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Phase-locking-level statistics of coupled random fiber lasers
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We measure the statistics of phase locking levels of coupled fiber lasers with fluctuating cavity lengths. We
found that the measured distribution of the phase locking level of such coupled lasers can be described by the
generalized extreme value distribution. For large number of lasers the distribution of the phase locking level can
be approximated by a Gumbel distribution. We present a simple model, based on the spectral response of coupled
lasers, and the calculated results are in good agreement with the experimental results.
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I. INTRODUCTION

Phase locking of coupled oscillators has been studied over
the years in many different contexts, including chemical oscil-
lators with mutual coherence [1], arrays of Josephson junctions
that are frequency locked [2], and arrays of coupled lasers
that are phase locked [3–5]. In coupled oscillators, complete
phase locking occurs when all the oscillators have at least
one common frequency. When there is no common frequency,
the oscillators group in several clusters, where each cluster
oscillates at a different frequency [6]. Recently, we measured
power fluctuations in coupled fiber lasers and showed the
distribution fits the distribution of the maximum eigenvalue of
a random Wishart matrix ensemble. However, this was done
close to threshold, where the lasing was not efficient [7].

Here, we study the statistical aspects of coupled oscillators
that do not share a common frequency. Specifically, we
study the phase locking level of an array of fiber lasers
without a common frequency operating far above threshold
and show that the distribution of the phase locking level can be
described by the generalized extreme value (GEV) distribution
function. The GEV distribution of a random variable depends
on three parameters: the mean μ, the standard deviation
σ , and a single shape parameter ξ [8], which control the
asymmetry of the distribution due to the boundaries of the
phase locking level. For ξ = 0, the GEV distribution reduces
to the Gumbel distribution, which is the extreme value statistics
of a Gaussian process [9,10]. Although each fiber laser
supports 100 000 eigenfrequencies, the probability of finding
a common frequency for all the lasers in the array is very small
(<10−5) [11–13], so the lasers group in several clusters, each
with its own frequency [14,15]. Due to thermal and acoustic
fluctuations, the length of each fiber laser and its corresponding
eigenfrequencies changes rapidly and randomly.

The phase locking level for different frequencies is random
and bounded by 1 [11]. Since phase locking minimizes loss in
the array, mode competition favors frequencies that maximize
the phase locking level of the array at each moment [16].
Therefore, the lasing frequency is the one with the highest
phase locking levels, so the measured phase locking level
is the maximum phase locking level out of all the possible
frequencies. Hence, its distribution can be described by
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the GEV distribution function. The three parameters of the
GEV distribution function can be directly estimated from the
data using the maximum-likelihood method. Thus, a simple
method to check that our reasoning is correct is to plot
the GEV distribution with the maximum-likelihood-estimated
parameters and compare it to the measured distribution. If,
indeed, the fluctuations obey extreme value statistics, there
should be good agreement without any fitting parameters.

II. EXPERIMENTAL CONFIGURATION AND RESULTS

The experimental configuration that we used for measuring
the phase locking level of an array of fiber lasers is presented
in Fig. 1 and is described in detail in [15]. Briefly, each fiber
laser was comprised of a ytterbium doped fiber, a rear high
reflection (>99%) fiber Bragg grating (FBG), and a front low
reflecting (5%) FBG, both with a 10 nm bandwidth. Each
laser was pumped through the rear FBG with a 975 nm diode
laser at 200 mW, and after the front FBG we attached a
collimator to obtain a 0.4 mm diameter beam. The collimators
of all 25 lasers were accurately aligned in a 5 × 5 square
array of parallel beams with parallelism better than 0.1 mrad.
The separation between adjacent beams was 3.6 mm. A
representative near-field intensity distribution, measured close
to the output coupler when all 25 fiber lasers are operating, is
presented in the inset in Fig. 1. We determined the length of
each fiber laser by measuring the longitudinal mode beating
frequency at the output by means of a fast photodetector
connected to a rf spectrum analyzer. We found that the
distribution of the lasers lengths is Gaussian, with a mean
value of 3 m and a width of 0.5 m. The intensity of each fiber
laser was about 100 mW, which is much above threshold but
still low enough that nonlinear effects were negligible [17].
We also measured the intensity fluctuations of a single laser
and found them to be less than 2%.

