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Linear response at criticality
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We study a set of cooperatively interacting units at criticality, and we prove with analytical and numerical
arguments that they generate the same renewal non-Poisson intermittency as that produced by blinking quantum
dots, thereby giving a stronger support to the results of earlier investigation. By analyzing how this out-of-
equilibrium system responds to harmonic perturbations, we find that the response can be described only using
a new form of linear response theory that accounts for aging and the nonergodic behavior of the underlying
process. We connect the undamped response of the system at criticality to the decaying response predicted by
the recently established nonergodic fluctuation-dissipation theorem for dichotomous processes using information
about the second moment of the fluctuations. We demonstrate that over a wide range of perturbation frequencies
the response of the cooperative system is greatest when at criticality.
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I. INTRODUCTION

The physics of blinking quantum dots (BQDs) [1-4] has
generated a big interest but it is still a not yet fully understood
phenomenon [2]. Analysis of the luminescence fluctuations led
to the discovery [5,6] that these fluctuations are non-Poisson
renewal processes. In the special case where the time distance
T between two consecutive transitions from one to the other
state is given by an inverse power law,

1
lﬁ(f)cxr—u, (1)

with p < 2, the process is a form of weak chaos [7]
characterized by ergodicity breakdown, thereby requiring a
generalization of some of the fundamental theoretical tools
of statistical physics, the Khinchin theorem [8] and the
fluctuation-dissipation theorem (FDT) [9,10].

We note that the FDT, or, equivalently, the linear response
(LR) of a system to an external perturbation is one of the
major problems of modern physics [11]. Although the LR
problem is fully solved in the case of physical systems at
thermodynamical equilibrium, it is still the object of debate and
controversies when applied to nonergodic physical systems.
The perennial out-of-equilibrium condition of BQD fluores-
cence, in a striking conflict with the equilibrium condition
hypothesized by the pioneer approach to LR [11], has led
some authors to declare the death of LR [12]. More recently,
the authors of Ref. [13] have shown that the irretrievable
nonequilibrium nature of these processes generates a new form
of LR.

It has to be pointed out that this problem is very difficult
to solve because in addition to the nonergodic nature of
these processes, the origin itself of this anomalous form
of intermittence is not yet fully understood. The authors of
Ref. [14] adopted the decision making (DM) model of Ref. [15]
to explain the origin of BQD fluorescence intermittence, and
although this interpretation is not shared by the advocates of
the Auger effect [16] that seems to be much more widely
accepted, we base this paper on the cooperative model
of Ref. [15].
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This choice is dictated by two main reasons. First, as we
shall see, the adoption of this cooperative model generates a
Markovian Liouville-like equation of motion for the noner-
godic fluctuation, bypassing the problems met by the authors
of Refs. [12,13]. In fact, the theoretical work of these authors
rests only on the experimental information of the statistical
properties of the “dark” and “light” states, which yields a
fractional Fokker-Planck equation (FFP), a non-Markovian
equation of motion, whose response to perturbation can only
be expressed with an ambiguous Liouville-like equation and
as such remains an open problem [17]. The adoption of the
assumption that nonergodic intermittence is generated by the
cooperative action of a very large number of units at criticality
generates a nonlinear Langevin equation, whose positive and
negative fluctuations around the vanishing mean value may
be be interpreted as “light” and “dark™ states, respectively.
Focusing only on the nonergodic statistics of these “light” and
“dark” states would lead us to the same FFP as that adopted
by the researchers claiming either the LR death [12] or its
extension [13] to the nonergodic condition. However, we shall
address the issue of the response to perturbation directly on
the global field, with no ambiguity whatsoever.

According to the nonergodic FDT [10], the response of the
intermittent variable 7(¢) to the harmonic perturbation F(¢) =
€ cos(wt) is given by

(n(1)) < R(t) cos(wr + ¢), 2

where R(t) denotes the rate of crucial events, i.e., changes
in state from “light” to “dark™ or vice versa, whose decay in
time is generated by the out-of-equilibrium preparation of the
system at ¢+ = 0. Note that when p < 2,

1

It is remarkable that in the long-time limit a complex system
does not respond to harmonic perturbation, whereas it is proven
to respond to stimuli with the same complexity [13].

There is a further good reason to use the cooperative model
of Ref. [15] along with the assumption that the nonergodic
nature of intermittency is a manifestation of criticality. This
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is the conviction that criticality, with its long-range corre-
lation [18], may be the key condition for the origin of the
intelligent behavior of cooperative systems, from a flock of
birds [19,20] to the human brain [21,22]. Thus, the linear
response of a cooperative system at criticality, discussed in
this paper, affords at the same time an interesting contribution
to understanding how these complex systems may respond to
external stimuli.

