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Poissonian steady states: From stationary densities to stationary intensities
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Markov dynamics are the most elemental and omnipresent form of stochastic dynamics in the sciences, with
applications ranging from physics to chemistry, from biology to evolution, and from economics to finance.
Markov dynamics can be either stationary or nonstationary. Stationary Markov dynamics represent statistical
steady states and are quantified by stationary densities. In this paper, we generalize the notion of steady state to
the case of general Markov dynamics. Considering an ensemble of independent motions governed by common
Markov dynamics, we establish that the entire ensemble attains Poissonian steady states which are quantified
by stationary Poissonian intensities and which hold valid also in the case of nonstationary Markov dynamics.
The methodology is applied to a host of Markov dynamics, including Brownian motion, birth-death processes,
random walks, geometric random walks, renewal processes, growth-collapse dynamics, decay-surge dynamics,
Ito diffusions, and Langevin dynamics.
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I. INTRODUCTION

Markov dynamics are the stochastic counterpart of ordinary
differential equations. Motions governed by Markov dynamics
are the most commonly applied class of stochastic processes in
the sciences [1–3], and their applications range from physics
and chemistry to biology and economics [4–6]. Motions
governed by Markov dynamics—henceforth termed Markov
motions—can be either stationary or nonstationary. The notion
of stationarity is of the utmost importance, as it represents
the statistical steady state of stochastic systems and processes
whose evolution is Markov.

The steady states of a given Markov motion are quantified
by its stationary densities. The computation of the stationary
densities of a given Markov motion is carried out via the
analysis of the steady-state solutions of the master equation
of the motion’s Markov dynamics [4,7]. If the master equation
has positive-valued and normalized steady-state solutions,
then these solutions are the motion’s stationary densities. On
the other hand, if the master equation has positive-valued
and steady-state solutions which are not normalizable, then
the motion is nonstationary. A quintessential example of the
non-normalizable scenario is Brownian motion, the archetypal
model of diffusion [4,8].

The goal of this paper is to extend the notion of steady state
to the case of Markov motions whose master equations have
positive-valued and non-normalizable steady-state solutions.
Describing the steady states in the context of nonstationary
Markov motions is oxymoronic. To attain our oxymoronic
goal, we shall consider not just one Markov motion but
countably many motions. Specifically, we shall consider a
countable ensemble of independent Markov motions with
common Markov dynamics and address the stochastic evo-
lution of the entire ensemble.

In this paper we establish that the positions of ensembles
of independent Markov motions (with common Markov
dynamics) attain steady states even in the case of nonstationary
Markov dynamics. Considering given Markov dynamics we
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will show that, if the corresponding master equation has
positive-valued steady-state solutions, then:

(i) these solutions characterize the steady states of an
ensemble of independent motions governed by the Markov
dynamics;

(ii) if the solutions are normalizable, then each motion
attains a steady state, and the ensemble’s steady states are
equivalent to the steady states of its composing motions;
(iii) if the solutions are not normalizable, then each motion

is nonstationary and does not attain a steady state but the entire
ensemble does attain steady states.

The steady states of ensembles of independent Markov
motions are based on the notion of Poisson processes, the
common statistical methodology to model the scattering of
points in general domains [9–11]. Poisson processes have
a wide spectrum of applications ranging from insurance
and finance [12] to queueing systems [13], from anomalous
diffusion [14] to statistical diversity [15], and from fractal
processes [16] to central limit theorems [17] and power
laws [18]. The distribution of a random variable, taking
values in a given state space, is characterized by a probability
density function defined on the state space; the density is a
positive-valued and normalized function. On the other hand,
the distribution of a Poisson process, scattered in a given
state space, is characterized by a Poissonian intensity function
defined on the state space; the intensity is a positive-valued
function which can be either integrable or nonintegrable.

We will show that the positive-valued steady-state solutions
of a master equation—of given Markov dynamics—represent
Poissonian intensity functions. In turn, these intensity func-
tions characterize Poisson processes which are the steady states
of an ensemble of independent Markov motions governed by
the common Markov dynamics. Integrable intensity functions
represent the case where each motion attains a steady state,
whereas nonintegrable intensity functions represent the case
where each motion is nonstationary but the entire ensemble
attains a steady state. Thus, shifting from steady states
to “Poissonian steady states” and from stationary densities
to “stationary Poissonian intensities” enables us to attain
the oxymoronic goal of describing the steady states of
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nonstationary Markov motions. For a concise exposition of
part of the results presented in this paper, addressed to a general
scientific audience, the readers are referred to Ref. [19].

This paper is organized as follows. We begin with a
brief review of Markov dynamics (Sec. II), followed by an
illustrative example of Brownian motion (Sec. III). Introduc-
ing, within the context of Markov dynamics, an underlying
Poissonian setting (Sec. IV), we establish the notions of
Poissonian steady states and stationary intensities (Sec. V).
The stationary intensities are then rederived via the notion
of Poissonian fluxes (Sec. VI), and the notion of Poissonian
correlations is further established (Sec. VII). The application
of Poissonian steady states is exemplified in the context of
(Sec. VIII) birth-death processes, random walks, geometric
random walks, renewal processes, growth-collapse dynamics,
decay-surge dynamics, Ito diffusions, and Langevin dynamics.

A note about notation. Throughout the paper, IID is the
acronym for “independent and identically distributed,” E[·]
denotes the operation of mathematical expectation, and 〈·,·〉
denotes the operation of scalar product in the d-dimensional
Euclidean space Rd .

II. MARKOV DYNAMICS

Consider a general Markov motion X taking place in
a general state space S, and let X(t) denote the motion’s
position at time t (t � 0). The motion’s Markov dynamics
are analytically characterized by the infinitesimal generator

[Gφ](s) = lim
δ→0

1

δ
E[φ(X(t + δ)) − φ(X(t))|X(t) = s] (1)

(s ∈ S), where φ(s) is an arbitrary real-valued test function
defined on the state space [20]. The infinitesimal generator G
is a linear operator and, in a sense, is the “derivative” of the
Markov motion X.

The adjoint operator G∗ of the infinitesimal generator G is
given implicitly by∫

S
[Gφ](s)ψ(s)m(ds) =

∫
S

φ(s)[G∗ψ](s)m(ds), (2)

where φ(s) and ψ(s) are real-valued test functions defined
on the state space and where m(·) is the space’s “natural
measure.”1 The adjoint operator G∗ is a linear operator
which governs the dynamics of the distributions of the
motion’s positions. Indeed, let P (t,s) (t � 0,s ∈ S) denote
the probability density function [with respect to the measure
m(·)] of the random variable X(t), the motion’s position at
time t . The motion’s master equation then is given by

∂

∂t
P = G∗P , (3)

where the initial condition P (0,s) is an arbitrary probability
density function defined on the state space [4,7,8].

The Markov motion X may or may not attain steady states.
In case a steady state is attained, then it is characterized by

1For example, (i) if the state space is a countable set, then m(·) is
the counting measure and

∫
S ϕ(s)m (ds) = ∑

s∈S ϕ(s); (ii) if the state
space is an Euclidean domain, then m(·) is the Lebesgue measure and∫
S ϕ(s)m (ds) = ∫

S ϕ(s)ds.

a stationary density, a probability density function PSD(s)
[with respect to the measure m(·)] defined on the state
space which satisfies the following stationarity condition: If
P (0,s) = PSD(s), then P (t,s) = PSD(s) for all t > 0. The
stationary densities PSD(s) are the “fixed points” of the
underlying Markov dynamics. Substituting P (t,s) = PSD(s)
into Eq. (3) implies that G∗PSD = 0. Thus, in order to compute
the stationary densities PSD(s) of the Markov motion X, one
needs to solve the equation

G∗ψ = 0. (4)

If the “steady-state equation” (4) has solutions
which are positive-valued [ψ(s) > 0] and normalized
[
∫
S ψ(s)m(ds) = 1], then these solutions are the stationary

densities PSD(s) of the Markov motion X. On the other hand,
if the “steady-state equation” (4) has no solutions which are
positive-valued and normalized, then the Markov motion X is
nonstationary and does not attain steady states.

III. BROWNIAN MOTION

As an illustrative example of Markov dynamics, consider
Brownian motion, the archetypal model of diffusion in the
physical sciences [4,8]. Brownian motion was discovered by
Brown in 1827 [21], was first applied by Bachelier to model
stock prices in 1900 [22], was established by Einstein and
Smoluchowski as the prototypical model of diffusion in 1905
[23,24], and was mathematically constructed by Wiener in
1923 [25].

In the case of d-dimensional Brownian motion, the state
space is the d-dimensional Euclidean space S = Rd , and
the “natural measure” is the Lebesgue measure m(ds) = ds.
Brownian motion X is a random process whose increments
are stationary, independent, and Gauss distributed [26]. The
compact characterization of Brownian motion is via the
Fourier transforms of its increments,

E[exp (i〈θ,X(t + δ) − X(t)〉)] = exp
(− 1

2 〈θ,θ〉δ) (5)

(θ ∈ Rd being the Fourier variable; t,δ > 0).
The infinitesimal generator of Brownian motion is the

Laplacian

[Gφ](s) = 1
2 [�φ](s), (6)

and the adjoint operator of Brownian motion is also the
Laplacian

[G∗ψ](s) = 1
2 [�ψ](s) (7)

[8,26]. In turn, the corresponding “steady-state equation” (4)
is given by

[�ψ](s) = 0. (8)

In the one-dimensional case (S = R) the solutions of
the “steady-state equation” (8) are affine functions: ψ(s) =
as + b (a,b ∈ R). Consequently, the positive-valued solutions
of the “steady-state equation” (8) are constant functions.
In the general d-dimensional case (S = Rd ), the solutions
of the “steady-state equation” (8) are more complex, but
the positive-valued solutions are—as in the one-dimensional
case—constant functions:

ψ(s) = c, (9)
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where c is a positive constant. Since constant functions
are not integrable over the d-dimensional Euclidean space,
the “steady-state equation” (8) has no solutions which are
positive-valued and normalized. Consequently, we obtain that
Brownian motion is nonstationary and does not attain a steady
state.

