape in experiments.
Moreover, introducing particle shape in numerical simulations
with discrete element methods gives rise to various technical
difficulties, both geometrical and computational. One example
of these difficulties involves contact detection and force
calculation between particles of arbitrary shape [7,10,23–26].

The aim of this work is to explore the influence of
the degree of angularity of the particles on the mechanical
behavior of sheared granular packings. We employ the contact
dynamics method to simulate large two-dimensional packings
of polydisperse regular polygonal particles. We construct
different packings, each of them made up of particles with
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a given number of sides varying from 3 (triangles) to 60. We
also simulate a packing of disks, which may be considered as
polygons of an infinite number of sides. Hence the angularity,
defined as the exterior angle of polygons, varies from 0 for
disks to 2π/3 for triangles.

The packings are analyzed in the steady state in terms of
their shear strength, packing fraction, connectivity, and fabric
and force anisotropies as functions of the angularity. A pending
issue that we would like to address in this paper is whether
the packing of disks has a singular behavior compared to the
packings of polygons. This is the case if a discontinuous
change (within our statistical precision) is observed for a
packing property, e.g. the shear strength or packing fraction,
between the packing of disks and the packing of polygons of 60
sides, which are least angular polygons in our simulations. In
a similar vein, it is not obvious whether packings composed of
particles of the lowest numbers of sides, i.e., triangles and
squares, are special compared to those of larger numbers
of sides whose behavior is expected to be described by the
angularity parameter as a deviation from circular shape.

In the following we introduce in Sec. II the numerical
approach, system characteristics, and loading parameters. In
Sec. III we focus on the evolution of shear strength and packing
fraction with angularity. The microstructure is analyzed in
Sec. IV in terms of connectivity, and contact and force
anisotropies. Section V presents concluding remarks and a
summary of the most salient results.

II. MODEL DESCRIPTION

A. Numerical method

The simulations were carried out by means of the contact
dynamics (CD) method, which is suitable for large assemblies
of undeformable particles. This method emerged from a
mathematical formulation of nonsmooth dynamics and the
subsequent algorithmic developments by Moreau [27–32] and
Jean et al. [33–38]. The fundamental difference between this
method and the common discrete element method (DEM)
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or molecular dynamics (MD) approach lies in the treatment
of small length and time scales involved in the dynamics of
granular media. In MD-type DEM, pioneered by Cundall, the
particles are treated as rigid bodies but the contacts between
particles are assumed to obey a viscoelastic or plastic behavior
in which the local strain variables are defined from the relative
particle positions or displacements [39–52]. The time-stepping
schemes used for the numerical integration of the equations
of motion imply thus a fine resolution of the small time and
length scales involved in contact interactions.

In the CD method these small scales are neglected and their
effects absorbed into contact laws together with a nonsmooth
formulation of particle dynamics described at the scale of
particle displacements rather than small elastic response times
and displacements. The equations of motion are integrated
by an implicit time-stepping scheme by taking into account
the kinematic constraints resulting from frictional contact
interactions. The implicit integration makes the method un-
conditionally stable. Moreover, since in this method the elastic
contact deflections are not resolved, the time step can be larger
than that in the MD method where the time step should be small
enough to allow for smooth variations of the overlap at the
contact points to ensure numerical stability. In CD an iterative
algorithm is used to determine the contact forces and particle
velocities simultaneously at all potential contacts. A detailed
presentation of the CD method is given in the Appendix for
point contact interactions.

The particle shape enters a CD resolution algorithm through
the explicit determination of the set of effective contacts at
the beginning of a time step. For polygonal particles, two
different types of contact can be distinguished: (i) side-vertex
and (ii) side-side (see Fig. 1). A side-vertex contact is a point
contact like that between two disks. In this case the side
coincides with the tangent common line and the local frame
is defined with respect to this line. In a detection algorithm,
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FIG. 1. (Color online) (a) Side-vertex contact and (b) side-side
contact between two polygonal particles.

such as the shadow overlap method used in our simulations, a
side-vertex contact corresponds to a single corner of a polygon
crossing a side of a partner polygon [23,25,53]. Obviously,
ideal contacts with no interpenetration of the particles (δn = 0)
would require infinite precision. In all numerical methods the
detection of contact between two bodies consists actually in
observing an overlap of the portions of space they occupy,
so δn � 0. These overlaps are a simple matter of geometrical
precision in the framework of the CD method rather than a
strain variable as in MD. The evolution of a granular system by
a CD process is as much sensitive to such imperfections as that
of a real system to the surface irregularities of real particles.

A side-side contact between two rigid polygons is equiv-
alent to two geometrical constraxints and can thus be repre-
sented by two distinct point contacts located on the common
side, which defines the common tangent line between the two
polygons. For this reason we refer to side-side contacts as
double contacts, in contrast to side-vertex contacts to which
we refer as simple contacts. In practice, a double contact is
detected when a double intrusion occurs between two polygons
(two vertices of a polygon crossing the same side of another
polygon or at least one vertex of each of the two polygons
crossing a side of the other polygon). The common tangent
line is defined as an intermediate line crossing the overlap
zone between the two sides involved in the double contact
and the projections of the intruding vertices onto this line are
used to define two points representing the double contact. The
algorithm is insensitive to the technical details of this choice
as long as the intrusions are small compared to particle sizes,
i.e., if the neighbor list is frequently updated and the time
step is sufficiently small. For example, in our simulations the
intrusion never exceeds 1% of particle diameter.

The two points of a double contact determined by the de-
tection procedure obey Signorini’s conditions and Coulomb’s
friction law (see the Appendix). However, the forces and
displacements at the two points are coupled as a result of
the rigidity of the particles, which imposes the equality of
the sliding velocities. Let κ and κ ′ be two points belonging
to a double contact between two polygons, as shown in
Fig. 1. The contact frame (�n,�t) is common to the two point
contacts, but the contact vectors �cκ

i and �cκ ′
j are different. If

both contact points are persistent and nonsliding, the contact
normal forces f κ

n and f κ ′
n and tangential forces f κ

t and f κ ′
t

may take independent values compatible with Signorini’s
conditions (f κ

n � 0, f κ ′
n � 0) and Coulomb’s law of friction

(|f κ
t | � μf κ

n , |f κ ′
t | � μf κ ′

n ). However, if one of the two
contacts is sliding, then the other contact must be sliding
too, with the equality of the sliding velocities uκ

t = uκ ′
t . This

condition implies that f κ
t and f κ ′

t are of the same sign so that
the sliding status is verified not only at each of the two contact
points (f κ

t = ±μf κ
n and f κ ′

t = ±μf κ ′
n ) but also for the double

contact, i.e., f κ
t + f κ ′

t = ±μ(f κ ′
n + f κ ′

n ).
Since the equations of dynamics are based on the rigid-body

degrees of freedom, the equality of sliding velocities at the two
points representing a double contact is in principle correctly
calculated if the two points are handled as independent
contacts in the iteration process. However, the number of
iterations for convergence declines if the equality of the sliding
velocities is enforced directly in the iteration process. To do so,
Coulomb’s friction law for a double contact is implemented
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as follows:

uκ
t > 0 ⇒

{
f κ

t = −μf κ
n

f κ ′
t = −μf κ ′

n , uκ ′
t > 0;

uκ
t = 0 or uκ ′

t = 0 ⇒
{

−μf κ
n � f κ

t � μf κ
n

−μf κ ′
n � f κ ′

t � μf κ ′
n ;

(1)

uκ
t < 0 ⇒

{
f κ

t = μf κ
n

f κ ′
t = μf κ ′

n , uκ ′
t < 0.