This paper is organized as follows. In Sec. II we introduce
the DM model, approximating analytically its dynamic behav-
ior in the all-to-all case. In Sec. III we use our approximation to
study the intermittent properties of the fluctuations at criticality
and find similarities to the intermittent behavior of BQDs.
In Sec. IVA we adopt a nonstationary approach to LR to
understand analytically how the out-of-equilibrium system
responds to external perturbation. Section IV B considers the
response of the system in the absence of fluctuations, with
the benefit of recovering a form of the nonergodic FDT.
Section V A is a numerical treatment of the response to
harmonic perturbation and gives valuable information about
the effect of criticality. In Sec. VB we connect the response
in the case of the nonergodic FDT for dichotomous processes
to the nonstationary LR for the nondichotomous fluctuations
at criticality.

II. DECISION MAKING MODEL AT CRITICALITY

The DM model of Ref. [15] generates the cooperative
dynamics of a set of network nodes, each of which is described
by the master equation

d g g gyt
S0 =—=2=p 0+ 2 =p 0, @)
d g gy gh)
o0 =—2=p 0+ E=p0, )
where
i NO _ NO
gy = goexp [K(ZN%} (6)
and
i NO _ NO
83 = goexp [K(IN#} (7

are the transition rates between the two possible states. The
symbol N denotes the number of nodes linked to the ith
node, with N f’) and Nz(') being those in the first and second
state, respectively. Of course, N = N\ + N”'. The control
parameter K is a measure of the cooperation strength between
nodes, and g is the transition rate of a node in the absence of
cooperation.

The index i runs from 1 to N, where N is the total number
of nodes of the complex network under study, implying that
we have to run N pairs of equations of the kind of Egs. (4) and
(5). The adoption of a fully connected network, or all-to-all
condition, allows us to simplify the problem for analytical
treatment. In fact, in that case, all the N pairs of equations are
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identical to

d () (3]
iD= =222y + 2 py), @)
d () )
Zp0 =20+ 2220, O
with
N,— N
g12 = goexp [K¥:| (10)
and
N, — N
821 = goexp [K%} (11)

Since it must be that p;(¢) + p»(¢) = 1, it is convenient to
reduce the pair of Eqgs. (8) and (9) through a single equation
for the probability difference,

() = pi1(t) — p2(2), (12)
which, after simple algebra, is shown to read
%l’[ _ (&2 ;812) _ (g ;812)1_['
It is important to stress that the equality
N — N,
N

holds true only in the limiting case N = oco. In the more
practical case where N < 0o, we have to adopt

N1 — N

N
where f() is arandom fluctuation, with intensity proportional
to 1/+/N, that is incurred by representing the mean field of the
network as a probability difference. As a consequence it can be

made arbitrarily small by increasing the number of interacting
units. Plugging Eq. (15) into Eq. (13) we obtain

(13)

= (14)

=1+ f(2), (15)

%I‘I = go sinh[K(IT + f)] — goITcosh[K(IT+ f)].  (16)

In the limiting case N — oo, f = 0 and Eq. (16) generates a
phase transition with the critical value

K.=1. (17)

Considering N large but finite and making an expansion of
Eq. (16) to the lowest order nonvanishing contributions of IT
and f, we obtain

d 80 3
— I =-="T11 18
7 3 +80f (13)

at the critical point K. For notation convenience, we let [T = x
and write this nonlinear Langevin equation in the form

A ey E(t) (19)
- ’
where
y = % 20)
and
E(t) = g, f(1). (21)
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Away from the critical point, the expansion of Eq. (16) gives
adominant linear friction term —y x, with y ~ go| K — 1], that
is independent of N, and we recover an ordinary Langevin
equation. A marked signal of criticality, then, is the vanishing
of this linear term, leading to strongly nonlinear behavior
that creates a subtle connection between the fluctuations and
dissipation, providing a good example of an important effect
noticed earlier by the authors of Ref. [23].

III. RENEWAL NON-POISSON FLUCTUATIONS

We notice that the stochastic Eq. (19) can be interpreted as
describing the overdamped motion of a particle in the quartic
potential

Ux) = }‘y)c4 (22)

under the influence of a random noise. The Fokker-Planck
equation for the probability distribution function (pdf) p(x,?)
corresponding to Eq. (19) reads

= (r e+ 0 o, @3)
PP =\t ox2 )P0
yielding the equilibrium distribution
1 Ux)
() = —exp | — , 24
Deq(X) ZCXP|: D j| (24)

where

+00
Z = / exp |:— Ugc)j|dx. 25)

With simple dimensional arguments we find for the equi-
librium second moment the relation