IV. POISSONIAN SETTING

As noted in the Introduction, Poisson processes are the
common statistical methodology to model the scattering of
points in general domains [9–11]. In this section, we present a
Poissonian setting in the context of general Markov dynamics.

A random ensemble of points E scattered across the state
space S is a Poisson process with intensity λ(s) (s ∈ S) if the
following pair of conditions hold [9]: (i) the number of points
residing in the domain D ⊂ S is a Poisson-distributed random
variable with mean

∫
D

λ(s)m(ds) [m(·) being the space’s
“natural measure”] and (ii) the numbers of points residing
in disjoint domains are independent random variables. Recall
that an integer-valued random variable N is Poisson distributed
with mean μ if

Prob(N = n) = exp(−μ)
μn

n!
(10)

(n = 0,1,2, . . .).
The Poissonian intensity λ(s) is positive valued [λ(s) >

0], and it may be either integrable or nonintegrable [I =∫
S λ(s)m(ds) � ∞]. If the Poissonian intensity λ(s) is inte-

grable (I < ∞), then the ensemble E is finite, and it admits
the stochastic representation

E = {S1, . . . ,SN } , (11)

where (i) {Sn}∞n=1 is a sequence of IID random variables, taking
values in the state space S, whose distribution is governed by
the probability density function λ(s)/I (s ∈ S)2 and (ii) N is
a Poisson-distributed random variable with mean I , which is
independent of the sequence {Sn}∞n=1. Namely, to construct the
ensemble E , we, first, simulate the Poisson-distributed random
variable N ; thereafter, given the realization of N , we simulate
N IID random variables S1, . . . ,SN . On the other hand, if the
Poissonian intensity λ(s) is not integrable (I = ∞), then the
ensemble E is infinite and cannot be represented as a sequence
of IID random variables.

The best known example of Poisson processes is the
“standard” Poisson process. In this example, the state space is
the positive half-line S = (0,∞), the “natural measure” is the
Lebesgue measure m(ds) = ds, and the Poissonian intensity
is constant: λ(s) = r , where r is a positive parameter. The
parameter r represents the rate at which the random points of
the “standard” Poisson process occur. Commonly, the standard
Poisson process is applied to model the occurrence of random
temporal events such as the arrivals of particles to a physical
system and the arrivals of customers to a queueing system
[13,16]. Note that in this example the Poissonian intensity
λ(s) is nonintegrable (I = ∞).

2This probability density is with respect to the underlying measure
m(·).

In effect, Poisson processes with constant intensities are
the generalization of uniform probability distributions. Indeed,
if E is a Poisson process with constant intensity, and the
state space S has a finite measure [m(S) < ∞], then the
stochastic representation of Eq. (11) holds, and the IID
random variables {Sn}∞n=1 are uniformly distributed over the
state space S. On the other hand, if the state space S
has an infinite measure [m(S) = ∞], then it supports no
uniform probability distribution, but it does support Poisson
processes with constant intensities, which represent a uniform
scattering of points across the state space. In other words,
Poisson processes with constant intensities manifest spatially
homogeneous scattering of points on general state spaces.

Consider now a countable ensemble of independent Markov
motions which take place in the state space S and whose
Markov dynamics are characterized by the infinitesimal
generator G. Labeling the Markov motions by the index n, let
Xn(t) denote the position of the nth motion at time t (t � 0),
and let the ensemble E(t) = {Xn(t)}n denote the motions’
positions at time t (t � 0). The “displacement theorem” of the
theory of Poisson processes asserts that, if the ensemble E(0) is
a Poisson process, then so is the ensemble E(t) (for all t > 0).
Namely, if the scattering of the motions’ initial positions is
Poissonian, then at any given time t > 0 the scattering of the
motions’ positions will also be Poissonian. More specifically,
the “displacement theorem” asserts the following [9]: If the
ensemble E(0) is a Poisson process with intensity 
(0,s)
(s ∈ S), then the ensemble E(t) is a Poisson process with
intensity


(t,s) =
∫
S


(0,x)Px(t,s)m(dx), (12)

where Px(t,s) (t � 0,s,x ∈ S) is the solution of Eq. (3) with
the “δ-function” initial condition P (0,s) = δ(s − x).

It is illuminating to examine Eq. (12) in the case of
Brownian motion. To keep things simple, we consider one-
dimensional Brownian motion. Starting from the initial posi-
tion X(0) = x, the position X(t) of Brownian motion at time
t is Gauss distributed with mean E[X(t)] = x and variance
Var[X(t)] = t . Consequently, the Markov kernel Px(t,s) of
Brownian motion is given by

Px(t,s) = 1√
2πt

exp

(
− (s − x)2

2t

)
(13)

(t � 0, −∞ < s,x < ∞). In Sec. III we have seen that
the positive-valued solutions of the “steady-state equation”
(8) are constant functions: ψ(s) = c (where c is a positive
constant). These constant functions are not integrable over the
real line and, hence, are not admissible probability density
functions. On the other hand, these constant functions are
admissible Poissonian intensities on the real line. Moreover, a
straightforward calculation implies that∫ ∞

−∞
ψ(x)Px(t,s)dx = ψ(s) (14)

(t � 0, −∞ < s < ∞). Combining together Eqs. (12) and
(14), we obtain that if we set off from the initial Poissonian
intensity 
(0,s) = ψ(s), then 
(t,s) = ψ(s) for all t > 0.
This observation implies that the nonintegrable solutions
ψ(s) = c of the “steady-state equation” (8) are “stationary

041140-3



IDDO ELIAZAR PHYSICAL REVIEW E 86, 041140 (2012)

intensities” of Brownian motion, which is a nonstationary
Markov motion. As noted above, the constant “stationary
intensities” ψ(s) = c represent Poisson processes which are
spatially homogeneous over the real line, they manifest a
uniform scattering of points across the real line, and they
generalize the notion of uniform probability distributions.

Thus, the notion of steady state—which is inapplicable in
the context of a single agent performing Brownian motion—is
well applicable in the context of infinitely many independent
agents performing Brownian motion. As we shall show in the
next section, the notion of “stationary intensities” obtained in
this section in the context of Brownian motion can be extended
to general Markov dynamics.

V. POISSONIAN STEADY STATES

The goal of this paper is to address the case in which
Eq. (4) has positive-valued [ψ(s) > 0] and nonintegrable
[
∫
S ψ(s)m(ds) = ∞] solutions, an example of this scenario

being Brownian motion. In the context of stationary densities,
this scenario implies that the Markov motion considered is
nonstationary and does not attain a steady state. In this section
we will establish that in the context of stationary intensities
this scenario implies that the Markov dynamics considered do
attain Poissonian steady states.

Consider a Poissonian setting in which (i) there is a
countable ensemble of independent Markov motions {Xn}n
which take place in the state space S and whose Markov
dynamics are characterized by the infinitesimal generator G,
(ii) the variable Xn(t) denotes the position of the nth motion at
time t (t � 0) and the ensemble E(t) = {Xn(t)}n denotes the
motions’ positions at time t (t � 0 ), and (iii) the scattering of
the motions’ initial positions is Poissonian and 
(t,s) denotes
the intensity of the Poisson process E(t) (t � 0,s ∈ S).

An analysis detailed in the appendix asserts that the master
equation governs the dynamics of the ensembles’ Poissonian
intensities,

∂

∂t

 = G∗
, (15)

where the initial condition 
(0,s) is an arbitrary Poissonian
intensity function defined on the state space. A stationary
intensity of the Markov dynamics is a Poissonian intensity

 SI(s), defined on the state space S, which satisfies the
following stationarity condition: If 
(0,s) = 
SI(s), then

(t,s) = 
SI(s) for all t > 0. The stationary intensities 
SI(s)
are the “Poissonian analogs” of the stationary densities PSD(s)
discussed above. Substituting 
(t,s) = 
SI(s) into Eq. (15)
implies that G∗
SI = 0. Thus, in order to compute the
stationary intensities 
SI(s) of the Markov dynamics one needs
to solve the equation

G∗ψ = 0. (16)

The positive-valued solutions of Eq. (16) are the stationary
intensities of the Markov dynamics characterized by the
infinitesimal generator G.

The “steady-state equations” (4) and (16) are identical.
Positive-valued [ψ(s) > 0] and normalized [

∫
S ψ(s)m(ds) =

1] solutions of these equations are the stationary densities
PSD(s) (s ∈ S) of the Markov dynamics, whereas positive-

valued [ψ(s) > 0] solutions of these equations are the station-
ary intensities 
SI(s) (s ∈ S) of the Markov dynamics. The
stationary densities of given Markov dynamics are, thus, a
subset of the stationary intensities of these dynamics.

In the case of a stationary density, a single agent performing
the Markov dynamics is considered, and the notion of steady
state regards the statistics of the single agent’s motion: In
steady state, the probability of observing the agent in the
domain D ⊂ S is given by

PSD(D) =
∫

D

PSD(s)m(ds). (17)

On the other hand, in the case of stationary intensities a
countable ensemble of independent agents performing the
Markov dynamics is considered, and the notion of steady state
regards the statistics of the entire ensemble of agents. In steady
state, the number of agents observed in the domain D ⊂ S is
a Poisson-distributed random variable with mean


SI(D) =
∫

D


SI(s)m(ds). (18)

In the scenario where the “steady-state equations” (4)
and (16) yield positive-valued and integrable solutions,
then each stationary density PSD(s) corresponds to a one-
dimensional set of stationary intensities 
SI(s) which coincide
up to a multiplicative factor: 
SI(s) = I (
SI)PSD(s), where
the multiplicative factor is given by the integral I (
SI) =∫
S 
SI(s)m(ds). Moreover, in this scenario the Poisson process
E(t) characterized by the stationary intensity 
SI(s) is finite,
and it admits the stochastic representation

E(t) = {X∗
1(t), . . . ,X∗

N (t)}, (19)

where (i) {X∗
n}∞n=1 is a sequence of IID stationary Markov

motions with stationary density PSD(s) and (ii) N is a
Poisson-distributed random variable with mean I (
SI), which
is independent of the sequence of the IID stationary Markov
motions.