In practice, the inequalities (1) are implemented in the
correction step when solving the local Signorini-Coulomb
problem for a double contact between two particles (see the
Appendix).

The two points attributed to a double contact and the
calculated forces are only intermediate objects. The only
physically meaningful forces acting at a double contact are
the resultant forces fn = f κ

n + f κ ′
n and ft = f κ

t + f κ ′
t . It is

easily shown that fn � 0 and |ft | � μfn if the two contact
points obey Signorini’s conditions and Coulomb’s friction
law. Since only the force resultants and relative displacements
are material at a double contact, the choice of the two
representative points of a double contact is a matter of technical
convenience with no real impact on the result.

Ideally, vertex-vertex contacts should never occur, but due
to finite precision we do observe ambiguous situations that
may be considered as vertex-vertex contacts, as shown in
Fig. 2, and that require special treatment. The difficulty lies in
the choice of a common tangent line and two representative
points such that the subsequent particle motions under the
effect of contact laws at those points do not lead to further
mutual intrusion of the particles. The intrusion may increase
due to both normal and tangential relative displacements with
respect to the four sides involved in the vertex-vertex contact.
This means that a vertex-vertex contact may be resolved either
into two side-vertex contacts or into two side-side contacts
and treated as described previously. An example is shown in
Fig. 2, where two side-vertex contacts are defined to represent
the intersecting vertices (exaggerated on the figure). This is a
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nκt κ

κ
κ′

nκ′tκ
′

FIG. 2. Vertex-vertex intersection (exaggerated) resolved into
two side-vertex contacts.

simple and robust method, although alternative methods for the
choice of the common line and local frame may be proposed.

B. Description of the packings and the simple shear test

We prepared 13 different packings, each comprising
10 000 regular polygons with the same number of sides
ns ∈ [3,4, . . . ,10,11,17,30,40,60]. Additionally, we build
one more packing composed of the same number of disks.
The angularity α = 2π/ns varies from 0 for disks to 2π/3
for triangles. In order to avoid long-range ordering, we
introduce size polydispersity by varying the circumradius of
the polygons from 0.6〈d〉 to 2.4〈d〉, where 〈d〉 is the mean
circumradius, with a uniform distribution by volume fractions.

The particles are initially placed in a semiperiodic box
100〈d〉 wide, using a geometrical procedure [54,55]. Then all
packings are sheared by imposing a constant confining stress
σwall and a constant horizontal velocity vwall on the upper wall,
as schematized in Fig. 3. To avoid strain localization at the
boundaries and to guarantee that the shear strain is uniformly
distributed in the bulk, the particles in contact with the walls
are glued to them and the gravity is set to zero. The friction
coefficient μs between particles is set to 0.4.

Since we are interested in the quasistatic (rate-independent)
behavior, the particle inertia should be negligible compared to
the confining pressure. From the shear rate γ̇ = vwall/ywall and
σwall an inertia parameter I is defined by Ref. [56]

I = γ̇ 〈d〉
√

ρ

σwall
, (2)

where ρ is the mass density. Experiments and simulations
show that this condition is fulfilled when I < 10−3. In all
our tests we have γ̇ = 10−6/	t and σwall = 10−4ρ(〈d〉	t)2.
Hence I ∼ 10−4, which means that our sheared samples can
reasonably be considered to be in a quasistatic state.

The samples are sheared up to a large cumulative shear
strain γ = xwall/ywall = 4, where xwall is the horizontal dis-
placement of the upper wall and ywall is its vertical position.
Figure 4 shows the stress ratio τwall/σwall and the normalized
volume of the packing V/〈d〉2, as functions of the shear strain
γ , for four different values of α, where τwall is the tangential

x
y

σwall

vwall

FIG. 3. Schematic representation of the simulated shear test; the
dashed lines represent periodic boundaries. Here vwall is the horizontal
velocity of the wall and σwall is the confining pressure. The arrows
inside the box represent the velocity field.
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FIG. 4. (Color online) (a) Stress ratio τwall/σwall and (b) normal-
ized volume of the packing V/〈d〉2 as functions of the shear strain γ

for four different values of α.

stress at the moving wall. We see that the packings are in the
steady state up to small fluctuations around a mean both for
τwall/σwall and V/〈d〉2. In the following sections all average
quantities represent the last 50% of cumulative shear strain so
that they truly characterize the behavior of the system in the
steady state [57]. Video samples of the simulations analyzed
in this paper can be found in Ref. [58].

III. SHEAR STRENGTH AND PACKING FRACTION

The shear strength of a granular material is characterized
by the coefficient of internal friction μ∗, which requires the
stress tensor σ at any stage of deformation calculated from
the simulation data, giving access to the contact network and
forces. We start with the internal moment tensor Mp of each
particle p, defined by

M
p

ij =
∑
c∈p

f c
i rc

j , (3)

where f c
i is the i component of the force exerted on particle

p at contact c, rc
j is the j component of the position vector of

the same contact, and the summation runs over all contacts c

of particle p. The average stress tensor σ in a volume V of the
granular assembly is defined by Ref. [59]

σ = 1

V

∑
p∈V

Mp = 1

V

∑
c∈V

f c
i �c

j , (4)

where �c is the intercenter vector joining the centers of
the two touching particles at the contact c. Note that the
first summation runs over all particles whereas the second
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FIG. 5. (Color online) Coefficient of internal friction μ∗ as a
function of the angularity α evaluated directly from the numerical
data (solid squares) and predicted by Eq. (8) (open squares). The
error bars represent the standard deviation in the steady state.

summation involves all contacts in the volume V , with
each contact appearing only once. The mean stress in
two dimensions (2D) is given by p = (σ1 + σ2)/2 and the
deviatoric stress is q = (σ1 − σ2)/2, where σ1 and σ2 are the
principal stresses. The coefficient of internal friction in the
steady state is defined by

μ∗ = q

p
. (5)

Figure 5 shows the evolution of μ∗ as a function of the
angularity α of the particles. The shear strength first increases
with α from μ∗

0 
 0.29 and then saturates for particles having
6 or fewer sides (α � 1.25) for which μ∗

�1 
 0.47. The data
are well fit to an exponential function:

μ∗ = μ∗
0 + (μ∗

�1 − μ∗
0)(1 − e−α/αc ), (6)

with αc 
 0.6. The fast increase of μ∗ with α and its saturation
is rather unexpected as it indicates that small deviations of the
shape from the disk have a stronger effect on μ∗ than the larger
variations of angularity for a small number of sides. This point
will be discussed in more detail when we analyze below the
microstructure and force transmission.