The coupling between the fiber lasers was achieved by
means of four coupling mirrors denoted as r1, r2, r3, and r4

with reflectivity of 40% for r1 and r3 and reflectivity of 100%
for r2 and r4. All the coupling mirrors were located close to
the focal plane of a focusing lens with 500 mm focal length,
forming a self-imaging cavity with the array. Since there was
only enough space for one pair of mirrors within the Rayleigh
range of the focusing lens, we inserted a 50% beam splitter
to obtain another focal plane where we placed another pair of
mirrors. By controlling the orientations of the coupling mirrors
we could realize a variety of connections for the fiber lasers in
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FIG. 1. (Color online) Experimental configuration for phase
locking an array of fiber lasers and for determining their phase locking
level. OC, output coupler; PR, partial reflector; BS, 50% beam splitter.
The inset shows the near field intensity distribution when all 25 fiber
lasers are operating.

the array, and in our experiments we concentrated on the one-
and two-dimensional nearest neighbor connectivities [15].
Finally, we directed about 10% of the light with a partially
reflecting mirror (PR) towards an output coupler (OC) of 99%
reflectivity. The output coupler was placed at a distance of 2f

from the collimator array and reflected part of the light from
each laser back onto itself with the same delay as the light that
is coupled from the other lasers [18].

The lengths of the fibers are changing due to temperature
fluctuations and acoustic noises, so the phase locking level
continuously changes. We measured the phase locking level
as a function of time for different number of lasers in the array.
This was done by continuously detecting the far-field intensity
distribution of the interference pattern of all the light from the
array with a CCD camera, determining the maxima and minima
intensities, and calculating the average fringe visibility along
the x and y directions. The fringe visibility provides a direct
measure for the phase locking level that ranges from 0 to 1. The
correlation time of the phase locking level was measured to be
shorter than 100 ms, so over a 10 h period we acquired about
370 000 uncorrelated measurements of the fringe visibility.
Representative experimental results of the fringe visibility as
a function of time for a 10 s interval are presented in Fig. 2.
The insets show two typical far-field intensity distributions,
one with low fringe visibility and the other with high fringe
visibility. We note that when coupling only two fiber lasers, the
fluctuations of the phase locking level were less than 1% [19].

To check for possible correlations in the experimental
results we fitted the phase-locking-level distribution with
the Bramwell-Holdsworth-Pinton (BHP) distribution using a
single fitting parameter c [20]. In the two-dimensional XY

model at low temperatures, c ≈ π/2, indicating a highly cor-
related process, while for uncorrelated systems the parameter
c has an integer value. In particular, when c = 1, the BHP
distribution reduces to the Gumbel extreme value distribution.
The functional form of the BHP distribution is given by

P (x) = ec( x−μ

σ
−e

x−μ
σ ), (1)

where μ denotes the mean value, σ is the standard deviation
of the distribution, and c is the measure for correlations [20].
After fitting the measured probability distribution of the phase
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FIG. 2. (Color online) Typical experimental results of the phase
locking level as a function of time over a 10 s interval. The phase
locking level was determined from the far-field intensity distribution
of the output. The insets show typical far field intensity distributions:
(a) low fringe visibility, where the phase locking level is low, and
(b) high fringe visibility, where the phase locking level is high.

locking level of 25 coupled fiber lasers to the BHP distribution,
we obtained c = 1.03, indicating a regular extreme value
distribution of a noncorrelated Gaussian process, namely, the
Gumbel distribution.

Fitting the Gumbel distribution to the experimental results
for 12, 16, and 20 fiber lasers was not as good as for the
25 fiber lasers. The distribution of the experimental results
for a low number of lasers is clamped because the phase
locking level is bound between 0 and 1 and μ and σ (mean
and standard deviation, respectively) are high. Therefore, we
resort to the GEV distribution, which contains one extra
parameter, the shape parameter ξ [8]. When ξ = 0, the GEV
distribution reduces to the Gumbel distribution, but as ξ < 0,
the GEV distribution is clamped and approaches the Weibull
distribution. The GEV distribution is given by

P (x) = 1

σ

[
1 + ξ

(
x − μ

σ

)](−1/ξ )−1

e−[1+ξ ( x−μ

σ
)]−1/ξ

, (2)

where μ, σ , and ξ were calculated from the experimental
data by maximum-likelihood parameter estimation. We expect
that as the number of fiber lasers in the array decreases, the
probability of having a common frequency between the lasers
increases, so the mean value and standard deviation of the
phase locking level will also increase, and the ξ parameter
should vary from zero to a negative value.