(x%) g o <2>2. (26)
y

This means that the fluctuation x spends most of its time in the
interval

—L<x<L, 27

D\ i
L= <—> . (28)
Y

This expression allows us to establish with precision how to get
rid of the border condition dictated by the probabilistic nature
of IT. Since —1 < IT < 1, and the fluctuation x is nothing but
IT expressed with a different notation suggesting it to be the
coordinate of a Brownian particle, it is evident that we have to
set the number of units N large enough to satisfy the constraint

D<Ky. (29)

We assume that system’s preparation is done at time ¢ = 0
with the initial condition x = 0. We set K =1, thereby
activating the stochastic Eq. (19). Note that the time scale
of the process under study is determined as follows. We set
the minimal time step for the solution of the master equation,
At = 1. This restricts us to selecting the number of events per
unit of time go < 1. At short times the influence of the friction

where
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term —y x* can be neglected and the second moment increases
linearly in time,

(x*(1)) = 2Dr. (30)

To estimate the time T, it takes for the system to reach
equilibrium, we assume

(2)eq
D

Teqg ~ , €1y

which through Eq. (26) leads to

1\?
T,y <y_D> . (32)
We are in a position to address an issue closely related to
the theoretical discussion made some years ago by Margolin
and Barkai [24] to extend the Kramers approach to diffusion
reactions [25] to the case where the reactant well is separated
from the product well by a shallow barrier. In this case, the
waiting time distribution density in the two states, thought of
as the “dark” and the “light” states of the BQD intermittency,
becomes the inverse power law ¥ (¢) of Eq. (1) with u = 1.5.
We note that when K > 1, the DM model has two equilib-
rium states corresponding to the bottoms of a double-well
potential [26]. At criticality the barrier disappears, resulting
in the potential of Eq. (22), generating the expected [24]
inverse power law waiting time distribution over an extended
time range. The same property was found in Ref. [15]. Here we
recover this result analytically with the additional explanation
of why the inverse power law is truncated at large times.
In fact, the population at x = 0 depends on the recrossings,
leading us to

PO.1) o Y (D), (33)

n=1

where 1,,(¢) is the probability density for the nth return to the
origin at time . In the transient regime t < T,

1 x?2
p@Jﬁzwzﬁﬁ”m<_ﬂi>’ G4

making p(0,t) oc 1/t%3. By Laplace transforming Eq. (33) it
is possible to establish a connection between w of Eq. (1) and
the diffusion scaling index 0.5 of Eq. (34), yielding u = 1.5.
It is straightforward to prove with the same Laplace transform
technique that for ¢ > T,,,

Y (1) = Rexp(—Ri), (35)

with
R ! 36
X E, ( )

where Z is given by Eq. (25). The numerical results of Fig. 1
confirm, in the survival probability for the return to the origin,
a power law behavior that is truncated by an exponential
at long times. The important conclusion of the theoretical
and numerical analyses is that to make the inverse power
law infinitely extended it is necessary to send the number
of interacting units N to infinity with the system at criticality.

Let us now discuss to what an extent the cooperative
model we are using to explain intermittent fluorescence fits
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FIG. 1. Aged survival probability for the return to the origin of the
fluctuation x at the critical point K = 1 with go = 0.01, N = 1000,
and ages 7, = 0 (A), , = 100 (B), and ¢, = 1000 (C). In the absence
of aging there is a power law with the index u — 1 = 0.5 that is
truncated by an exponential at 7,, = 2.6 x 10*. In the presence of
aging the survival probabilty decay becomes slower. The gray curves
(lying directly on top of the black curves in (B) and (C)) represent
the aging experiment performed on shuffled waiting time sequences.
Their correspondence with the unshuffled black curves confirms that
the aging is renewal.