Figure 6 shows the packing fraction ν∗ as a function of α.
We see that the packing fraction declines from ν∗

0 
 0.828 (for
the disk packing) and saturates to ν∗

�1 
 0.798. It is remarkable

0.0 0.5 1.0 1.5 2.0 2.5
α

0.79

0.80

0.81

0.82

0.83

ν

FIG. 6. Steady-state value of the packing fraction ν∗ as a function
of the angularity α. The error bars represent the standard deviation in
the steady state.
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that the packing fraction follows a trend opposite to that of the
shear strength. These results represent a different example in
which a decrease in packing fraction is accompanied by an
increase in shear strength, as it was previously observed for
packings of elongated and nonconvex particles [18,22]. In the
following we analyze the microstructural properties of our
packings of polygonal particles with the aim of identifying the
origins of their shear strength.

IV. MICROMECHANICAL ANALYSIS

A. Connectivity

Figure 7 shows a snapshot of the contact network in the
steady state for three samples of polygonal particles with
ns = 10, 5, and 3, as well as for the disk packing. We see that
the contact network topology varies strongly with angularity.
For example, the floating particles are organized in groups
in the disk packings, whereas they are mostly isolated in the
case of triangular particles. In contrast, the contact network
becomes more connected as the angularity increases. At lowest
order, the connectivity of the particles is characterized by the
proportion κ of nonfloating particles and the coordination
number z (average number of force-bearing contacts per
particle). Figure 8 shows κ and z as functions of α. We see
that κ and z decline (from 0.85 to 0.68 and from 3.25 to 3.15,
respectively) as α increases, in accordance with the decrease of
packing fraction shown in Fig. 6. However, the trend is reversed
beyond α 
 1 for both z and κ . In particular, we observe that
z increases up to 3.5, which is higher than that in the disk
packing. This increase suggests that the sharp corners of very
angular particles allow for deep contacts between neighbors
that are unreachable for less angular particles. These results
show that for large angularities, the packings are looser but
better connected.

The connectivity of the particles may be characterized in
more detail by specifying the proportion Pc of particles having
exactly c contacts. Note that only the force-bearing contacts
are concerned. We have P0 = P1 = 0. Figure 9 shows Pc

for c = 2, . . . ,8 as a function of α in the steady state. For
all values of α, with the exception of triangles and squares
(i.e., for α = 2π/3 and π/2 in the figure), P3 prevails and it
remains nearly constant below α 
 1.25. Beyond α = 1.25, it
declines rapidly, contrary to all proportions Pc, which increase
with α. We also observe that P4 decreases slightly with α

for α < 1.25, whereas in the same range P2 increases almost
in the same proportion. Hence, as the angularity becomes
higher, increasing numbers of particles are equilibrated by two
opposite forces mostly acting at the side-side contacts. Finally,
it is interesting to note that the proportions Pc of particles
with more than four contacts remain nearly constant below
α = 1.25, but increase only slightly in number for squares
and triangles. In this way, even a slight increase in angularity
(with a disk as the reference shape) has a strong effect on the
connectivity and mechanical behavior, as we already remarked
with respect to the evolution of μ∗ and ν∗ in Figs. 5 and 6.

B. Anisotropy of the contact and force networks

The shear strength of granular materials is generally
attributed to the buildup of an anisotropic structure induced by

FIG. 7. (Color online) Snapshots of the contact network for three
samples of polygonal particles with (b) ns = 10, (c) ns = 5, and
(d) ns = 3 and (a) for the disk packing. The floating particles (i.e.,
particles with one or no contact) are drawn in light gray and the
contacts are represented by line segments joining the centers of mass
of the particles with the contact points.

shearing. This anisotropy is basically related to the distribution
of contact normals n. Therefore, we may obtain a full
description of the state of anisotropy by a partition of various
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FIG. 8. (a) Proportion κ of nonfloating particles as a function
of the angularity α. (b) Coordination number z as a function of the
angularity α. The error bars represent the standard deviation in the
steady state.

mechanical quantities according to the directions of contact
normals. This amounts to replacing the space direction used in
continuum mechanics for the representation of the stress and
strain fields by the contact orientation.

The most basic descriptor of anisotropy is the probability
distribution P (n) of the contact normals, which is generically
nonuniform. In two dimensions, the unit vector n is described
by a single angle θ and the probability density P (θ ) of contact
orientations θ provides the required statistical information
about the contact network. A local frame (n,t) can be attached
to each contact, where t is an orthonormal unit vector (see
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FIG. 9. (Color online) Connectivity of particles defined as the
proportion Pc(c) of particles with exactly c contacts as a function of
α in the steady state.

−→

−→
f

−→n−→
t

c

FIG. 10. (Color online) Local contact frame.

Fig. 10). The local geometry associated with the two contact
neighbors is characterized by the branch vector � joining the
particle centers. It can be projected in the local contact frame:
� = �nn + �t t . Note that, in contrast to circular particles,
for which �t = 0, in a packing of polygonal particles this
component is nonzero. In the same way, the contact force f can
be expressed in terms of its normal and tangential components:
f = fnn + ft t .