The measured phase-locking-level distribution for laser
arrays with 12, 16, 20, and 25 fiber lasers and the corresponding
GEV distribution with the calculated parameters and their 95%
confidence intervals are presented in Fig. 3. As is evident, there
is a very good agreement between the experimental results
and the GEV distribution extending over three decades. As
the number of fiber lasers increases, the values of μ and σ

decrease, and the ξ parameter approaches zero. For 25 fiber
lasers the ξ parameter reaches −0.01, close to the expected
zero value where the GEV distribution reduces to the Gumbel
distribution.
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FIG. 3. (Color online) Measured phase-locking-level distribution
for four different arrays of fiber lasers: (a) 12 fiber lasers, (b) 16
fiber lasers, (c) 20 fiber lasers, and (d) 25 fiber lasers. The curves
are associated GEV distributions without any fitting parameters. The
parameters were estimated from the measured phase locking level
using the maximum likelihood. The 95% confidence intervals are
also shown.

By changing the orientation of the coupling mirrors we
also realized a one-dimensional connectivity of the 25 fiber
lasers and measured the phase locking level as a function of
time. Again, we found good agreement between the measured
phase-locking-level distribution and the Gumbel distribution.
The experimental results of the one-dimensional connectivity
and the two-dimensional connectivity, together with calculated
Gumbel distributions, are presented in Fig. 4. An array
with one-dimensional connectivity is far more sensitive to
misalignments, which reduce the coupling and the phase
locking levels [6,15]; indeed, the average phase locking level
was even lower than the 25 lasers with the two-dimensional
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FIG. 4. (Color online) Measured phase-locking-level distribution
for arrays of 25 fiber lasers with two different connectivities. (a)
One-dimensional connectivity and (b) two-dimensional connectivity.
The curves are associated Gumbel distributions.

connectivity. This explains why the phase-locking level for
the one-dimensional connectivity is also distributed to a good
approximation like a Gumbel distribution.

The connection between the phase locking level for large
number of lasers and the Gumbel distribution can be qual-
itatively explained as follows. The number of lasers in each
phase-locked cluster changes rapidly and randomly but always
while maximizing the phase locking level in the array. This
maximum phase locking level occurs at a specific frequency
out of all the possible frequencies within the FBG bandwidth
where the lasers losses are minimal. By considering the
spectral response of the coupled lasers it was shown that the
distribution of the phase locking levels for all the available
frequencies is an uncorrelated Gaussian distribution [11,19].
Since the distributions of maxima of uncorrelated Gaussian
processes are described by the Gumbel distribution function
[9,10], the probability distribution of the phase locking level
should be the same. As long as the mean phase locking level
is far from unity, the influence of the boundaries is negligible.

III. THEORETICAL MODEL AND CALCULATIONS

Next, we present a simple quantitative model that relates the
phase locking level to an extreme value in the spectral response
of the array of coupled lasers. We start by assuming no gain and
determining the spectral response of each laser cavity when
we replace all components that couple light into the laser
cavity with an effective front mirror. The reflectivity of this
effective mirror depends on the frequency [19]. For example,
the effective reflectivity of the ith laser in a one-dimensional
array of N coupled lasers when considering the coupling to its
two nearest neighbors is

Ri = 1

1 − r(1 − 2κ) + κ2

1−R
(u)
i−1e

2ıkli−1
+ κ2

1−R
(d)
i+1e

2ıkli+1

, (3)

where κ denotes the coupling to the two neighbors, r is the
reflectivity of the output coupler, li is the length of the ith laser,
k is the propagation vector, and R

(u)
i and R

(d)
i are the effective

reflectivities from all the lasers above and below the ith laser,
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FIG. 5. (Color online) Calculated probability distribution of the
size of the main cluster together with a Gaussian fit for clusters larger
than the mean size. The inset shows representative calculated results
of the main cluster size as a function of the laser frequency.