On the other hand, in the scenario where the “steady-state
equations” (4) and (16) yield positive-valued and noninte-
grable solutions, the Markov dynamics considered have no
stationary densities but they do have stationary intensities

SI(s) (s ∈ S). In this scenario, the Poisson process E(t) is
infinite, and it cannot be represented as a sequence of IID
stationary Markov motions. An example of this scenario is
Brownian motion whose stationary intensities are constant:

SI(s) = c (s ∈ S; c > 0). Namely, the Poissonian steady
states of Brownian motion are spatially homogeneous Poisson
processes—the Poissonian generalization of uniform proba-
bility distributions.

In summary, we established that the notions of “Poisso-
nian steady state” and “stationary intensity” are Poissonian
generalizations of the standard Markov notions of “steady
state” and “stationary density.” These notions coincide in
the scenario where the “steady-state equations” (4) and (16)
yield positive-valued and integrable solutions. Indeed, in this
scenario, the notion of steady state applies both to single agents
and to ensembles of agents performing the Markov dynamics
considered. On the other hand, in the scenario where the
“steady-state equations” (4) and (16) yield positive-valued and
nonintegrable solutions, the former Poissonian notions are still
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admissible, whereas the latter “regular” Markov notions are no
longer admissible. In the latter scenario the notion of steady
state applies only to infinite ensembles of agents performing
the Markov dynamics considered.

VI. POISSONIAN FLUXES

In this section we re-establish the notion of stationary
intensities from a different perspective, that of Poissonian
fluxes. Throughout this section we consider the setting of
Sec. V and use the shorthand notation 
(s) = 
(0,s) (s ∈ S)
for the intensity of the Poisson process E(0) (the ensemble of
the motions’ positions at time 0). Also, we denote by ID(s) the
indicator function of the domain D ⊂ S [i.e., ID(s) = 1 for
s ∈ D and ID(s) = 0 for s /∈ D].

The number of motions that were present in the domain
A ⊂ S at time 0, and that are present in the domain B ⊂ S at
time t (t > 0), is given by

NA 
→B(t) =
∑

n

IA(Xn(0))IB(Xn(t)). (20)

The random variable NA 
→B(t) represents the flow of motions
from domain A (at time 0) to domain B (at time t). An analysis
detailed in the appendix asserts that the flow NA 
→B(t) is a
Poisson-distributed random variable with mean

E[NA 
→B(t)] =
∫

A

( ∫
B

Px(t,s)m(ds)

)

(x)m(dx), (21)

where Px(t,s) (t � 0,s,x ∈ S) is the solution of Eq. (3) with
the “δ-function” initial condition P (0,s) = δ(s − x).

We define the Poissonian flux from domain A to domain
B to be the derivative of the mean flow E[NA 
→B(t)] at time
t = 0. A computation detailed in the appendix asserts that the
Poissonian flux is given by

d

dt
E[NA 
→B(t)]|t=0 =

∫
S

IA(s)[GIB](s)
(s)m(ds).

(22)

Assume now that the entire ensemble of Markov motions
is in “statistical equilibrium.” Statistical equilibrium means
that if we partition the state space S into two parts, then
the Poissonian flux between the two parts should be equal.
Namely, for any given domain D, the Poissonian flux from D

to its complement D̄ should equal the Poissonian flux from D̄

back to D. Using Eq. (22), this equality of Poissonian fluxes
reads out as follows:∫

S
ID(s)[GID̄](s)
(s)m(ds)

=
∫
S

ID̄(s)[GID](s)
(s)m(ds). (23)

Noting that ID̄(s) = IS (s) − ID(s) and that [GIS ](s) = 0 (s ∈
S), Eq. (23) implies that

0 =
∫
S

[GID](s)
(s)m(ds) =
∫

D

[G∗
](s)m(ds) (24)

[in the transition from the middle part to the right-hand side
of Eq. (24) we applied Eq. (2)]. Since Eq. (24) holds for any
domain D ⊂ S we conclude that G∗
 = 0. On the other hand,
if G∗
 = 0 is satisfied, then reversing the arguments implies

that the aforementioned equality of fluxes holds for any domain
D (and its complement D̄).

In summary, the statistical equilibrium condition of “bal-
anced fluxes” was shown to be characterized by the equation
G∗ψ = 0, which is the very equation characterizing the
stationary intensities defined in Sec. V. Consequently, the class
of stationary intensities coincides with the class of Poissonian
intensities yielding balanced fluxes. We have, thus, established
a “flux perspective” to the notion of stationary intensities.

VII. POISSONIAN CORRELATIONS

In this section we explore the correlation structure of the
ensemble of Markov motions E(t) (t � 0). Throughout this
section we consider the setting of Sec. V and denote by ID(s)
the indicator function of the domain D ⊂ S [i.e., ID(s) = 1
for s ∈ D and ID(s) = 0 for s /∈ D].

The occupation of the domain D ⊂ S, at time t (t � 0 ),
is the number of motions present in the domain at this time
epoch,

ND(t) =
∑

n

ID(Xn(t)). (25)

Given two domains, A ⊂ S and B ⊂ S, we focus on their
occupations at two different time epochs. Since the motions
are Markov, we set, with no loss of generality, the first
time epoch to be 0 and the second time epoch to be t

(t > 0). The occupations are, thus, given by the random pair
(NA(0),NB(t)). An analysis detailed in the appendix asserts
that the probability-generating function of the random pair
(NA(0),NB(t)) is given by

E
[
z
NA(0)
1 z

NB (t)
2

]
= exp ((z1 − 1)E[NA(0)]) exp ((z2 − 1)E[NB(t)])

× exp ((z1 − 1)(z2 − 1)E[NA 
→B(t)]) (26)

(z1,z2 complex). Equation (26) has three implications, two that
we already know and one new, as follows:

(a) The occupancy NA(0) is a Poisson-distributed random
variable with mean

E[NA(0)] =
∫

A


(0,s)m(ds). (27)

This implication is obtained by setting z2 = 1 in Eq. (26) and
noting that, when doing so, the right-hand side of Eq. (26)
reduces to the probability-generating function of a Poisson-
distributed random variable with mean E[NA(0)].

(b) The occupancy NB(t) is a Poisson-distributed random
variable with mean

E[NB(t)] =
∫

B


(t,s)m(ds). (28)

This implication is obtained by setting z1 = 1 in Eq. (26) and
noting that, when doing so, the right-hand side of Eq. (26)
reduces to the probability-generating function of a Poisson-
distributed random variable with mean E[NB(t)].

(c) The covariance between the occupancies NA(0) and
NB(t) equals the mean flow from the domain A (at time 0)
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to the domain B (at time t) and is given by

Cov[NA(0),NB(t)] = E[NA 
→B(t)]

=
∫

A

( ∫
B

Px(t,s)m(ds)

)

(0,x)m(dx). (29)

This implication is obtained by calculating the second-order
derivative ∂2/∂z1∂z2 of Eq. (26) at the point (z1,z2) = (1,1)
(see the appendix for the details of this calculation).

The third implication implies that the correlation structure
of the ensemble of Markov motions E(t) (t � 0) is governed
by the mean flow E[NA 
→B(t)] (t � 0). The term appearing
in Eq. (29) is the Poissonian correlation of the ensemble of
Markov motions E(t) (t � 0). We emphasize that the Poisso-
nian correlation is always well-defined, even in cases where
the underlying Markov motions have divergent variances and,
thus, have no well-defined covariances. Last, we note that in
a steady state which is quantified by the stationary intensity

SI(s) (s ∈ S), one has to set 
(0,s) = 
SI(s) in Eq. (27),

(t,s) = 
SI(s) in Eq. (28), and 
(0,x) = 
SI(x) in Eq. (29).

VIII. APPLICATIONS

We turn now to exemplify the application of Poissonian
steady states. We present an array of examples including
birth-death processes (Sec. VIII A), random walks (Sec. VIII B
and VIII E), geometric random walks (Sec. VIII C and VIII F),
renewal processes (Sec. VIII D), growth-collapse dynamics
(Sec. VIII G), decay-surge dynamics (Sec. VIII H), Ito diffu-
sions (Sec, VIII I), and Langevin dynamics (Sec. VIII J).

The method of Poissonian steady states facilitates the mod-
eling of infinite ensembles of noninteracting agents governed
by common Markov dynamics. In essence, the passage from
finite to infinite such ensembles is analogous to the passage
from random walks to Brownian motion. Let us explain this
point before presenting the applications.

Random walks are finite objects in the sense that they carry
a finite amount of information in any time window. On the
other hand, Brownian motion—the universal scaling limit of
random walks3—is an infinite object in the sense that it carries
an infinite amount of information in any time window. Indeed,
Brownian motion is a fractal object which fluctuates on all
scales and, thus, it encapsulates infinite information in any
time window (no matter how short).

In physical reality, there is always a lower bound cutoff,
and, hence, random walks should be applied in relevant phys-
ical settings. Nonetheless, so very often the “mathematical”
Brownian motion, rather than the “physical” random walks,
is applied. Surprisingly, the mathematical model of Brownian
motion, despite its physical shortcomings, is no less than an
astounding success in applications [4,7,8].

It so turns out that in real-world modeling it is often that
an infinite mathematical structure (which does not physically
exist) approximates reality remarkably well. This holds in the
case of calculus, which approximates deterministic processes
that are essentially discrete on the atomic scale. This also

3More precisely, Brownian motion is the universal scaling limit of
random walks with finite-variance jumps [27].

holds in the case of Brownian motion (and stochastic calculus
[28,29]), which approximates stochastic processes that are
essentially discrete on the atomic scale.