Along with P (θ ), the anisotropy of the packing can be
further characterized by the angular averages of the compo-
nents of the branch vectors and contact forces as a function of
the orientation θ : 〈�n〉(θ ), 〈�t 〉(θ ), 〈fn〉(θ ), and 〈ft 〉(θ ). These
functions describe the general state of anisotropy and both
experiments and simulations show that in a sheared granular
material, they tend to take a simple unimodal shape, which can
be well approximated by the lowest-order Fourier expansion
[3,10,18,20,22,60–69]:

P (θ ) = 1

2π
{1 + ac cos 2(θ − θc)},

〈�n〉(θ ) = 〈�n〉{1 + aln cos 2(θ − θln)},
〈�t 〉(θ ) = 〈�n〉alt sin 2(θ − θlt ), (7)

〈fn〉(θ ) = 〈fn〉{1 + af n cos 2(θ − θf n)},
〈ft 〉(θ ) = 〈fn〉af t sin 2(θ − θf t ),

where ac is the contact orientation anisotropy, aln is the normal
branch anisotropy, alt is the tangential branch anisotropy,
af n is the normal force anisotropy, and af t is the tangential
force anisotropy. The angles θc, θln, θlt , θf n, and θf t are
the corresponding privileged directions. These directions can
all be different, but they coincide with the principal stress
direction θσ in a sheared granular material, as illustrated in
Fig. 11.

The anisotropies ac, aln, alt , af n, and af t are interesting
not only as descriptors of the granular microstructure and
force transmission but more fundamentally because they add
together to build the shear strength of the material. Indeed,
from the expression (4) of the stress tensor, the following
relationship can be easily established between the anisotropy
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(a)

FIG. 11. (Color online) Evolution of the anisotropy parameters
(a) ac, aln, and alt and (b) af n and af t as functions of the particle
shape angularity α. Error bars represent the standard deviation in
the steady state. The polar diagrams of the corresponding angular
distributions are shown for α 
 1 (i.e., ns = 6) together with their
Fourier expansion [i.e., Eq. (7)].

parameters and the stress ratio q/p [3,18]:

q

p

 1

2
(ac + aln + alt + af n + af t ), (8)

where the cross products between the anisotropy parameters
have been neglected. The stress ratio q/p given by this
expression from the anisotropy parameters measured from the
numerical data is shown in Fig. 5 as a function of α together
with those given by direct measurement. We see that Eq. (8)
provides a nice approximation of the shear strength for all
values of α.1

The evolution of the five anisotropies with α is shown in
Fig. 11. The normal and tangential branch anisotropies aln

and alt are negligible in comparison to the other anisotropy
parameters. This is due to the absence of shape eccentricity of
the particles [18,70] and to the low span in the particle size
distribution [67]. The other anisotropies ac, af n, and af t grow
as α increases from zero (for the disk packing) up to α 
 1.25
(for the hexagon packing). This increase of all anisotropies
underlies the observed increase in the internal angle of friction
in this range. In contrast, the increase of the anisotropies
reflects the increasing number of side-side contacts, which
capture the strong force chains and form columnlike structures,
which can be stable without sidewise support (see below).

For polygons with fewer than six sides (α � 1.25), a rapid
decrease of ac and af n occurs, whereas af t grows at the same
time. As observed in Fig. 11, this increase of af t is large

1A similar relation can be obtained in 3D using spherical harmonics
[10,70].
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FIG. 12. (Color online) (a) Mean normal force 〈fn〉 and mean
tangential force 〈|ft |〉 normalized by p〈d〉 as functions of the
angularity α. (b) Proportion kslide of sliding contacts as a function
of α. The error bars represent the standard deviation in the steady
state.

enough to additively compensate for [see Eq. (8)] the decrease
of ac and af n, so that the shear strength remains nearly constant
in this range of α, as observed in Fig. 5.

The decrease of ac for α � 1.25 is related to the increase of
the coordination number z as shown in Fig. 8(b). Indeed, higher
values of z imply higher dispersion of contact orientations. In
contrast, the increase of af t may be attributed to the fact that
the rotational mobility of the particles is strongly reduced as a
result of enhanced angular exclusions due to shape angularity
so that the particles tend to slide rather than rolling with a
strong increase of friction mobilization [68]. At the same time,
af n declines naturally as the friction forces take part more
actively in force transmission. This is indeed what we observe
in Fig. 12, which shows the mean normal force 〈fn〉 and mean
tangential force 〈|ft |〉, as well as the proportion kslide of sliding
contacts (i.e., contacts in which |ft | = μ|fn|), as functions
of α. Both 〈fn〉 and 〈|ft |〉 initially increase with α, but 〈fn〉
declines beyond α � 1 whereas 〈|ft |〉 keeps increasing. The
proportion of sliding contacts rises as the particles become
increasingly angular and takes values as high as 0.2, i.e., nearly
4 times above those measured in the packing composed of disks
(α = 0).

C. Role of side-vertex and side-side contacts

As mentioned in the preceding section, the distinctive
features of a material composed of polygonal particles are
explained by the possibility of forming side-side contacts. It is
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FIG. 13. (Color online) Proportions of side-side (ss) and side-
vertex (sv) contacts as functions of the angularity α. The error bars
represent the standard deviation in the steady state.

thus interesting to investigate the relative roles of the two types
of contacts, i.e., side-vertex (sv) and side-side (ss) contacts,
with respect to the shear strength and anisotropy. Figure 13
shows the proportions ksv and kss of sv and ss contacts,
respectively, as a function of α. Irrespective of angularity,
the sv contacts prevail in the contact network. However, ksv

decreases from 1 for the disks (α = 0) down to 
0.75 for
α � 1.25 and remains practically constant for more angular
particles.

Figure 14 shows a snapshot of the normal force network
disk packing as well as three snapshots of the packings with
ns = 10, 5, and 3. The force lines connect particle centers
to the contacts and their thickness is proportional to the
normal force. For ns = 10 and 5, the ss contacts appear often
in distinctive force chains. However, for ns = 3 (triangles),
despite approximately the same proportion kss , the ss contact
forces are much more diffuse and intricately mixed with sv

contacts. This visual impression is consistent with the decrease
of an observed in Fig. 11.

The stress tensor can be partitioned as a sum of two tensors
representing the respective contributions of sv and ss contacts
by considering the expression (4) of the stress tensor and
restricting the summation to each contact type:

σ = σ sv + σ ss , (9)

where

(σsv)ij = 1

V

∑
c∈A(sv)

�ifj , (σss)ij = 1

V

∑
c∈A(ss)

�ifj , (10)

with A(sv) and A(ss) the sets of sv and ss contacts,
respectively. Figure 15 displays the evolution of q/p, qsv/p,
and qss/p as a function of α. It is seen that qsv/p is nearly
constant and 
0.24, except for the packing of triangular
particles in which qsv/p 
 0.35. In contrast, qss/p first
increases with α from 0 to 
0.3 for pentagons and then
declines to 0.2 for squares and 0.1 for triangles. This shows
that the variation of the shear strength is mostly governed by
the contribution of side-side contacts, even if their proportion
is low. This profound effect of faceted grain shapes on stress
transmission has been previously shown both experimentally
and numerically [17–20].