the conditions of ergodicity breakdown that have triggered the
recent advances in the field of statistical physics [7-10]. To
shed light into this issue, let us imagine that the laminar region
between two consecutive origin recrossings is assigned either
the value 1 or —1, according to a coin tossing prescription.
This is equivalent to replacing the fluctuation x(¢) with a
dichotomous fluctuation ¢(¢). This dichotomous fluctuation
has a nonstationary correlation function that depends on
the time difference , —t; > 0 as well as the initial time
t1, thereby yielding (£ ()¢ (1)) = ®.(7,1,), with T =1, — 1
and f, =1t. As a typical behavior of complex systems,
increasing 7, (system’s age) has the effect of making the
correlation of the dichotomous fluctuation decay slower. To
prove this important property, let us adopt the prescription of
Ref. [6], resting on the study of the waiting time sequence
71,73, ..., Where 1; =t — #;_;. As an improved version of
this procedure we compare the original sequence to another
sequence obtained from the original by randomly shuffling
the waiting times. For ¢, = 0 the two sequences have the
same waiting time distribution density, and consequently the
same survival probability. The aged survival probability, or
equivalently the aged correlation function ®.(z,;) of the
dichotomous fluctuation, is determined by means of a moving
time window of size r, > 0, with the left end located on
the time of occurrence of an event. We evaluate the time
distance between the right end of the window and the next
event. The corresponding aged waiting time distribution is
normalized and its survival probability is W(z,z,). If the two
sequences, the original and the shuffled one, generate the same
W(z,t,), we conclude that the process is renewal. Figure 1
illustrates the results of this numerical analysis. We see that it
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is a non-Poisson renewal process. In fact, a Poisson process
yields no aging, while the process studied in Fig. 1 generates a
doublet of two coinciding aged survival probability functions.
Furthermore, given that the survival probability fort, = Oisa
perfect inverse power law, we conclude that in the time region
t < T,, the dichotomous fluctuation ¢ (¢) shares the properties
of BQD intermittence that have created in the last few years an
intensive search for proper statistical treatments of nonergodic
renewal processes.

Note that this numerical experiment corresponds to evalu-
ating the nonstationary correlation function of ¢(¢), which is a
dichotomous process different from

n(t) = sgn[x(r)]. (37

The waiting time distribution density of ¢ (¢), ¥ *(¢), is related
to the waiting time distribution density of 7(¢) by

Y =D 27" (D). (38)
n=1

By Laplace transforming Eq. (38) using the notation g(s) =
Jo exp(—st)g(t)dt, we obtain

N

v(s)

I (s) = ———. 39
TO=3750 (39)
Let us assign to ¥ (¢) the analytical form
n—1
YD) =(un— 1)m~ (40)
Using
P(s)~1—TQ2—p)(sT) (41)

for s — 0, we obtain that y*(¢) has the same form as (¢)
with

T* =2i1T, (42)

implying that in the ideal case of T,, = 0o, the correlation
function (n(#;)n(t;)) shares the same aging properties as
®,(t1,17). In conclusion, this dichotomous fluctuation is
compatible with the extension of LR to nonergodic intermittent
processes and is expected to obey the new FDT of Refs. [9,10].

IV. FOKKER-PLANCK APPROACH TO LINEAR
RESPONSE: ANALYTICAL TREATMENT

A. Nonstationary linear response

Traditional LR theory cannot be used to fully describe the
dynamics of the DM model in the presence of an external
force for the two following reasons. First, the preparation of
the system with all the dichotomous units entering into either
of the two possible states simultaneously at time ¢ = O creates
an out-of-equilibrium condition in that the rate of events must
decrease as time evolves. Succeeding the preparation, the
system relaxes toward equilibrium for an extended amount
of time that is dependent on the number of interacting units.
This reason alone is not enough to warrant the necessity of an
extension of traditional LR since for any value of cooperation
that is not the critical value, the system is described by a
linear Langevin equation with a response that has an exact
analytical solution valid for any magnitude of the external
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field. The second important reason then is that at the critical
point K = 1, the system is described by a nonlinear Langevin
equation, which is a source of aging in the response function
during the relaxation process.

To study the influence of an external stimulus acting on the
dichotomous units whose dependence in time is described by
the function Fe(t) we can replace Eq. (15) with

Ny — N,
N

Making the same Taylor series expansion that led us to Eq. (19)
we now obtain

=T+ f(t) + Fext(2). (43)

%x = —yx3 4+ E0)+ F@), (44)

where F(t) = goFex(?). The time evolution of the correspond-
ing pdf is given by

0
ap(x,t) = [Lo + L1(D)]p(x,1), (45)
where
0 4 92
Ly = yax + DW (46)
and
0
Li=—-F(@t)—. A7
0x

To evaluate (x()) in the presence of perturbation we adopt
the conventional first-order expansion of Eq. (45), p(x,t) =

poe,1) + prxn) [11], yielding
t
) = f AL (O polx ). (48)
0

We assume that the system is prepared at t = 0 with py(x) =
8(x). Note that during the transient regime po(x,t) coincides
with p(x,t) of Eq. (34). This distribution is symmetric about
the origin and remains so also in the final equilibrium
condition. Therefore the nonvanishing contribution to (x(#))
depends only on p;(x,t),

(x(®)) = Tr{p1(x.0)x}, (49)

resulting in

(x(1)) = / dt' Tr{xe™ =" L") po(x,1')}. (50)
0

Through an integration by parts this can be written as

{(x(1)) =/ dt'Tr{(e® ) L1(t") po(x,1")}, (S1)
0
where

+ 5 0 a2
A=Ly=—-yx’—+D 52)

ox dx2

is the operator adjoint to the operator of Eq. (46).