The method of Poissonian steady states establishes an
infinite mathematical model in the context of ensembles of
noninteracting agents governed by common Markov dynam-
ics. As in the cases of calculus and Brownian motion the
infiniteness is an intrinsic and inherent feature of the model,
which yields structures that are beyond the realm of analogous
finite models.

A. Birth-death processes

Birth-death processes constitute a fundamental model of
Markov evolutionary dynamics [1–3,30]. The state space
of birth-death processes is the set of non-negative integers
S = {0,1,2, . . .}, and the “natural measure” is the counting
measure. The Markov dynamics of a birth-death process X are
described as follows.

When at state s ∈ {1,2, . . .}, the process can transit either
to state s + 1 or to state s − 1. The transition to state s + 1
occurs according to a state-dependent “birth rate” B(s), and the
transition to state s − 1 occurs according to a state-dependent
“death rate” D(s). More specifically, as the process enters state
s ∈ {1,2, . . .}, two independent exponential timers are set:
timer “B” with mean 1/B(s) and timer “D” with mean 1/D(s).
On the expiration of either of the timers the process moves: If
timer “B” expired first, then the process moves to state s + 1,
and, if timer “D” expired first, then the process moves to state
s − 1. As the process enters state s = 0, an exponential timer
with mean 1/B(0) is set and, on its expiration, the process
moves to state s = 1.

A birth-death process is characterized by its sequence of
“birth rates” {B(s)}∞s=0, and by its sequence of “death rates”
{D(s)}∞s=1 . The master equation of birth-death processes is
given by

Ṗ (t,0) = −B(0)P (t,0) + D(1)P (t,1) (if s = 0)

Ṗ (t,s) = B(s − 1)P (t,s − 1) − (B(s) + D(s))P (t,s)

+D(s + 1)P (t,s + 1) (if s �= 0) (30)

[3,30]. In turn, the corresponding “steady-state equation” (4)
yields the following “balance equation”:

ψ(s)B(s) = ψ(s + 1)D(s + 1) (31)

[3,30]. In what follows, we set �(0) = 1 and

�(s) =
s∏

k=1

B(k − 1)

D(k)
(32)

(s �= 0). The positive-valued solutions of the “balance equa-
tion” (31) are given by

ψ(s) = c�(s), (33)

where c is a positive constant.
Consider a given birth-death process, and set 
 =∑∞
s=0 �(s). The birth-death process attains a steady state if

and only if the sum 
 is convergent (
 < ∞). Indeed, if
the sum 
 is convergent, then the stationary density of the
birth-death process is given by PSD(s) = �(s)/
. On the other
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hand, if the sum 
 is divergent (
 = ∞), then the birth-death
process explodes, i.e., the birth-death process grows to infinity
as time progresses: limt→∞ Pr (X(t) < ∞) = 0. Namely, in
the nonsummable case (
 = ∞), the birth-death process is
nonstationary and does not attain a steady state.

However, if we consider infinitely many independent
birth-death processes (with common nonstationary birth-death
dynamics), then we obtain a Poissonian steady state. Specif-
ically, let N (s) denote the number of birth-death processes
whose size, at Poissonian steady state, is s. The Poissonian
steady-state result then asserts that {N (s)}∞s=0 are independent
and Poisson-distributed random variables characterized by
the means E[N (s)] = c�(s). Thus, instead of tracking one
birth-death evolution taking place in “one universe,” we track
infinitely many independent birth-death evolutions taking
place in infinitely many “parallel universes.” The birth-
death evolution in each universe is nonstationary, yet the
entire ensemble of infinitely many “parallel universes” attains
Poissonian steady states.

1. The M/M/1 queueing system

As an illustrative example of birth-death processes, con-
sider the “classic” M/M/1 queueing system [13,31]. In this
queueing system, jobs arrive at a constant rate rarr to a service
station. The service station is staffed by one server which
processes the jobs sequentially (one at a time) and at rate rser.
The arriving jobs queue up in line according to their order of
arrival and await service.4 The M/M/1 motion is the random
process X tracking the number of jobs in the system, X(t)
being the number of jobs in the system, either waiting in line
for service or being served, at time t (t � 0). The M/M/1
motion is a birth-death process with constant birth rates and
constant death rates: B(s) = r arr and D(s) = rser. Denoting
by α = rarr/rser the arrival-to-service ratio, Eqs. (32) and (33)
imply that

ψ(s) = cαs . (34)

Clearly, the M/M/1 queueing system is stable if and only
if α < 1, in which case its stationary density is geometric:
PSD(s) = (1 − α)αs . On the other hand, the M/M/1 queueing
system is unstable if and only if α � 1, in which case the
server does not manage to effectively process the arriving
jobs, and the queue of jobs awaiting service explodes. In
the stable scenario the M/M/1 queueing system attains a
“regular” steady state, and in the unstable scenario the M/M/1
queueing system attains Poissonian steady states.

2. The Galton-Watson branching process

As yet another illustrative example of birth-death processes,
consider a continuous-time version of the Galton-Watson
branching process [32,33]. In this version, particles flow into
a system and thereafter branch and exit the system as follows:
Particles flow into the system at a constant rate rin; each

4In the nomenclature of queueing theory, the M/M/1 notation is an
acronym for Markovian arrivals (quantified by the arrival rate rarr),
Markovian service (quantified by the service rate rser), and a single
server.

particle produces new particles at a constant rate rnew and
exits the system at a constant rate rex. The particles are
independent of each other, and new particles are identical
to incoming particles. The random motion X tracking the
number of particles in the system, X(t) being the number
of particles in the system at time t (t � 0), is a Markov
branching process [34–36]. More specifically, the branching
process X is a birth-death process with affine birth rates
and linear death rates: B(s) = rin + rnews and D(s) = rexs.
Denoting by α = rnew/rex the branching-to-exit ratio, and by
β = rin/rnew the inflow-to-branching ratio, a straightforward
calculation using Eqs. (32) and (33) implies that

ψ(s) = cαs �(s + β)

�(s + 1)
(35)

(where �(·) denotes the � function). Note that at the parameter
value β = 1 Eq. (35) yields Eq. (34). A further calculation
involving Stirling’s formula [37] yields the asymptotic ap-
proximation

ψ(s) ≈ c

�(β)
αssβ−1 (36)

(s 
 1). From Eq. (36) it is evident that the branching
process X is stable if and only if α < 1, in which case
its stationary density is a discrete analog of the continuous
Gamma probability density function. On the other hand, the
branching process X is unstable if and only if α � 1, in which
case it explodes. In the stable scenario, the branching process
X attains a “regular” steady state, and in the unstable scenario
the branching process X attains Poissonian steady states.

B. Random walks I

Random walks constitute the most elemental model of
random motion in the sciences [38–40]. In the case of
d-dimensional random walks, the state space is the d-
dimensional Euclidean space S = Rd , and the “natural mea-
sure” is the Lebesgue measure m(ds) = ds. The structure of
random walks is described as follows.

A d-dimensional random walk X is characterized by its
jump rate r and by the distribution of its generic jump size J ,
an arbitrary d-dimensional random variable. Specifically, the
positions of the random walk X are given by

X(t) = X(0) +
∑
Tn�t

Jn (37)

(t � 0), where (i) the “jump times” {Tn}∞n=1 are a standard
Poisson process with intensity r ,5 (ii) the “jump sizes”
{Jn}∞n=1 are IID copies of the generic jump size J , and
(iii) the “jump times” {Tn}∞n=1 and the “jump sizes” {Jn}∞n=1
are independent sequences. In what follows, ρ(x) (x ∈ Rd )
denotes the probability density function of the generic jump
size J .

Consider the random walk X along the infinitesimal time
interval (t,t + δ) (δ → 0). During this time interval the random
walk can either jump [with probability rδ + o(δ)] or stay

5The precise definition of a standard Poisson process was given in
Sec. IV.
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still [with probability 1 − rδ + o(δ)]. If it jumps, then it
moves from position X(t) to position X(t + δ) = X(t) + J

(the equality being in law). Thus, a calculation of Eq. (1)
implies that the random walk’s infinitesimal generator is given
by the integral operator

[Gφ](s) = r

∫
Rd

[φ(s + x) − φ(s)]ρ(x)dx. (38)

In turn, a calculation of Eq. (2) implies that the random walk’s
adjoint operator is given by

[G∗ψ](s) = r

∫
Rd

[ψ(s − x) − ψ(s)]ρ(x)dx. (39)

Consequently, we obtain that the corresponding “steady-state
equation” (4) is given by

ψ(s) =
∫
Rd

ψ(s − x)ρ(x)dx. (40)

It is straightforward to observe that the solutions of
the “steady-state equation” (40) are exponential functions.
Specifically, the positive-valued solutions of the “steady-state
equation” (40) are superpositions of constant and exponential
functions,

ψ(s) = c1 + c2 exp(−〈v,s〉) (41)

(s ∈ Rd ), where c1 and c2 are positive constants and where v

is a d-dimensional vector satisfying the Laplace condition

E[exp(〈v,J 〉)] =
∫
Rd

exp(〈v,x〉)ρ(x)dx = 1. (42)

Since neither constant functions nor exponential functions
are integrable over the d-dimensional Euclidean space, the
“steady-state equation” (40) has no solutions which are
positive-valued and normalized. Consequently, we obtain that
the random walk X is nonstationary and does not attain a steady
state. However, the random walk X does attain Poissonian
steady states.

In the case where the generic jump size J has a divergent
Laplace transform, then the only admissible stationary intensi-
ties are constant functions: ψ(s) = c1. In particular, we obtain
that the stationary intensities of random walks with Lévy jumps
are constant functions. Random walks with Lévy jumps play a
major role in the transdisciplinary field of anomalous diffusion
[41–43],6 and they exhibit fluctuations which were classified
by Mandelbrot as a “wild” form of randomness [47,48].