FIG. 14. (Color online) Snapshots of (a) the packing of disks
and the packings of polygons with (b) ns = 10, (c) ns = 5, and
(d) ns = 3 in the steady state. The sv contacts are in red (dark
gray) and ss contacts are in green (light gray). The line thickness
is proportional to the normal force.

Along the same lines, we may also evaluate the partial
contact and force anisotropies acγ , alnγ , altγ , af nγ , and af tγ ,
where γ stands either for ss or for sv. Since the privileged
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FIG. 15. (Color online) Total shear strength (q/p) and partial
shear strengths for side-vertex (sv) and side-side (ss) contacts as
functions of the angularity α, together with the values predicted
by Eq. (8) (open symbols). The error bars represent the standard
deviation in the steady state.

directions of the partial angular functions describing the γ

contacts and forces are practically the same as the overall
privileged direction for all contacts and forces, the total
contact and force anisotropies are given by the sum of the
corresponding partial anisotropies. The partial contact and
forces anisotropies are shown in Figs. 16 and 17 as functions
of α together with the total anisotropies. Note that Eq. (8)
is also verified when restricted to γ contacts. We see that
acsv 
 af nsv 
 0.2 and af tsv 
 0.05 for all α. In other words,
the variation of the total anisotropy is mainly governed by that
of the anisotropies developed by side-side contacts. The stress
plateau discussed previously for the whole contact network
for higher angularity is due to the falloff of acss and af nss

for squares and triangles compensated for by the increase of
the partial tangential force anisotropy of side-side contacts
af tss . This shows the crucial role of side-side contacts in stress
transmission and mobilization of internal friction for most
angular particles.

V. CONCLUSION

In this paper we investigated the effect of particle shape
angularity on the quasistatic behavior of sheared granular
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FIG. 16. (Color online) Partial contact orientation anisotropies
acss and acsv of ss and sv contacts as functions of the angularity α.
The error bars represent the standard deviation in the steady state.
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FIG. 17. (Color online) (a) Partial normal force anisotropies af nss

and af nsv and (b) partial tangential force anisotropies af tss and af tsv

of ss and sv contacts as functions of the angularity α. The error bars
represent the standard deviation in the steady state.

materials by means of contact dynamics simulations. The
particles are regular polygons characterized by their angularity.
The macroscopic and microstructural properties of several
packings of 104 particles in simple shear conditions were
analyzed as a function of angularity in the steady state.

We expected the steady-state internal friction coefficient
to decrease rapidly for decreasing angularity and tend to
a nearly constant value close to that of a disk packing.
Instead, our numerical simulations reveal a nearly constant
value of the internal friction coefficient for most angular
polygons (triangles, squares, and pentagons) and a rapid
decrease as angularity is reduced. Similar behavior was also
observed for the packing fraction and several descriptors of the
microstructure such as the coordination number and anisotropy
parameters. This counterintuitive observation shows that a
slight increase in angularity (with a disk as the reference shape)
has a strong influence on the mechanical behavior. In this
respect, the effect of a low angularity seems to be as strong
as that of surface roughness and friction coefficient between
particles.

For polygons with the highest angularity, i.e., for polygons
of 3–5 sides, a different mechanism is observed. In particular,
the coordination number declines as angularity increases,
except for highly angular particles, for which it rises. In
the latter case, the contact orientation anisotropy and normal
force anisotropy decline as angularity increases, whereas
the tangential force anisotropy increases. The compensation
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between these effects leads to a nearly constant shear strength.
The friction mobilization appears as a key parameter for the
shear strength of angular particles. It grows smoothly with
angularity and, mainly at side-side contacts, it is responsible
for the increasing shear strength of the material.

In this work the friction coefficient between particles was
kept at a constant value for all angularities. It would be highly
instructive to assess the proper role of friction by varying this
parameter systematically for each angularity. A similar investi-
gation can also be performed with irregular polygons in 2D and
polyhedra in 3D, making it possible to explore the implications
of these results in the context of practical applications
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APPENDIX: CONTACT DYNAMICS METHOD

In this Appendix we briefly describe the CD method in
2D by adapting a detailed description given in Ref. [71]. The
implementation of the CD method with polygonal particles is
described in Sec. II.

1. Contact laws

Let us consider two particles i and j with a contact at a
point κ within a granular material. We assume that a unique
common line (plane in 3D) tangent to the two particles at κ can
be geometrically defined so that the contact can be endowed
with a local reference frame defined by a unit vector �n normal
to the common line and a unit vector �t along the tangent line
with an appropriate choice of the orientations of the axes.

Geometrically, a contact potentially exists if the gap δn

between two particles is so small that within a small time
interval δt (time step in numerical simulations) a collision may
occur between the two particles. If the contact is effective, i.e.,
for δn = 0, a repulsive (positive) normal force fn may appear at
κ with a value depending on the particle velocities and contact
forces acting on the two partners by their neighboring particles
(see Fig. 18). However, if δn is positive (a gap), the potential

i

j

c κ
i

c κ
j

nκ
t κ

κ

FIG. 18. (Color online) Geometry of a contact κ between two
particles i and j with contact vectors �cκ

i and �cκ
j and contact frame

(�nκ,�tκ ).

contact is not effective and fn at the potential contact κ is
identically zero. These disjunctive conditions can be described
by the following inequalities:

δn > 0 ⇒ fn = 0, δn = 0 ⇒ fn � 0. (A1)

The important point about this relation between δn and fn,
called Signorini’s conditions, is that it cannot be reduced to a
(monovalued) function.

Signorini’s conditions imply that the normal force vanishes
when the contact is not effective. However, the normal force
may vanish also at an effective contact. In particular, this is
the case for un = δ̇n > 0, i.e., for incipient contact opening.
Otherwise, the effective contact is persistent and we have
un = δ̇n = 0. Hence Signorini’s conditions can be split as
follows:

δn > 0 ⇒ fn = 0, δn = 0 ∧
{

un > 0 ⇒ fn = 0

un = 0 ⇒ fn � 0.
(A2)

We see that for an effective contact, i.e., for δn = 0, Signorini’s
conditions hold for the variables un and fn.

Like Signorini’s conditions, the Coulomb law of dry friction
at an effective contact point can be expressed by a set of
alternative inequalities for the friction force ft and the sliding
velocity ut :

ut > 0 ⇒ ft = −μfn,

ut = 0 ⇒ −μfn � ft � μfn,

ut < 0 ⇒ ft = μfn,

(A3)

where μ is the coefficient of friction and it is assumed that
the unit tangent vector t points in the direction of the sliding
velocity so that �ut · �t = ut . Like Signorini’s conditions, this
is a degenerate law that cannot be reduced to a (monovalued)
function between ut and ft .