Typically py = po(x) is an equilibrium pdf independent of
time. This results in a stationary response function and the
time convolution LR structure. But since the system we are
considering is characterized by an extended out-of-equilibrium
transient regime and we are interested in the LR at a generic
time, we must take into account the time dependence of py =
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po(x,t)whent < T,,. Operating on the transient regime pdf of
Eq. (34) with Eq. (47) and substituting the result into Eq. (51)
leads to

X
2Dt

After evaluating the trace we are left with

Po(x,tO}F (). (53)

(x(1)) = f dt'Tr{(e™"x)
0

(x(1)) =/ dr' @, (t,t")F(1'), (54)
0

where response function is the correlation function of the x
fluctuation,

(x(t —1)x(1"))

(2@
We see that in general the correlation function may be
nonstationary, and when the system is at equilibrium the
correlation function becomes stationary and we recover the
traditional LR.

A weakness in the derivation of the extension of LR to
Eq. (54) is that the nonstationary correlation function of
Eq. (55) is derived only in the specific case using the purely
diffusional pdf of Eq. (34). There exists an intermediate
asymptotic time regime in which friction plays an important
role before the system reaches equilibrium. The analytical
expression of the pdf po(x,?) in this time regime is unknown,
but we expect it will generate a response fitting closely to
Eq. (54), and rest on the numerical work of Sec. V to develop
this heuristic assumption further.

It is useful to note that for the linear Langevin equation,

D, (1,1 = (55

d
Tx = —yx £, (56)

the correlation function is given by
D, (t,1) = e 70 (57)

and is stationary everywhere despite the presence of the
transient regime caused by the system’s preparation at x(0) =
0. In the presence of an external force Eq. (56) becomes

%x = —yx +E0) + F(0). (58)

The exact solution of Eq. (58) yields

(x(0)) = / dt'e " E(@r) (59)
0

for the average response, which is in agreement with Eq. (54).
In the case of free diffusion the correlation function is given
by

O, (1,1") =1, (60)

with the average response

(x()) =/ di'F(t"). (61)
0

This result can also be recovered by sending the friction
coefficient y to zero in the linear Langevin equation. Again the
LR structure of Eq. (54) holds despite the out-of-equilibrium
nature of the diffusion process.
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B. Linear response ignoring the action of fluctuations

Under the incorrect but insightful approximation that the
relaxation is due solely to the action of friction, as is true in
the case of linear friction —yx,

1

x(t) = exp(Aot)x =~ , (62)

P
(= +27t)°
namely, the solution of dx/dt = —yx>, we obtain the LR
structure

(x(1)) = fo dr' x(t,1"F(t"), (63)

where

2y

—dx.  (64)
[1+2yx2(t —1)]?

x(t,t) = /0 px,t")

Which is the meaning of the linear response function of
Eq. (64)? We notice that in the transient regime this response
function reads

 exp (—57) 2y

sdx. (65
VATDY [142yx2(t —1)]> e

x(t,t) =

Furthermore, when 4D¢’ is large enough, but not so large as
to reach equilibrium, we have

N y
X~ DG =) (66)
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this expression being nothing but the derivative with respect
to ¢’ of the survival probability of age ¢’ [27]

W(t,t) = / dt" RNV —1t"), (67)
0

with R(#) oc 1/t>7#, and p = 1.5 [28].

In conclusion, by ignoring the vital role played by the
fluctuations in the relaxation of x(¢#) in the presence of
nonlinear friction, we have shown that in an asymptotic time
region where the final equilibrium is not yet perceived the
linear response function y (¢,#') is given by

n_d :

x(t,t) = dt,ll!(t,t ), (68)
where W(z,t') is the survival probability of age ¢'. In the case
where T,, = oo, this prescription holds true forever, implying
aperennial departure from the ordinary prescription [11] based
on the Onsager remarks that equilibrium corresponds to an
infinitely aged condition where the infinitely aged survival
probability becomes identical to the stationary equilibrium
correlation function. Notice that Eq. (68) is a form of LR that
has been used for the first time to prove that complex systems
exchange information through the new principle of complexity
management [13].

According to this principle the system does not respond
to a stimulus that is not complex. The simplest case of a
noncomplex stimulus is the harmonic signal

Fexi(t) = € cos(wt). (69)

Adopting the exact solution for the response function of
Eq. (65) yields

Ko[ epyt=mr
0[ 16Dy (t—t")t ]) € cos(wt"), 70

(x(1)) = /" dt,exp[IGVD(ll—t’)t’](Kl[16Dy(1t_[/)t/] -
0

3222y (Dt (t — )2

whereas the same approximation as that yielding Eq. (66)
generates the analytical expression

(x(1)) = € /%ﬁ(%) cos <§I) 1)

implying the slow decay of (x(#)) in the long-time limit
and consequently the insensitivity of the system to harmonic
stimuli in the same time limit.