As noted in Sec. IV, the constant stationary intensities
ψ(s) = c1 represent Poisson processes which are spatially
homogeneous over the Euclidean space, they manifest a
uniform scattering of points across the Euclidean space, and
they generalize the notion of uniform probability distributions.
Moreover, note that the constant stationary intensities ψ(s) =
c1 are independent of the random walk’s characteristics—
the jump rate r and the generic jump size J . We, hence,
conclude that spatially homogeneous Poisson processes are the
“universal” Poissonian steady states of all random walks. Thus,

6The pioneering works initiating the field of anomalous diffusion
are due to Scher, Lax, Shlesinger, and Montroll [44–46].

in the context of random walks, the notions of “uniformity”
and “universality” are in effect synonymous.

C. Geometric random walks I

Geometric random walks are the “geometric counterpart” of
one-dimensional random walks. In random walks the evolution
is additive, as evident from Eq. (37). However, there are many
stochastic-dynamics settings, mainly prevalent in economics
and finance [49,50], in which the evolution is multiplicative
rather than additive [51–53]. Geometric random walks are a
prototypical model of stochastic dynamics with multiplicative
evolution.

In the case of geometric random walks the state space is the
positive half-line S = (0,∞), and the “natural measure” is the
Lebesgue measure m(ds) = ds. A geometric random walk X

is characterized by its jump rate r and by the distribution of
its generic multiplicative jump J , an arbitrary positive-valued
random variable. Specifically, a geometric random walk X is
given by

X(t) = X(0)
∏
Tn�t

Jn, (43)

where (i) the “jump times” {Tn}∞n=1 are a standard Poisson
process with intensity r ,7 (ii) the “multiplicative jumps”
{Jn}∞n=1 are IID copies of the generic multiplicative jump
J , and (iii) the “jump times” {Tn}∞n=1 and the “multiplicative
jumps” {Jn}∞n=1 are independent sequences. In what follows,
ρ(x) (x > 0) denotes the probability density function of the
generic multiplicative jump J .

Consider the geometric random walk X along the infinites-
imal time interval (t,t + δ) (δ → 0). During this time interval,
the geometric random walk can either jump [with probability
rδ + o(δ)] or stay still [with probability 1 − rδ + o(δ)]. If it
jumps, then it moves from position X(t) to position X(t + δ) =
X(t)J (the equality being in law). Thus, a calculation of
Eq. (1) implies that the geometric random walk’s infinitesimal
generator is given by the integral operator

[Gφ](s) = r

∫ ∞

0
[φ(sx) − φ(s)]ρ(x)dx. (44)

In turn, a calculation of Eq. (2) implies that the geometric
random walk’s adjoint operator is given by

[G∗ψ](s) = r

∫ ∞

0

[
1

x
ψ

(
s

x

)
− ψ(s)

]
ρ(x)dx. (45)

Consequently, we obtain that the corresponding “steady-state
equation” (4) is given by

ψ(s) =
∫ ∞

0
ψ

(
s

x

)
ρ(x)

x
dx. (46)

It is straightforward to observe that the solutions of
the “steady-state equation” (46) are power-law functions.
Specifically, the positive-valued solutions of the “steady-state
equation” (46) are superpositions of harmonic and power-law

7The precise definition of a standard Poisson process was given in
Sec. IV.
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functions,

ψ(s) = c1s
−1 + c2s

−ε−1 (47)

(s > 0), where c1 and c2 are positive constants and where ε is
a real-valued exponent satisfying the moment condition

E[J ε] =
∫ ∞

0
xερ(x)dx = 1. (48)

Since neither harmonic functions nor power-law functions
are integrable over the positive half-line, the “steady-state
equation” (46) has no solutions which are positive-valued
and normalized. Consequently, we obtain that the geometric
random walk X is nonstationary and does not attain a steady
state. However, the geometric random walk X does attain
Poissonian steady states.

In case the generic multiplicative jump size J has divergent
moments, then the only admissible stationary intensities are
harmonic functions: ψ(s) = c1/s. In particular, we obtain that
the stationary intensities of geometric random walks with
log-Lévy multiplicative jumps are harmonic functions. Geo-
metric random walks with log-Lévy multiplicative jumps [54]
exhibit fluctuations which were classified by Mandelbrot as an
“extreme” form of randomness [47]. Note that the harmonic
stationary intensities ψ(s) = c1/s are independent of the
geometric-random-walk characteristics—the jump rate r and
the generic multiplicative jump size J . Hence, we obtain that
harmonic Poissonian intensities are the “universal” stationary
intensities of geometric random walks. We emphasize that this
“universality” holds for all geometric random walks.

D. Renewal processes

The standard Poisson process, defined in Sec. IV, underlies
both additive and multiplicative random walks, which were
discussed, respectively, in Secs. VIII B and VIII C. The
standard Poisson process is, in effect, a special case of
renewal processes, the fundamental model of regenerative
stochastic phenomena [13,55,56]. Renewal processes underlie
the continuous-time random walk (CTRW) model [41,57,58],
a bedrock model of anomalous diffusion.

A series of events occurring at random time epochs
T0 < T1 < T2 < · · · form a renewal process if the sequence
of consecutive interevent durations {Tk − Tk−1}∞k=1 are IID
copies of a generic interevent duration τ , an arbitrary positive-
valued random variable. The standard Poisson process is
a renewal process with exponentially distributed interevent
time durations [9]. Henceforth, we denote by ρ(t) (t > 0)
the probability density function of the generic interevent
duration τ and denote by ρ>(t) (t > 0) the corresponding tail
probability

ρ>(t) =
∫ ∞

t

ρ(u)du = Prob(τ > t). (49)

In what follows, we shall use the hazard rate function H (t)
(t > 0) of the generic inter-event duration τ [56,59,60]. The
hazard rate function is given by

H (t) = lim
δ→0

1

δ
Prob(τ � t + δ|τ > t) = ρ(t)

ρ>(t)
(50)

(t > 0). Namely, H (t) is the “rate of occurrence” of the
interevent duration: the intensity at which the random variable
τ realizes at time t , provided that it did not realize up to
time t .

1. Renewal motions

The Markov motion X tracking a given renewal process—
henceforth termed the renewal motion—is defined as follows:
X(t) is the time elapsing since the last renewal event that
occurred up to time t . The state space of the renewal motion is
the non-negative half-line S = [0,∞), and the “natural mea-
sure” is the Lebesgue measure m(ds) = ds. The trajectories of
the renewal motion are piecewise linear: Between the renewal
events, the motion grows linearly, and, at the event epochs, the
motion collapses to zero.

Consider the renewal motion X along the infinitesimal
time interval (t,t + δ) (δ → 0). During this time interval,
the renewal motion can either collapse to zero [with prob-
ability H (X(t))δ + o(δ)] or grow linearly [with probability
1 − H (X(t))δ + o(δ)]. If it collapses, then it moves from
position X(t) to position X(t + δ) = 0, and, if it grows, then
it moves from position X(t) to position X(t + δ) = X(t) + δ.
Thus, a calculation of Eq. (1) implies that the renewal motion’s
infinitesimal generator is given by the differential operator

[Gφ](s) = φ′(s) − H (s)φ(s) (51)

[where φ(s) is an arbitrary test function that vanishes at the
origin]. In turn, a calculation of Eq. (2) implies that the renewal
motion’s adjoint operator is given by

[G∗ψ](s) = −ψ ′(s) − H (s)ψ(s). (52)

Consequently, we obtain that the corresponding “steady-state
equation” (4) is given by

ψ ′(s) = −H (s)ψ(s). (53)

The positive-valued solutions of the “steady-state equation”
(53) are multiples of the tail probability,

ψ(s) = cρ>(s), (54)

where c is a positive constant.
Convergence to steady state is determined by the mean of

the interevent time durations,

E[τ ] =
∫ ∞

0
tρ(t)dt =

∫ ∞

0
ρ>(t)dt . (55)

If the mean is finite (E[τ ] < ∞), then the renewal motion
attains a steady state which is quantified by the stationary
density PSD(s) = ρ>(s)/E[τ ]. This stationary density is the
probability density function of the “residual lifetime” of the
renewal process [13,55,56]. On the other hand, if the mean is
infinite (E[τ ] = ∞), then the renewal process is nonstationary
and aging: The occurrence of the events becomes rarer and
rarer as time progresses. In the latter scenario (E[τ ] = ∞), the
renewal motion is nonstationary and does not attain a steady
state. However, the renewal motion does attain Poissonian
steady states.
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2. Waiting times

So far, we have considered the time elapsing since the last
renewal event. In practice, we are often interested in predicting
when the next renewal event will take place. Tracking a
renewal process, assume that we observe the corresponding
renewal motion to be at state s. Let W (s) denote the waiting
time until the next renewal event: the time elapsing from the
observation epoch until the first renewal event occurring after
the observation epoch. It is straightforward to note that the
probability density function of the waiting time W (s) is given
by

ρ(w; s) = ρ(w + s)

ρ>(s)
(56)

(w > 0).
Consider now a countable ensemble of independent renewal

processes tracked by corresponding renewal motions, and
observe the ensemble at an arbitrary time epoch. Each renewal
process has its own waiting time till the next renewal event,
and these waiting times are governed by the probability density
function of Eq. (56). Specifically, let the ensemble {sn}n denote
the positions of the renewal motions at the observation epoch,
and let the ensemble {Wn(sn)}n denote the corresponding
waiting times. The “displacement theorem” of the theory of
Poisson processes asserts that [9]: if the ensemble {sn}n is a
Poisson process with intensity λ(s) (s > 0), then the ensemble
{Wn(sn)}n of waiting times is a Poisson process with intensity

λ̃(w) =
∫ ∞

0
λ(s)ρ(w; s)ds (57)

(w > 0).
If the ensemble of renewal processes is observed at a

Poissonian steady state, then λ(s) is given by the stationary
intensity of Eq. (54): λ(s) = cρ>(s). Substituting this station-
ary intensity into Eq. (57), and using Eq. (56), a straightforward
calculation implies that

λ̃(w) = cρ>(w) (58)

(w > 0). Remarkably so, we obtain that the stationary intensi-
ties of the renewal motion, 
SI(s) = cρ>(s), are “fixed points”
of the transformation given by Eq. (57). Namely, the input
λ(s) = 
SI(s) yields the identical output λ̃(w) = 
SI(w).