Signorini’s conditions [Eq. (A2)] and Coulomb’s friction
law [Eq. (A3)] are represented as two graphs in Fig. 19 for
an effective contact between two particles. We refer to these
graphs as contact laws in the sense that they characterize the
relation between relative displacements and forces irrespective
of the rheology (viscoelastic or plastic nature) of the particles.
These contact laws should be contrasted with force laws
(employed in MD simulations), which describe a functional
dependence between deformations (attributed to the contact
point) and forces that is extracted from the material behavior
of the particles. The force laws often employed in MD may
also be considered as a regularization of the contact laws, in
which the vertical branch in Signorini’s and Coulomb’s graphs
is replaced by a steep linear or nonlinear function.

un

fn

0
ut

ft

0

μfn

−μfn

(a) (b)

FIG. 19. (Color online) Graphs of (a) Signorini’s conditions and
(b) Coulomb’s friction law.
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2. Augmented contact laws

The use of contact laws in the CD method is consistent
with the idea of a discrete model defined only at the scale
of particle motions and involving no small subparticle length
or force scales inherent to the force laws. However, such a
coarse-grained model of particle motion implies nonsmooth
dynamics, i.e., possible discontinuities in particle velocities
and forces arising from collisions and variations of the contact
status (effective or not, persistent or not, sliding or not).
Such events occur frequently in granular flows and hence the
approximation of the contact force fn during δt is a measure
problem in the mathematical sense [32,72]. A static or regular
force f s is the density of the measure f s dt with respect to
time differential dt . In contrast, an impulse p generated by
a collision has no density with respect to dt . In other words,
the forces at the origin of the impulse are not resolved at
the scale δt . In practice, however, we cannot differentiate
these contributions in a coarse-grained dynamics and the two
contributions should be summed up to a single measure and
the contact force is defined as the average of this measure
over δt .

In a similar vein, the left-limit velocities u−
n and u−

t at time
t are not always related by a smooth variation (acceleration
multiplied by the time step δt) with the right-limit velocities
u+

n and u+
t at t + δt . Hence we assume that the contact laws

[Eqs. (A2) and (A3)] are satisfied for a weighted mean of the
relative left-limit and right-limit velocities:

un = u+
n + en u−

n

1 + en

, (A4)

ut = u+
t + et u−

t

1 + et

. (A5)

The physical meaning of the coefficients en and et is best
illustrated by considering a binary collision between two
particles. A binary collision corresponds to an effective contact
occurring in the interval [t,t + δt] and a persistent contact in
the sense of the mean velocity un. In other words, we have
un = 0 and thus −u+

n /u−
n = en. Hence en can be identified

with the normal restitution coefficient. In the same way, for
ut = 0, corresponding to a nonsliding condition (adherence of
the two particles during their contact) implies −u+

t /u−
t = et ,

which is the tangential restitution coefficient. We see that when
Signorini’s and Coulomb’s graphs are used with the mean
velocities given by Eqs. (A4) and (A5), a contact is persistent
in terms of u+

n (i.e., u+
n = 0) only if en = 0.

When a collision is not binary, the generated impulses
propagate through the contact network so that a contact may
experience several successive impulses during δt . Such events
can be resolved for a sufficiently small time increment δt or
they may be tracked according to an event-driven scheme. The
event-tracking strategy is, however, numerically inefficient, of
limited applicability, and in contradiction with the scope of
the CD method based on coarse-grained dynamics. The use
of mean velocities [Eqs. (A4) and (A5)] with the contact laws
should thus be considered as a generalization of restitution
coefficients to multiple collisions and contact networks for
which the right-limit velocities u+

n and u+
t are not simply

given by the left-limit velocities multiplied by the coefficients

of restitution as in binary collisions but by combining the
contact laws with the equations of dynamics.

3. Nonsmooth motion

The rigid-body motion of the particles is governed by
Newton’s equations under the action of imposed external bulk
or boundary forces �Fext and the contact reaction forces �f κ

exerted by neighboring particles at the contact points κ . An
absolute reference frame with unit vectors (x̂, ŷ) is assumed
and we set ẑ = x̂ × ŷ. Each particle is characterized by its
mass m, moment of inertia I , mass center coordinates �r , mass
center velocity �U , angular coordinates θ , and angular velocity
ωẑ. For a smooth motion (twice differentiable), the equations
of motion of a particle are

m �̇U = �F + �Fext, I ω̇ = M + Mext, (A6)

where �F = ∑
κ

�f κ and M = ẑ · ∑
κ �cκ × �f κ , with �cκ the

contact vector joining the center of mass to the contact κ

and Mext representing the moment of external forces.
For a nonsmooth motion with time resolution δt involving

impulses and velocity discontinuities, an integrated form of the
equations of dynamics should be used. Hence the equations of
dynamics should be written as an equality of measures

md �U = d �F ′ + �Fextdt, Idω = dM′ + Mextdt, (A7)

where d �F ′ = ∑
κ d �f ′κ and dM′ = ẑ · ∑

κ �cκ × d �f ′κ . These
measure differential equations can be integrated over δt with
the definitions of �F and M as approximations of the integral
of d �F ′ and dM′. With these definitions, the integration of
Eq. (A7) over δt yields

m( �U+ − �U−) = δt �F + δt �Fext,

I (ω+ − ω−) = δtM + δtMext, (A8)

where ( �U−,ω−) and ( �U+,ω+) are the left-limit and right-limit
velocities of the particle, respectively.

The equations of dynamics can be written in a compact form
for a set of Np particles by using matrix representation. The
particles are labeled with integers i ∈ [1,Np]. The forces and
force moments F i

x,F
i
y,Mi acting on the particles i are arranged

in a single high-dimensional column vector represented by a
boldface letter F belonging to R3Np . In the same way, the
external bulk forces Fext,x,Fext,y,Mext applied on the particles
and the particle velocity components Ui

x,U
i
y,ω

i are represented
by column vectors Fext and U , respectively. The particle
masses and moments of inertia define a diagonal 3Np × 3Np

matrix denoted by M. With these notations, the equations of
dynamics (A8) are cast into a single matrix equation

M(U+ − U−) = δt(F + Fext). (A9)

4. Transfer equations

Since the contact laws are expressed in contact variables
(un, ut , fn, and ft ), we need to express Eq. (A9) in the same
variables. The contacts are labeled with integers κ ∈ [1,Nc],
where Nc is the total number of contacts. Like particle
velocities, the contact velocities uκ

n and uκ
t can be collected

in a column vector u ∈ R2Nc . In the same way, the contact
forces f κ

n and f κ
t are represented by a vector f ∈ R2Nc . We
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would like to transform the equations of dynamics from F and
U to f and u. The formal transformation of matrix equations
[Eq. (A9)] is straightforward. Since the contact velocities u
are linear in particle velocities U , the transformation of the
velocities is an affine application:

u = GU, (A10)

where G is a 2Nc × 3Np matrix containing basically infor-
mation about the geometry of the contact network. A similar
linear application relates f to F:

F = H f , (A11)

where H is a 3Np × 2Nc matrix. We refer to H as contact
matrix. It contains the same information as G in a dual or
symmetric manner. It can easily be shown that H = GT ,
where GT is the transpose of G. This property can be inferred
from the equivalence between the power F · U developed by
generalized forces F and the power f · u developed by the
bond forces f . In general, the matrix H is singular and by
definition its null space has a dimension equal to at least
2Nc − 3Np.