V. JOINT ACTION OF NONLINEARITY AND
FLUCTUATIONS IN THE RESPONSE TO HARMONIC
PERTURBATION: NUMERICAL TREATMENT

A. Nondichotomous response

In this section we show thanks to numerical calculations that
the results of Sec. IV B, although insightful for understanding
the recent extension of LR to nonergodic dichotomous pro-
cesses, do not have any practical relevance when considering
the response of the nondichotomous fluctuating variable x of
the DM model with finite N. In fact, increasing N has the
twofold effect of extending the transient regime virtually to

infinity while making the fluctuation intensity of x vanish.
This is a property inherent in the recursion to the origin where,
as shown in Fig. 1, the power law regime is valid in the region
t < T,, and exponentially truncated at t ~ T,.

Due to the out-of-equilibrium preparation, the correlation
function of the system at criticality is nonstationary in the
transient regime and can be expressed in terms of its age as
®,(t,t,)witht =t — ¢’ and ¢, = t'. The aging behavior of the
nonstationary correlation function is illustrated in Fig. 2. In the
limiting case #, > T,, an exponentially decaying stationary
equilibrium correlation function ®,,(z) is recovered and a
nonaging behavior with it.

According to the demonstration at the end of Sec. IV A
the correlation function of the linear Langevin equation is
stationary everywhere regardless of the system’s preparation.
To see aging in the correlation function then, it is necessary
to be at criticality where the fluctuations are nonlinear.
Comparing to the aged survival probability shown in Fig. 1,
which is equivalent to correlation function ®,, it becomes
evident that the correlation function of the nondichotomous
x fluctuation ages differently than that of the dichotomous ¢
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FIG. 2. Aged correlation function for the fluctuation x at the
critical point K = 1 with go = 0.01, N = 1000, and ages t, = 10?
(dot), t, = 10° (dash), ¢, = 10* (dash dot), and t, = 10° (solid).
For ages t, < T,, the correlation function is nonstationary (note:
T, =2.6 x 10*). For ages t, > T,, the aged correlation function
becomes stationary and equivalent to the exponentially decaying
equilibrium correlation function.

fluctuation. The survival probability decays more slowly with
increasing age while the correlation function @, decays more
rapidly, although both tend toward an exponential behavior in
the equilibrium time limit. Therefore we expect the response
of the x fluctuation to depart from the predictions of the
ordinary LR for stationary processes, as well as the nonergodic
FDT which applies to dichotomous fluctuations and relies on
the derivative of the aged survival probability as its response
function.

By replacing Eq. (19) with the approximate linearized
expression

Cv=Txtew, (72)

where
T'=y(x%)e, (73)

it is possible to generate a relaxation process compatible
with T,, of Eq. (32). As far as the response at criticality to
an external perturbation is concerned, we solve numerically
the perturbed nonlinear Langevin equation, Eq. (44). To
see the effect of criticality we make a comparison to the
numerical solutions of perturbed linear Langevin equations
that correspond to K subcritical and supercritical. Figure 3
shows the results.

We note that in the diffusional transient regime, which at
criticality is much more extended in time than that generated
by the linear Langevin equation, Eq. (44) becomes

d
X =50+ FQ, (74)

yielding the average response

{(x(®)) =/ dt'F(t"), (75)
0
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FIG. 3. Average response (x(¢)) to a harmonic perturbation of
intensity € = 0.01 and frequency @ = 7.5 x 10~* in the subcritical
K = 0.8 (A), critical K = 1.0 (B), and supercritical K = 1.2 (C)
cases when N = 1000 and gy = 0.01 (note: I' = 3.8 x 1075). In
each case the numerical solutions (gray) lie directly on top of the
theoretical solutions (black) which are exact solutions to the perturbed
linear Langevin equation. The response at criticality fits well with the
linearization approximation for w > I'.

which, in the case of the harmonic perturbation of Eq. (69)
becomes

x(@) = 2% sin(wr). (76)
w

It is convenient to make a connection with the predictions
of stochastic resonance [29].
To this purpose we replace Eq. (44) with

%x:—Fx+§(f)+F(t)- (77

This approximation corresponds to assuming the network at
criticality responds to perturbation according to the stationary
correlation function

®,4(t) = exp(—T'1). (78)

With this approximation it becomes legitimate to ignore the
influence of the fluctuation &(¢) on the mean value of x(¢), and
it is straightforward to prove that in the time region > 1/
the response to the harmonic perturbation of Eq. (69) is given
by

8o€

(x(0) = ﬁ cos(wt — @), (79)

where
tang = = 80
an¢ = T (80)

To establish a condition compatible with the numerical results
of Fig. 3, we have to make the assumption that w >> I", causing
¢ = %, making Eq. (79) identical to Eq. (76).