041142-3



FRIDMAN, PUGATCH, NIXON, FRIESEM, AND DAVIDSON PHYSICAL REVIEW E 86, 041142 (2012)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

10
−2

10
−1

10
0

Calculated phase locking level

P
ro

ba
bi

li
ty

 d
en

si
ty

FIG. 6. (Color online) Calculated probability distribution of the
phase locking level from 50 000 different arrays of fiber lasers and a
fit to a Gumbel distribution.

given by the recursive relations

R
(u)
i = 1

1 − r(1 − 2κ) + κ2

1−R
(u)
i−1e

2ıkli−1

, (4)

R
(d)
i = 1

1 − r(1 − 2κ) + κ2

1−R
(d)
i+1e

2ıkli+1

, (5)

and R
(u)
1 = R

(d)
N = 0. Now, introducing the laser gain together

with a mode competition results in amplifications only at
frequencies with high effective reflectivity.

We solve Eqs. (3)–(5) for an array of 25 fiber lasers and
obtain the effective reflectivity of each laser as a function of
frequency. Since the effective reflectivity takes into account the
coupling between the lasers, the effective reflectivity is higher
and the losses are lower when more lasers have a common
frequency, which means that more lasers are phase locked.
By counting the number of lasers with effective reflectivity
above a certain threshold as a function of frequency, we obtain
the number of lasers in the main cluster, which provides a
direct measure for the phase locking level of the array as a
function of frequency [12,13,15]. Representative results for
one realization of the random fiber laser lengths are shown
in Fig. 5, which shows the probability distribution of the size
of the main cluster together with a Gaussian fit for the tail of
the distribution. The inset shows the size of the main cluster
as a function of the frequency. As is evident, the calculated
probability distribution above the mean size of the main cluster

is Gaussian. Then we select the maximum size of the main
cluster within the bandwidth of the FBG (10 nm) and determine
the resulting phase locking level as the ratio of the size of the
main cluster over the size of the array.

We repeat these calculations for 50 000 different arrays,
each with a different random fiber length. The fiber length of
the ith laser in each array was chosen to be li + �li , where li is
the measured length of the ith fiber and �li is a random length
taken from a normal distribution with zero mean and 10 μm
width. The results are presented in Fig. 6, which shows the
probability distribution of the calculated phase locking level
together with a fit to a Gumbel distribution. As is evident,
there is a very good agreement between the distribution of
the calculated results and the Gumbel distribution, indicating
that the effective reflectivity is suitable for modeling arrays of
coupled lasers and that the underlying Gaussian process is the
number of lasers in the main cluster.

IV. CONCLUSIONS

To conclude, we measured the distribution of phase locking
levels for arrays of coupled fiber lasers with fluctuating cavity
lengths and showed that they are well described by generalized
extreme value distributions without any fitting parameters.
Fitting BHP distribution to the experimental results yields
no correlation in the data. We found that for both one- and
two-dimensional arrays of 25 lasers, the statistics of the phase
locking level can be described by the Gumbel distribution
and that as the number of lasers decreases it approaches the
Weibull distribution. We presented a simple theoretical model
to explain this observation. The model demonstrates that the
level of phase locking is determined mostly by the size of
the largest phase-locked cluster. We calculated the distribution
of the number of lasers in such a cluster and found it to be
asymptotically Gaussian. Our results can be used to calculate
the probability of obtaining a specific phase locking level for a
given number of coupled lasers. Finally, by operating the fiber
lasers close to threshold we also observed strong fluctuations
in the total power of the array which are related to the statistics
of extreme eigenvalue of random Wishart matrices [7].

ACKNOWLEDGMENTS

This research was supported by the Israeli Ministry of
Science and Technology and by the USA-Israel Binational
Science Foundation.