The matrix Hiκ can be decomposed into two matrices Hiκ
n

and Hiκ
t such that

uκ
n =

∑
i

HT,κi
n Ui, uκ

t =
∑

i

HT,κi
t U i, (A12)

and

F i =
∑

κ

(
Hiκ

n f κ
n + Hiκ

t f κ
t

)
. (A13)

Using these relations, Eq. (A9) can be transformed into two
equations for each contact κ:

uκ+
n − uκ−

n

= δt
∑
i,j

HT,κi
n M−1,ij

{∑
λ

(
Hjλ

n f λ
n + H

jλ
t f λ

t

) + F
j
ext

}
,

uκ+
t − uκ−

t

= δt
∑
i,j

HT,κi
t M−1,ij

{∑
λ

(
Hjλ

n f λ
n + H

jλ
t f λ

t

) + F
j
ext

}
.

(A14)

We can now make linear relations between the contact
variables from Eq. (A14) and definitions (A4) and(A5) appear
explicitly. We set

Wκλ
k1k2

=
∑
i,j

H
T,κi
k1

M−1,ijH
jλ

k2
, (A15)

where k1 and k2 stand for n or t . With this notation, Eqs. (A14)
can be rewritten as follows:

1 + en

δt

(
uκ

n − uκ−
n

)
= Wκκ

nn f κ
n + Wκκ

nt f κ
t +

∑
λ(�=κ)

{
Wκλ

nn f λ
n + Wκλ

nt f λ
t

}

+
∑
i,j

HT,κi
n M−1,ijF

j
ext, (A16)

1 + et

δt

(
uκ

t − uκ−
t

)
= Wκκ

tn f κ
n + Wκκ

tt f κ
t +

∑
λ(�=κ)

{
Wκλ

tn f λ
n + Wκλ

nt f λ
t

}

+
∑
i,j

HT,κi
t M−1,ijF

j
ext. (A17)

The coefficients Wκκ
k1k2

for each contact κ can be calculated
as functions of the contact network geometry and inertia
parameters of the two partners 1κ and 2κ of the contact κ .
Let �cκ

i be the contact vector joining the center of mass of
particle i to the contact κ . The following expressions are easily
established:

Wκκ
nn = 1

m1κ

+ 1

m2κ

+
(
cκ

1t

)2

I1κ

+
(
cκ

2t

)2

I2κ

,

Wκκ
tt = 1

m1κ

+ 1

m2κ

+
(
cκ

1n

)2

I1κ

+
(
cκ

2n

)2

I2κ

, (A18)

Wκκ
nt = Wκκ

tn = cκ
1nc

κ
1t

I1κ

+ cκ
2nc

κ
2t

I2κ

,

where cκ
in = �cκ

i · �nκ and cκ
it = �cκ

i · �tκ are the components of the
contact vectors in the contact frame. The coefficients Wκκ

k1k2
are

inverse reduced inertia.
An alternative representation of Eqs. (A16) and (A17) is

the following:

Wκκ
nn f κ

n + Wκκ
nt f κ

t = (1 + en)
1

δt
uκ

n + aκ
n , (A19)

Wκκ
tt f κ

t + Wκκ
tn f κ

n = (1 + et )
1

δt
uκ

t + aκ
t . (A20)

The two offsets aκ
n and aκ

t can easily be expressed from
Eqs. (A16) and (A17). Equations (A19) and (A20) or
Eqs. (A16) and (A17) are called transfer equations [73]. It
is easy to show that

aκ
n = bκ

n − (1 + en)
1

δt
uκ−

n +
( �F 2κ

ext

m2κ

−
�F 1κ

ext

m1κ

)
· �nκ, (A21)

aκ
t = bκ

t − (1 + et )
1

δt
uκ−

t +
( �F 2κ

ext

m2κ

−
�F 1κ

ext

m1κ

)
· �tκ . (A22)

The effect of the approach velocity (left-limit velocity)
(uκ−

n ,uκ−
t ) appears in these equations as an impulse depending

on the reduced mass and the restitution coefficient. The effects
of contact forces �f λ

i acting on the two touching particles i are
represented by bκ

n and bκ
t , given by

bκ
n = 1

m2κ

∑
λ(�=κ)

�f λ
2κ

· �nκ − 1

m1κ

∑
λ(�=κ)

�f λ
1κ

· �nκ, (A23)

bκ
t = 1

m2κ

∑
λ(�=κ)

�f λ
2κ

· �tκ − 1

m1κ

∑
λ(�=κ)

�f λ
1κ

· �tκ . (A24)

The transfer equations (A19) and (A20) define a system of two
linear equations between the contact variables at each contact
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point. The solution, when the values of an and at at a contact
are assumed, should also verify the contact laws (A2) and (A3).
Graphically, this means that the solution is at the intersection
between the straight line (A19) and Signorini’s graph on the
one hand and between Eq. (A20) and Coulomb’s graph on the
other.

5. Iterative resolution

In order to solve the system of 2Nc transfer equations
(in 2D) with the corresponding contact law relations, we
proceed by an iterative method that converges to the solution
simultaneously for all contact forces and velocities. We
first consider a single-contact problem that consists of the
determination of contact variables f κ

n , f κ
t , uκ

n, and uκ
t at

a single contact given the values of the offsets aκ
n and aκ

t

at the same contact. The solution is given by intersecting
the lines representing transfer equations with Signorini’s and
Coulomb’s graphs. The intersection occurs at a unique point
due to the positivity of the coefficients Wκκ

k1k2
(positive slope).

In other words, the dynamics removes the degeneracy of the
contact laws.