To make a comparison with the subcritical and supercritical
cases we use the perturbed linear Langevin equation, Eq. (58),
with a friction coefficient y, where y ~ go|K — 1| and
therefore y > I'. The form of response is left unchanged
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FIG. 4. Average response (x(t)) (gray) to a harmonic perturbation
of intensity € = 8.0 x 107> and frequency w = 2.5 x 10~ when
K =1, N=1000, and go=0.01 (note: I" =3.8 x 107°). The
theoretical curve (black) is the exact solution to the perturbed linear
Langevin equation. A disagreement between the two curves shows
that for sufficiently low perturbation frequencies, w < T', the response
at criticality departs from the theoretical prediction given by the
linearization approximation.

from Eq. (79), but due to a greatly reduced friction coefficient,
at criticality the amplitude of the response is magnified as
shown in Fig. 3, as long as the perturbation frequency w is
on the order of y or less. It should be noted that an even
more significant increase in the amplitude of the response
at criticality relative to subcritical and supercritical can be
achieved by increasing N. This is due to the fact that when
increasing N the effective friction coefficient at criticality, I
1/ V'N, decreases, whereas for K # 1 the friction coefficient
y remains unchanged.

An interesting frequency limit to study is @ — 0. In this
low frequency limit, the linearization approximation, which
was shown in Fig. 3 to be very accurate when w >> I', departs
from the results of numerical simulation, and we begin to see
the nonlinear effects in action looking at Fig. 4. The amplitude
of the response is even greater than that predicted by stochastic
resonance in Eq. (79). This result cannot be explained by the
conventional LR with the equilibrium correlation function as
the response function, providing numerical support for the
extension of LR made in Eq. (54) involving the nonstationary
correlation function.

B. Bridging the nondichotomous response and
the dichotomous response

For any choice of perturbation frequency the amplitude
of the response of the nondichotomous fluctuation x does
not decay in time. This seems to be in conflict with the
nonergodic FDT for dichotomous fluctuations where the
amplitude is known to decay in time as 1/¢>7*. However,
(x2(t)) is free to grow in time in the transient regime while
the dichotomous fluctuation n(z) = sgn[x(¢)] fits the property
(n?) = 1 regardless of whether the system is at equilibrium or
not. To be able to make a fair comparison to the predictions of
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the nonergodic FDT, we define

x(1)

(2@ ®h

N () =
generating a fluctuation that mimics the dichotomous property
(nf) = 1. Simply taking into account that during the transient
regime (x*(¢)) = 2Dt, we immediately obtain

() = o Lepsin@n. (82
<x2(t)) 1/2 0.5 ’
in accordance with the experimental observation [10] that the
response of a nonergodic system to harmonic perturbation
generates damped oscillations.

The second moment can be used as a bridge between
the nonergodic FDT for dichotomous processes and the
nonstationary LR used to describe the perturbation of the
nondichotomous x fluctuation. Figure 5 illustrates the con-
nection between the response of the dichotomous fluctuation
(n(t)) = (sgn(x(t))), which gives information only on the
duration of the “light” and “dark” states, and (n,(¢)), which
contains the full information of the nondichotomous process,
but is divided by the square root of its time-dependent second
moment. There is a good agreement outside of the short time
limit, with the oscillations obtaining a constant amplitude after
the system has reached equilibrium. The similarity between the
decays of the two forms of response is difficult to observe since
it requires an extended intermediate time window between
the preparation of the system and T, but potentially can be
verified by taking the limit N — oo so that the system virtually
remains out of equilibrium forever.

T
0.2 -
© 0.1- i
(%]
[
(@]
o
S o.o-NiAUN
x |
(0] J
(@]
o
5 0.1 -
>
<
-0.2 1 -
T
0.0 1.0x10° 2.0x10°
Time

FIG. 5. Decaying average response (n,(¢)) (black) to a harmonic
perturbation of intensity € = 2.0 x 10~* and frequency w = 7.5 x
10~* when K =1, N = 1000, and gy = 0.01 (note: T, =2.6 x
10%). The damped oscillations in the transient regime are generated
when dividing the undamped response (x(#)) by the square root of the
unperturbed second moment, which is growing in time. The average
response of the dichotomous fluctuation (n(¢)) = (sgn(x(z))) (gray),
where x(#) is perturbed by the harmonic signal, is shown to decay in
the same way as (1, (#)) when disregarding the short time limitz — 0.
In the asymptotic time limit # > T,, the system reaches equilibrium
with a constant second moment, resulting in undamped oscillations.
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LINEAR RESPONSE AT CRITICALITY