As explained above, the stationarity of the single renewal
processes is determined by the mean E[τ ] of the interevent time
durations. If the mean is finite (E[τ ] < ∞), then each renewal
process attains a steady state, and, observing a renewal process
at steady state, we obtain that (i) the time elapsing since the last
renewal event before the observation epoch is equal, in law, to
the waiting time till the next renewal event after the observation
epoch and (ii) both the aforementioned elapsing and waiting
times are random variables governed by the “residual lifetime”
probability density function PSD(s) = ρ>(s)/E[τ ] (s > 0). On
the other hand, if the mean is infinite (E[τ ] = ∞), then each
renewal process is nonstationary and aging, yet the entire
ensemble of renewal processes attains Poissonian steady states.
In the nonstationary case, observing an ensemble of renewal
process at a Poissonian steady state, we obtain that (i) the
random ensemble of the times elapsing since the last renewal
events before the observation epoch ({sn}n) is equal, in law,

to the random ensemble of waiting times till the next renewal
events after the observation epoch ({Wn(sn)}n) and (ii) both the
aforementioned ensembles of elapsing times and waiting times
are Poisson processes governed by the stationary intensity

SI(s) = cρ>(s) (s > 0).

Thus, the Poissonian methodology established in this paper
extends the probabilistic notion of “residual lifetime” from
the case of stationary renewal processes (characterized by
interevent time durations with finite mean) to the case of
nonstationary renewal processes (characterized by interevent
time durations with infinite mean). Indeed, the probabilistic
“residual lifetime,” given by the normalized probability density
function PSD(s) = ρ>(s)/E[τ ] (s > 0), is replaced by a “Pois-
sonian residual lifetime” given by the Poissonian intensities

SI(s) = cρ>(s) (s > 0).

The Poissonian residual lifetime provides a new perspective
to the phenomenon of ergodicity breaking in the context of
the CTRW model [61–63]. When tracking an aging CTRW
(E[τ ] = ∞, where τ is the CTRW’s generic waiting-time),
ergodicity happens to fail: Time averages of the CTRW’s
trajectories do not converge to their expected means; rather,
each time-average measurement yields a different outcome,
and the outcomes display a statistical pattern. Thus, single-
trajectory measurements of aging CTRWs are seemingly
useless, as characteristic means cannot be inferred from them.
Nonetheless, if we simultaneously consider infinitely many
IID CTRWs then the Poissonian residual lifetime captures the
precise statistical structure underlying the observed ergodicity-
breaking phenomenon. We emphasize that the Poissonian
residual lifetime quantifies all forms of CTRWs displaying
ergodicity breaking, the two most common scenarios being
(i) subdiffusion ρ>(s) ≈ 1/sε (as s → ∞), where ε is an
exponent taking values in the unit interval 0 < ε < 1 and
(ii) ultraslow diffusion ρ>(s) ≈ 1/ ln(s)ε (as s → ∞), where
ε is a positive exponent.

E. Random walks II

In the random-walk model of Sec. VIII B the jump rate
was constant. Namely, the jump rate was considered to be
homogeneous across the d-dimensional Euclidean space. In
this section we consider spatially inhomogeneous random
walks with state-dependent jump rates. As in Sec. VIII B, the
state space is the d-dimensional Euclidean space S = Rd , and
the “natural measure” is the Lebesgue measure m(ds) = ds.
The Markov dynamics of spatiallyinhomogeneous random
walks are described as follows.

A d-dimensional random walk X is characterized by its
state-dependent jump rate R(s) (s ∈ Rd ) and by the distribu-
tion of its generic jump size J , an arbitrary d-dimensional
random variable. The Markov dynamics of the random walk
X, along the infinitesimal time interval (t,t + δ) (δ → 0), are
given by

X(t + δ) =
{

X(t) + J w.p. R(X(t))δ + o(δ),

X(t) w.p. 1 − R(X(t))δ + o(δ).
(59)

Namely, during the time interval (t,t + δ) the random walk
can either jump [with state-dependent probability R(X(t)) δ +
o(δ)] or stay still [with state-dependent probability
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1 − R(X(t))δ + o(δ)]. If it jumps then it moves from the po-
sition X(t) to the position X(t + δ) = X(t) + J (the equality
being in law).

As in Sec. VIII B we denote by ρ(x) (x ∈ Rd ) the
probability density function of the generic jump size J . A
calculation of Eq. (1), based on the Markov dynamics of
Eq. (59), implies that the random walk’s infinitesimal generator
is given by the integral operator

[Gφ](s) = R(s)
∫
Rd

[φ(s + x) − φ(s)]ρ(x)dx. (60)

In turn, a calculation of Eq. (2) implies that the random walk’s
adjoint operator is given by

[G∗ψ](s) =
∫
Rd

[R(s − x)ψ(s − x) − R(s)ψ(s)]ρ(x)dx.

(61)

Consequently, we obtain that the corresponding “steady-state
equation” (4) is given by

R(s)ψ(s) =
∫
Rd

R(s − x)ψ(s − x)ρ(x)dx. (62)

Equation (62) is equivalent to Eq. (40). Indeed, setting
ψ̃(s) = R(s)ψ(s) in Eq. (62) yields Eq. (40). Thus, we obtain
that the positive-valued solutions of the “steady-state equation”
(62) are given by

ψ(s) = c1 + c2 exp(−〈v,s〉)
R(s)

(63)

(s ∈ Rd ), where c1 and c2 are positive constants and where v

is a d-dimensional vector satisfying the Laplace condition of
Eq. (42). Depending on the state-dependent jump rate R(s),
the stationary intensities of Eq. (63) can be either integrable
or nonintegrable. In the former scenario the random walk X

attains “regular” steady states. In the latter scenario the random
walk X is nonstationary and does not attain a steady state but
it does attain Poissonian steady states. We note that, in the
case where the generic jump size J has a divergent Laplace
transform, then the only admissible stationary intensities
are multiples of the reciprocal of the state-dependent jump
rate: ψ(s) = c1/R(s). Namely, the stationary intensities are
inversely proportional to the state-dependent jump rate R(s).

F. Geometric random walks II

In the geometric random-walk model of Sec. VIII C the
jump rate was constant. Namely, the jump rate was considered
to be homogeneous across the positive half-line. In this section,
we consider spatially inhomogeneous geometric random walks
with state-dependent jump rates. As in Sec. VIII C, the state
space is the positive half-line S = (0,∞), and the “natural
measure” is the Lebesgue measure m(ds) = ds. The Markov
dynamics of spatially inhomogeneous geometric random
walks are described as follows.

A geometric random walk X is characterized by its state-
dependent jump rate R(s) (s > 0) and by the distribution of its
generic multiplicative jump size J , an arbitrary positive-valued
random variable. The Markov dynamics of the inhomogeneous
geometric random walk X, along the infinitesimal time interval

(t,t + δ) (δ → 0), are given by

X(t + δ) =
{

X(t) · J w.p. R(X(t))δ + o(δ),

X(t) w.p. 1 − R(X(t))δ + o(δ).
(64)

Namely, during the time interval (t,t + δ) the geometric
random walk can either jump [with state-dependent probability
R(X(t))δ + o(δ)] or stay still [with state-dependent probability
1 − R(X(t))δ + o(δ)]. If it jumps, then it moves from position
X(t) to position X(t + δ) = X(t) · J (the equality being in
law).

As in Sec. VIII C, we denote by ρ(x) (x > 0) the probability
density function of the generic multiplicative jump J . A
calculation of Eq. (1), based on the Markov dynamics of
Eq. (64), implies that the geometric random walk’s infinitesi-
mal generator is given by the integral operator

[Gφ](s) = R(s)
∫ ∞

0
[φ(sx) − φ(s)]ρ(x)dx. (65)

In turn, a calculation of Eq. (2) implies that the geometric
random walk’s adjoint operator is given by

[G∗ψ](s) =
∫ ∞

0

[
1

x
R

(
s

x

)
ψ

(
s

x

)
− R(s)ψ(s)

]
ρ(x)dx.

(66)

Consequently, we obtain that the corresponding “steady-state
equation” (4) is given by

R(s)ψ(s) =
∫ ∞

0
R

(
s

x

)
ψ

(
s

x

)
ρ(x)

x
dx. (67)

Equation (67) is equivalent to Eq. (46). Indeed, setting
ψ̃(s) = R(s)ψ(s) in Eq. (67) yields Eq. (46). Thus, we obtain
that the positive-valued solutions of the “steady-state equation”
(67) are given by

ψ(s) = c1 + c2s
−ε

sR(s)
(68)

(s > 0), where c1 and c2 are positive constants and where ε

is a real-valued exponent satisfying the moment condition of
Eq. (48). Depending on the state-dependent jump rate R(s),
the stationary intensities of Eq. (68) can be either integrable
or nonintegrable. In the former scenario the geometric random
walk X attains “regular” steady states. In the latter scenario
the geometric random walk X is nonstationary and does not
attain a steady state, but it does attain Poissonian steady states.
We note that in case the generic jump size J has divergent
moments, then the only admissible stationary intensities are
given by ψ(s) = c1/(sR(s)).

G. Growth-collapse dynamics

The physical sciences are prevalent with processes whose
dynamics exhibit growth-collapse evolutionary patterns: cy-
cles of steady smooth and deterministic growth followed
by a sudden discontinuous and random collapse. Examples
of growth-collapse dynamics include renewal motions (de-
scribed in Sec. VIII D), sand-pile models and systems in
self-organized criticality [64], stick-slip models of interfacial
friction [65], Burridge-Knopof–type models of earthquakes
and continental drift [66], avalanche models [67], stochastic
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Ornstein-Uhlenbeck capacitors [68], and geometric Langevin
equations [53]. In queueing theory, growth-collapse dynamics
emerge in the context of batch service [69–73]. Growth-
collapse dynamics also emerge in the asymmetric inclusion
process (ASIP), a bosonic counterpart of the fermionic
asymmetric exclusion process (ASEP), which links together
key models in statistical physics and queueing theory [74,75].