Note, however, that the two intersections cannot be estab-
lished separately when Wκκ

nt �= 0. To find the local solution,
one may consider the intersection of transfer equations with
the force axis, i.e., by setting un = ut = 0. This yields two
values gκ

n and gκ
t of f κ

n and f κ
t , respectively:

gκ
n = Wκκ

tt aκ
n − Wκκ

nt aκ
t

Wκκ
nnWκκ

tt − (
Wκκ

nt

)2 , (A25)

gκ
t = Wκκ

nn aκ
n − Wκκ

tn aκ
t

Wκκ
tt Wκκ

nn − (
Wκκ

tn

)2 . (A26)

It can be shown that the denominator is positive. If gκ
n < 0, then

the solution is f κ
n = f κ

t = 0. This corresponds to a breaking
contact. Otherwise, i.e., if gκ

n � 0, we have f κ
n = gκ

n . With this
value of f κ

n , we can determine the solution of the Coulomb
problem. If gκ

t > μf κ
n , the solution is f κ

t = μf κ
n and in the

opposite case, i.e., if gκ
t < −μf κ

n , the solution is f κ
t = −μf κ

n

(sliding contact). Otherwise, i.e., when −μf κ
n < gκ

t < μf κ
n ,

the solution is f κ
t = gκ

t (rolling contact).
In a multicontact system, the terms bκ

n and bκ
t in the offsets

aκ
n and aκ

t depend on the forces and velocities at contacts
λ �= κ[ see Eqs. (A21)–(A24)]. Hence the solution for each
contact depends on all other contacts of the system and it must
be determined simultaneously for all contacts. An intuitive and
robust method to solve the system is to search the solution as
the limit of a sequence {f κ

n (k),f κ
t (k),uκ

n(k),uκ
t (k)} with κ ∈

[1,Nc]. Let us assume that the transient set of contact forces
{f κ

n (k),f κ
t (k)} at the iteration step k is given. From this set, the

offsets {aκ
n (k),aκ

t (k)} for all contacts can be calculated through
relations (A21) and (A22). The local problem can then be
solved for each contact κ with these values of the offsets,
yielding an updated set of contact forces {f κ

n (k + 1),f κ
t (k +

1)}. This correction step is equivalent to the solution of the
following local problem:

Wκκ
nn f κ

n (k + 1) − {
aκ

n (k) −Wκκ
nt f κ

t (k + 1)
} S←→ f κ

n (k + 1),

Wκκ
tt f κ

t (k + 1) − {
aκ

t (k) −Wκκ
nt f κ

n (k + 1)
} C←→ f κ

t (k + 1).

Note that this force update procedure does not require
the contact velocities {uκ

n(k + 1),uκ
t (k + 1)} to be calculated

as the offsets depend only on the contact forces. The set
{f κ

n (k),f κ
t (k)} evolves with k by successive corrections and

converges to a solution satisfying the transfer equations and
contact laws at all potential contacts of the system. The
iteration can be stopped when the set {f κ

n (k),f κ
t (k)} is stable

with regard to the force update procedure within a prescribed
precision criterion εf :

|f κ (k + 1) − f κ (k)|
f κ (k + 1)

< εf ∀ κ. (A27)

Finally, from the converged contact forces, the particle
velocities { �Ui} can be computed by means of the equations
of dynamics (A8).

The iterative procedure depicted above provides a robust
method that proves efficient in the context of granular
dynamics. The information is treated locally and no large
matrices are manipulated during iterations. The number Ni

of necessary iterations to converge is strongly dependent on
the precision εf but not on δt . The number of iterations is
substantially reduced when the iteration is initialized with a
globally correct guess of the forces. This is the case when the
forces at each time step are initialized with the forces computed
in the preceding step.

The uniqueness of the solution in a multicontact system
with rigid particles is not guaranteed at each step of evolution.
We have 3Np equations of dynamics and 2Nc contact relations.
The unknowns of the problem are 3Np particle velocities
and 2Nc contact forces. The indeterminacy arises from the
fact that the 2Nc contact relations are inequations. Thus the
extent of indeterminacy of the solution reflects all possible
combinations of contact forces accommodating those contact
relations. The degree of indeterminacy may be high, but it
does not imply significant force variability since the solutions
are strongly restrained by the contact laws. In practice, the
issue is more to find a mechanically admissible solution
(verifying the contact laws and equations of dynamics) than
indeterminacy. In other words, the variability of the solution is
often below the precision controlled by εf when the forces are
computed at each time step from the forces at the preceding
step.

6. Time-stepping scheme

In the CD method, the global problem of the determination
of forces and velocities, as described above, is associated with
a time-stepping scheme. This scheme is based on the fact
that the first condition of Signorini’s relations in Eq. (A2) is
the only condition referring to space coordinates. Both the
equations of dynamics and contact laws are formulated at the
velocity level and the first condition of Signorini is accounted
for by considering only the effective contacts where δn = 0.
Hence the contact network is defined explicitly from particle
positions and it will no longer evolve during the time interval
δt . However, the treatment of forces and velocities is fully
implicit and the right-limit velocities { �Ui+,ωi+} should be
used to increment particle positions.

These remarks devise the following time-stepping scheme.
Let t and t + δt be the considered time interval. The
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configuration {�ri(t)} and particle velocities { �Ui(t),ωi(t)} are
given at time t . The latter play the role of left-limit velocities
{ �Ui−,ωi−}. The contact network {κ,�nκ,�tκ} is set up from the
configuration at time t or from an intermediate configuration
{�ri

m} defined by

�ri
m ≡ �ri(t) + δt

2
�Ui(t). (A28)

When this configuration is used for contact detection, other
space-dependent quantities such as the inverse mass pa-
rameters Wκκ

k1k2
and external forces �Ui

ext should consistently
be defined for the same configuration and at the same
time t + δt/2. Then the forces and velocities are iteratively
determined for the contact network and the right-limit particle
velocities { �Ui+,ωi+} are calculated. The latter correspond to
the velocities at the end of the time step t + δt :

�Ui(t + δt) = �Ui+, (A29)

ωi(t + δt) = ωi+. (A30)

Finally, the positions are updated by integrating the updated
velocities

�ri(t + δt) = �ri
m + δt

2
�Ui(t + δt), (A31)

θ i(t + δt) = θ i
m + δt

2
ωi(t + δt). (A32)

This scheme is unconditionally stable due to its inherent
implicit time integration. Hence no damping parameters at
any level are needed. For this reason, the time step δt can be
large. The real limit imposed on the time step is cumulative
roundoff errors in particle positions since the latter are updated
from the integration of the velocities. Although the excessive
overlaps have no dynamic effect in the CD method, they
falsify the geometry and thus the evolution of the system.
A sufficiently high precision or a large enough number of
iterations is required to avoid such errors. The time step is
not a precision parameter but a coarse-graining parameter
for nonsmooth dynamics. It should be reduced if the impulse
dynamics at small time scales is of interest.
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