[1] I. Z. Kiss, Y. Zhai, and J. L. Hudson, Science 296, 1676 (2002).
[2] K. Wiesenfeld, Phys. B 222, 315 (1996).
[3] I. Kanter, N. Gross, E. Klein, E. Kopelowitz, P. Yoskovits,

L. Khaykovich, W. Kinzel, and M. Rosenbluh, Phys. Rev. Lett.
98, 154101 (2007).

[4] G. D. VanWiggeren and R. Roy, Science 279, 1198 (1998).
[5] G. V. Osipov, B. Hu, C. Zhou, M. V. Ivanchenko, and J. Kurths,

Phys. Rev. Lett. 91, 024101 (2003).
[6] S. H. Strogatz, Nature (London) 410, 268 (2001).
[7] M. Fridman, R. Pugatch, M. Nixon, A. A. Friesem, and

N. Davidson, Phys. Rev. E 85, 020101(R) (2012).

[8] A. F. Jenkinson, Q. J. R. Meteorol. Soc. 81, 158 (1955).
[9] E. J. Gumbel, Statistics of Extremes (Dover, Mineola, NY, 2004).

[10] N. Johnson, S. Kotz, and N. Balakrishnan, Continuous Univari-
ate Distributions, 2nd ed. (Wiley, New York, 1995), Vol. 2.

[11] E. J. Bochove and S. A. Shakir, IEEE J. Sel. Top. Quantum Elec.
15, 320 (2009).

[12] A. Shirakawa, K. Matsuo, and K. Ueda, Proc. SPIE 5662, 482
(2004).

[13] J. E. Rothenberg, Proc. SPIE 6873, 687315 (2008).
[14] W. Chang, T. Wu, H. G. Winful, and A. Galvanauskas, Opt.

Express 18, 9634 (2010).

041142-4

http://dx.doi.org/10.1126/science.1070757
http://dx.doi.org/10.1016/0921-4526(96)85057-5
http://dx.doi.org/10.1103/PhysRevLett.98.154101
http://dx.doi.org/10.1103/PhysRevLett.98.154101
http://dx.doi.org/10.1126/science.279.5354.1198
http://dx.doi.org/10.1103/PhysRevLett.91.024101
http://dx.doi.org/10.1038/35065725
http://dx.doi.org/10.1103/PhysRevE.85.020101
http://dx.doi.org/10.1002/qj.49708134804
http://dx.doi.org/10.1109/JSTQE.2008.2011999
http://dx.doi.org/10.1109/JSTQE.2008.2011999
http://dx.doi.org/10.1117/12.596366
http://dx.doi.org/10.1117/12.596366
http://dx.doi.org/10.1117/12.774569
http://dx.doi.org/10.1364/OE.18.009634
http://dx.doi.org/10.1364/OE.18.009634


PHASE-LOCKING-LEVEL STATISTICS OF COUPLED . . . PHYSICAL REVIEW E 86, 041142 (2012)

[15] M. Fridman, M. Nixon, N. Davidson, and A. A. Friesem, Opt.
Lett. 35, 1434 (2010).

[16] V. Eckhouse, M. Fridman, N. Davidson, and
A. A. Friesem, Phys. Rev. Lett. 100, 024102
(2008).

[17] C. J. Corcoran and F. Durville, IEEE J. Quantum Electron. 15,
294 (2009).

[18] M. Nixon, M. Fridman, E. Ronen, A. A. Friesem, and
N. Davidson, Opt. Lett. 34, 1864 (2009).

[19] M. Fridman, M. Nixon, E. Ronen, A. A. Friesem, and
N. Davidson, Opt. Lett. 35, 526 (2010).

[20] S. T. Bramwell, K. Christensen, J. Y. Fortin, P. C. W. Holdsworth,
H. J. Jensen, S. Lise, J. M. Lopez, M. Nicodemi, J. F. Pinton,
and M. Sellitto, Phys. Rev. Lett. 84, 3744 (2000).

041142-5

http://dx.doi.org/10.1364/OL.35.001434
http://dx.doi.org/10.1364/OL.35.001434
http://dx.doi.org/10.1103/PhysRevLett.100.024102
http://dx.doi.org/10.1103/PhysRevLett.100.024102
http://dx.doi.org/10.1109/JSTQE.2008.2011494
http://dx.doi.org/10.1109/JSTQE.2008.2011494
http://dx.doi.org/10.1364/OL.34.001864
http://dx.doi.org/10.1364/OL.35.000526
http://dx.doi.org/10.1103/PhysRevLett.84.3744