In the case of growth-collapse dynamics the state space is
the positive half-line S = (0,∞) and the “natural measure”
is the Lebesgue measure m(ds) = ds. In what follows, we
consider a general growth-collapse model which is charac-
terized by the following triplet [53]: (i) a positive valued
growth function F (s) (s > 0), which governs the smooth
deterministic growth; (ii) a state-dependent collapse rate R(s)
(s > 0); and (iii) a distribution of the generic collapse size J ,
an arbitrary random variable taking values in the unit interval
(0,1). The Markov dynamics, along the infinitesimal time
interval (t,t + δ) (δ → 0), of a random motion X governed
by the aforementioned growth-collapse model are given by

X(t + δ) =
{

X(t)J w.p. R(X (t))δ + o (δ) ,

X(t) +F (X(t))δ w.p. 1 − R(X(t))δ + o(δ).

(69)

Namely, during the time interval (t,t + δ), the motion X can
either collapse [with state-dependent probability R(X(t))δ +
o(δ)] or grow smoothly [with state-dependent probability 1 −
R(X(t))δ + o(δ)]. If it collapses, then it moves from position
X(t) to position X(t + δ) = X(t)J (the equality being in law),
and, if it grows, then it moves from position X(t) to position
X(t + δ) = X(t) + F (X(t))δ.

Note that in the aforementioned growth-collapse model
the smooth and deterministic growth is additive, whereas
the discontinuous and random collapse is multiplicative. In
what follows, we denote by ρ(x) (0 < x < 1) the probability
density function of the generic collapse size J . A calculation
of Eq. (1), based on the Markov dynamics of Eq. (69),
implies that the motion’s infinitesimal generator is given by
the integrodifferential operator

[Gφ](s) = F (s)φ′(s) + R(s)
∫ 1

0
[φ(sx) − φ(s)]ρ(x)dx.

(70)

In turn, a calculation of Eq. (2) implies that the motion’s adjoint
operator is given by

[G∗ψ](s)=−[F (s)ψ(s)]′

+
∫ 1

0

[
1

x
R

(
s

x

)
ψ

(
s

x

)
− R(s)ψ(s)

]
ρ(x)dx.

(71)

Consequently, we obtain that the corresponding “steady-state
equation” (4) is given by

[F (s)ψ(s)]′ + R(s)ψ(s) =
∫ 1

0
R

(
s

x

)
ψ

(
s

x

)
ρ(x)

x
dx.

(72)

Setting ψ̃(s) = R(s)ψ(s) and F̃ (s) = F (s)/R(s), Eq. (72) can
be rewritten in the compact form

[F̃ (s)ψ̃(s)]′ + ψ̃(s) =
∫ 1

0
ψ̃

(
s

x

)
ρ(x)

x
dx. (73)

In general, Eq. (73) does not admit explicit closed-form
solutions. However, if the ratio of the growth function F (s)
and the collapse-rate function R(s) is a linear function, then
explicit closed-form solutions are attainable. Indeed, assume
that F̃ (s) = as, where a is an arbitrary positive slope. It is
then straightforward to observe that power-law functions solve
Eq. (73) and yield the stationary intensities

ψ(s) = c1 + c2s
−ε

sR(s)
(74)

(s > 0), where c1 and c2 are positive constants and where ε is
a real-valued exponent satisfying the moment condition

E[J ε] =
∫ 1

0
xερ(x)dx = 1 − aε. (75)

The stationary intensities of Eq. (74) are identical, in form, to
the stationary intensities obtained in the context of spatially
inhomogeneous geometric random walks [Eq. (68)].

H. Decay-surge dynamics

Decay-surge dynamics are the “mirror image” of growth-
collapse dynamics. Decay-surge evolutionary patterns exhibit
cycles of steady smooth and deterministic decay followed
by a sudden discontinuous and random surge. Examples of
decay-surge dynamics include shot noise [16,76], inverted
stick-slip models of interfacial friction [77], and the running
maxima of nonlinear shot noise processes [78,79]. In stochastic
operations research decay-surge dynamics emerge in the
context of workload in queueing systems [13,31] and in the
context of water flow in dams [80].

In the case of decay-surge dynamics the state space is the
positive half-line S = (0,∞), and the “natural measure” is the
Lebesgue measure m(ds) = ds. In what follows, we consider
a general decay-surge model which is characterized by the
following triplet [53]: (i) a positive valued decay function F (s)
(s > 0) which governs the smooth deterministic decay; (ii) a
state-dependent surge rate R(s) (s > 0); and (iii) a distribution
of the generic surge size J , an arbitrary random variable
taking values in the ray (1,∞) . The Markov dynamics, along
the infinitesimal time interval (t,t + δ) (δ → 0), of a random
motion X governed by the aforementioned decay-surge model
are given by

X(t + δ) =
{

X(t)J w.p. R(X (t))δ + o (δ) ,

X(t) −F (X(t))δ w.p. 1 − R(X(t))δ + o(δ).

(76)

Namely, during the time interval (t,t + δ) the motion X can
either surge [with state-dependent probability R(X(t))δ +
o(δ)] or decay smoothly [with state-dependent probability
1 − R(X(t))δ + o(δ)]. If it surges, then it moves from position
X(t) to position X(t + δ) = X(t)J (the equality being in law),
and, if it decays, then it moves from position X(t) to position
X(t + δ) = X(t) − F (X(t))δ.
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Note that in the aforementioned decay-surge model the
smooth and deterministic decay is additive, whereas the
discontinuous and random surge is multiplicative. In what
follows, we denote by ρ(x) (x > 1) the probability density
function of the generic surge size J . A calculation of Eq. (1),
based on the Markov dynamics of Eq. (76), implies that the
motion’s infinitesimal generator is given by the integrodiffer-
ential operator

[Gφ](s) = −F (s)φ′(s) + R(s)
∫ ∞

1
[φ(sx) − φ(s)]ρ(x)dx.

(77)

In turn, a calculation of Eq. (2) implies that the motion’s adjoint
operator is given by

[G∗ψ](s)= [F (s)ψ(s)]′

+
∫ ∞

1

[
1

x
R

(
s

x

)
ψ

(
s

x

)
− R(s)ψ(s)

]
ρ(x)dx.

(78)

Consequently, we obtain that the corresponding “steady-state
equation” (4) is given by

R(s)ψ(s) − [F (s)ψ(s)]′ =
∫ ∞

1
R

(
s

x

)
ψ

(
s

x

)
ρ (x)

x
dx.

(79)

Setting ψ̃(s) = R(s)ψ(s) and F̃ (s) = F (s)/R(s), Eq. (79) can
be rewritten in the compact form

ψ̃(s) − [F̃ (s)ψ̃(s)]′ =
∫ ∞

1
ψ̃

(
s

x

)
ρ(x)

x
dx. (80)

In general, Eq. (80) does not admit explicit closed-form
solutions. However, if the ratio of the decay function F (s)
and the surge-rate function R(s) is a linear function, then
explicit closed-form solutions are attainable. Indeed, assume
that F̃ (s) = as, where a is an arbitrary positive slope. It is
then straightforward to observe that power-law functions solve
Eq. (80) and yield the stationary intensities

ψ(s) = c1 + c2s
−ε

sR(s)
(81)

(s > 0), where c1 and c2 are positive constants and where ε is
a real-valued exponent satisfying the moment condition

E[J ε] =
∫ 1

0
xερ(x)dx = 1 + aε. (82)

The stationary intensities of Eq. (81) are identical, in form, to
the stationary intensities obtained in the context of spatially
inhomogeneous geometric random walks [Eq. (68)].

I. Ito diffusions

Ito diffusions constitute the elemental scientific model
of general state-dependent Markov diffusion processes
[4,8,81,82]. In the case of one-dimensional Ito diffusions, the
state space is a real domain S ⊂ (−∞,∞) and the “natural
measure” is the Lebesgue measure m(ds) = ds. The Markov
dynamics of a one-dimensional Ito diffusion X are governed
by the Ito stochastic differential equation

Ẋ(t) = F (X(t)) +
√

D(X(t))Ẇ (t), (83)

where (i) F (s) is the underlying “force function”; (ii) D(s)
is the underlying “diffusion function”; and (iii) Ẇ (t) (t �
0) is the “white noise” driving the dynamics, the temporal
derivative of an underling one-dimensional Brownian motion
W = (W (t))t�0.

The infinitesimal generator of the Ito diffusion is given by
the differential operator

[Gφ](s) = F (s)φ′(s) + 1
2D(s)φ′′(s), (84)

and the adjoint operator of the Ito diffusion is given by

[G∗ψ](s) = −[F (s)ψ(s)]′ + 1
2 [D(s)ψ(s)]′′ (85)

[8,26]. Substituting the adjoint operator of Eq. (85) into Eq. (3)
yields the Fokker-Planck partial differential equation [4,83].
In turn, the corresponding “steady-state equation” (4) is given
by

[F (s)ψ(s)]′ = 1
2 [D(s)ψ(s)]′′ . (86)

The positive-valued solutions of the “steady-state equation”
(86) are given by

ψ(s) = exp (U (s))
D(s)

(c1V (s) + c2), (87)

where (i) c1 and c2 are positive constants, (ii) the function U (s)
satisfies U ′(s) = 2F (s)/D(s), and (iii) the function V (s) satis-
fies V ′(s) = exp(−U (s)). The “equilibrium solutions” are the
positive-valued solutions satisfying F (s)ψ(s) = 1

2 [D(s)ψ(s)]′
and are characterized by c1 = 0.