The theoretical discussion of Sec. IVB has the merit of
making clear that the nonstationary nature of the dichotomous
fluctuation 7n(¢) is intimately related to the free diffusion
process ensuing the system’s preparation done at ¢t = 0. The
rigorous treatment [9,10] would lead to

(n()) =/0 dt'x(t,tF(t'), (83)
where
tt)=— d w(t,t' 84)
X\, )_ E ) ) (

and W(¢,t") is the aged survival probability [27]. Note that
the nonergodic version of the FDT, using a phenomenological
rather than dynamical argument, yields

n_d )

x(t,t) = dt’\y(t’t ), (85)
which, in the nonergodic case departs from Eq. (84). Al-
though the principle of complexity management [30] is
compatible with both the dynamical theory of Eq. (84) and
the phenomenological theory of Eq. (85), the liquid crystal
experiment of Ref. [10] shows that the response to harmonic
perturbation fits the dynamical prescription and conflicts with
the phenomenological prediction that with the perturbation
of Eq. (69) would produce oscillation around a nonvanishing
value slowly decaying to zero. In this sense the heuristic
arguments leading to Eq. (82) seem to be compatible with
the dynamical theory.

VI. CONCLUDING REMARKS

The cooperative interaction between the units of the DM
model in the case of all-to-all coupling generates a fluctuation
x(t) whose dynamics can be approximated by a Langevin
equation that becomes nonlinear at the critical point. The
out-of-equilibrium behavior ensuing the system’s preparation
generates at criticality a power law in the waiting time distribu-
tion for the return to the origin that extends over several orders
of magnitude before being truncated by an exponential. If we
were to consider fluctuations above the mean value as “light”
states and fluctuations below as “dark” states we would recover
a dichotomous fluctuation 7n(z) = sgn(x(¢)) with a renewal
non-Poisson intermittent behavior that resembles BQD.

The power index w = 1.5 is a well known property of
the regression to the origin of a freely diffusing particle or
one-dimensional random walker. However, in the case of the
cooperation-induced fluctuation of the DM model used in
this paper, this seems to be a coincidence rather than the
true physical origin of this anomalous power index. The
overdamped regression to equilibrium within the potential
U(x) of Eq. (22) generates the survival probability

1 1 0.5
veo-(Nimrm) - @
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which corresponds to p = 1.5. Thus at criticality both free
diffusion as well as dissipation involve the same power index.
We note that the cooperative model adopted in Ref. [20]
generates, as an effect of cooperation, u ~ 1.3. BQD have
been known to display power law behavior with an index
ranging anywhere from 1.2 to 2, and it is expected that
through modifications to the representation of cooperation it
is possible to develop a model analogous to the DM model
which reproduces this characteristic.

A striking result of this paper is that the FFP seems to
emerge from a theoretical picture affording information only
on the sequence of “light” and “dark” states, namely, from a
dichotomous representation ignoring the complex details of
the x fluctuation. If these apparently complex details are taken
into consideration then the nonergodic effects at criticality
can be explained using a nonstationary LR as described by
Eq. (54). The two forms of response are closely connected
through the second moment of the x fluctuation. By dividing
the undamped response of the x fluctuation by the square root
of its second moment we can recover the decaying response
behavior of the dichotomous fluctuation, allowing us to heuris-
tically pass between the nonstationary LR and the nonergodic
FDT.

By focusing our attention on the complete behavior of the
nondichotomous fluctuation we have bypassed the ambiguity
associated with external forces acting in the FFP picture. The
main task then lies in determining the aging behavior of the
correlation function and its effect on the response. Aging
occurs only when the fluctuations are nonlinear, and this
makes it difficult or impossible to write an exact analytical
expression for the aged correlation function ®,(¢,t"). With
numerical simulations we have shown that the stationary
equilibrium correlation function can be used to accurately
predict the response to harmonic perturbation in the high
frequency limit, but in the low frequency limit the non-
linearity, and aging with it, play an important role in the
response.

At criticality the duration of the out-of-equilibrium regime
becomes dependent on the number of interacting units and is
significantly extended in time. This is due to an N-dependent
effective friction coefficient that has a magnitude much
less than in the subcritical or supercritical cases. A direct
consequence is that the response to a harmonic perturbation
can be considerably greater in amplitude when a cooperative
network is at criticality, a beneficial property for the transfer
of information.
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