1. Linear Brownian motion

Linear Brownian motion is an Ito diffusion whose dynamics
are governed by the Ito stochastic differential equation

Ẋ(t) = μ + σẆ (t), (88)

where μ is a real “drift” parameter and σ is a positive
“volatility” parameter. The dynamics of linear Brownian
motion take place on the real line S = (−∞,∞), and the
Ito stochastic differential equation (88) admits the explicit
solution

X(t) = X(0) + μt + σW (t) (89)

(t � 0). Namely, linear Brownian motion is the superposition
of Brownian motion and a deterministic linear motion. Linear
Brownian motion is characterized by increments which are
stationary, independent, and Gauss distributed. We note that
linear Brownian motion is the only process, among the
class of stochastic processes with stationary and independent
increments, whose trajectories are continuous [84,85]. In
the example of linear Brownian motion, Eq. (87) yields the
stationary intensities

ψ(s) = c1 + c2 exp(εs) (90)

(−∞ < s < ∞), where ε is a real-valued exponent given
by ε = 2μ/σ 2. The stationary intensities of Eq. (90) are the
“diffusion analog” of the random-walk stationary intensities
of Eq. (41). The corresponding equilibrium solutions of
the steady-state equation (86) are given by the exponential
stationary intensities ψ(s) = c2 exp(εs).
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2. Geometric Brownian motion

Geometric Brownian motionis an Ito diffusion whose
dynamics are governed by the Ito stochastic differential
equation

Ẋ(t)

X(t)
= μ + σẆ (t), (91)

where μ is a real “drift” parameter, and where σ is a positive
“volatility” parameter. The stochastic differential equation
(91) is the “multiplicative counterpart” of the “additive”
stochastic differential equation (88). The dynamics of geo-
metric Brownian motion take place on the positive half-line
S = (0,∞), and the Ito stochastic differential equation (91)
admits the explicit solution

X(t) = X(0) exp(μ̄t + σW (t)) (92)

(t � 0), where μ̄ = μ − σ 2/2. Namely, geometric Brownian
motion (with drift μ and volatility σ ) is the exponentiation
of linear Brownian motion (with drift μ̄ and volatility σ ).
Geometric Brownian motion is the most commonly applied
model of stock prices [86,87] and is the very bedrock of
the Merton-Black-Scholes option pricing formula [88,89]. In
the example of geometric Brownian motion, Eq. (87) yields
the stationary intensities

ψ(s) = c1s
−1 + c2s

ε−2 (93)

(s > 0), where ε is a real-valued exponent given by ε =
2μ/σ 2. The stationary intensities of Eq. (93) are the “diffusion
analog” of the geometric random-walk stationary intensities
of Eq. (47). The corresponding equilibrium solutions of
the steady-state equation (86) are given by the power-law
stationary intensities ψ(s) = c2s

ε−2.

3. Bessel motion

Bessel motion is an Ito diffusion whose dynamics are
governed by the Ito stochastic differential equation

Ẋ(t) = p

2X(t)
+ Ẇ (t), (94)

where p is a positive parameter. The dynamics of Bessel
motion take place on the positive half-line S = (0,∞), and
the Ito stochastic differential equation (94) does not attain an
explicit solution. In the example of Bessel motion Eq. (87)
yields the stationary intensities

ψ(s) = c1s + c2s
p (95)

(s > 0). The corresponding equilibrium solutions of the
steady-state equation (86) are given by the power-law sta-
tionary intensities ψ(s) = c2s

p. Bessel motion with parameter
p = d − 1 tracks the distance of a d-dimensional Brownian
motion (d = 2,3, . . .) from the origin [26,90]; in this case,
the relevant stationary intensities are the equilibrium solutions
ψ(s) = c2s

d−1.

4. Squared Bessel motion

Squared Bessel motionis an Ito diffusion whose dynamics
are governed by the Ito stochastic differential equation

Ẋ(t) = 2q + 2
√

X(t)Ẇ (t), (96)

where q is a positive parameter. The dynamics of squared
Bessel motion take place on the positive half-line S = (0,∞),
and the Ito stochastic differential equation (96) does not attain
an explicit solution. In the example of squared Bessel motion,
Eq. (87) yields the stationary intensities

ψ(s) = c1 + c2s
q−1 (97)

(s > 0). The corresponding equilibrium solutions of the
steady-state equation (86) are given by the power-law sta-
tionary intensities ψ(s) = c2s

q−1. Squared Bessel motion
with parameter q = d/2 tracks the squared distance of a
d-dimensional Brownian motion (d = 2,3, . . .) from the origin
[26,90]; in this case, the relevant stationary intensities are the
equilibrium solutions ψ(s) = c2s

(d/2)−1.

J. Langevin dynamics

The Langevin equation describes the stochastic dynamics
of a motion in a “potential well,” which is perturbed by a
random “noise.” Introduced by Paul Langevin in 1908 [91], this
equation is one of the most fundamental stochastic differential
equations in the physical sciences [4,8,92]. In a d-dimensional
setting the Langevin equation admits the form

Ẋ(t) = F (X(t)) + ξ̇ (t), (98)

where (i) F (s) = [∇V ](s) is the gradient of a general potential
function V (s) (s ∈ Rd ) and (ii) ξ̇ (t) (t � 0) is a d-dimensional
perturbing random noise. In this setting, the state space is
the d-dimensional Euclidean space S = Rd , and the “natural
measure” is the Lebesgue measure m(ds) = ds.

1. White noise

The common perturbing noise considered in the context of
Langevin dynamics is “white noise,” the temporal derivative of
a d-dimensional Brownian motion. In this case, the Langevin
motion’s infinitesimal generator is given by the differential
operator

[Gφ](s) = 〈F (s),[∇φ](s)〉 + 1
2 [�φ](s), (99)

and the adjoint operator of the Ito diffusion is given by

[G∗ψ](s) = −〈∇,ψ(s)F (s)〉 + 1
2 [�ψ](s). (100)

[8,83,92]. In turn, the corresponding “steady-state equation”
(4) is given by

〈∇,ψ(s)F (s)〉 = 1
2 [�ψ](s). (101)

Positive-valued solutions of the “steady-state equation” (101)
are given by the exponentiation of the potential function,

ψ(s) = c exp(2V (s)), (102)

where c is a positive constant.
Depending on the structure of the potential function V (s),

the stationary intensities of Eq. (102) can be either integrable
or nonintegrable. In the former scenario, the Langevin motion
X attains a steady state, and in the latter scenario the Langevin
motion X is nonstationary and does not attain a steady state,
but it does attain Poissonian steady states.
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2. Lévy noise

In recent years, there has been significant interest in
Langevin dynamics driven by “Lévy noises” rather than by
“white noise.” Lévy-driven Langevin dynamics were compre-
hensively studied via different perspectives and approaches
[93–100]. The modeling of Lévy-driven Langevin dynamics
is accommodated by setting the random noise ξ̇ (t) to be the
temporal derivative of a random walk. A random-walk driving
noise induces jumps in the trajectories of the Langevin motion
X. In turn, “wild” Lévy jumps of the driving random-walk
result in Lévy-driven Langevin dynamics.

Analogous to the inhomogeneous random-walk model
presented in Sec. VIII E, we consider the jump mechanism
of the Langevin motion X to be characterized by a state-
dependent jump rate R(s) (s ∈ Rd ) and by the distribution
of its generic jump size J , an arbitrary d-dimensional random
variable. Between the jumps the Langevin motion propagates
according to the differential equation

Ẋ(t) = F (X(t)). (103)

Namely, between the jumps the Langevin motion “slides
smoothly” along the gradient F (s) = [∇V ](s) of the potential
function V (s).

The Markov dynamics of the Langevin motion X, along the
infinitesimal time interval (t,t + δ) (δ → 0), are given by

X(t + δ) =
{

X(t) + J w.p. R(X(t))δ + o(δ),

X(t) + F (X(t))δ w.p. 1 − R(X(t))δ + o(δ),

(104)

Namely, during the time interval (t,t + δ), the Langevin
motion can either jump [with state-dependent probability
R(X(t))δ + o(δ)] or slide smoothly [with state-dependent
probability 1 − R(X(t))δ + o(δ)]. If it jumps, then it moves
from position X(t) to position X(t + δ) = X(t) + J (the
equality being in law), and, if it slides smoothly, then it
moves from the position X(t) to the position X(t + δ) =
X(t) + F (X(t))δ.

Let ρ(x) (x ∈ Rd ) denote the probability density function
of the generic jump size J . A calculation of Eq. (1), based
on the Markov dynamics of Eq. (104), implies that the
Langevin motion’s infinitesimal generator is given by the
integrodifferential operator

[Gφ](s) = 〈F (s),[∇φ](s)〉
+ R(s)

∫
Rd

[φ(s + x) − φ(s)]ρ(x)dx. (105)

In turn, a calculation of Eq. (2) implies that the Langevin
motion’s adjoint operator is given by

[G∗ψ](s) = −〈∇,F (s)ψ(s)〉
+

∫
Rd

[R(s − x)ψ(s − x) − R(s)ψ(s)]ρ(x)dx.

(106)

Consequently, we obtain that the corresponding “steady-state
equation” (4) is given by

〈∇,F (s)ψ(s)〉 + R(s)ψ(s) =
∫
Rd

R(s − x)ψ(s − x)ρ(x)dx.

(107)

Setting ψ̃(s) = R(s)ψ(s) and F̃ (s) = F (s)/R(s), Eq. (107)
can be rewritten in the compact form

〈∇,F̃ (s)ψ̃(s)〉 + ψ̃(s) =
∫
Rd

ψ̃(s − x)ρ(x)dx. (108)

In general, Eq. (108) does not admit explicit closed-form
solutions. However, if the ratio of the gradient function F (s)
and the jump-rate function R(s) is spatially homogeneous, then
explicit closed-form solutions are attainable. Indeed, assume
that F̃ (s) = u, where u is an arbitrary d-dimensional vector.
In this case, we obtain that 〈∇,F̃ (s)ψ̃(s)〉 = 〈u,∇ψ̃(s)〉. In
turn, it is straightforward to observe that exponential functions
solve Eq. (73) and yield the stationary intensities

ψ(s) = c1 + c2 exp (−〈v,s〉)
R(s)

(109)

(s ∈ Rd ), where c1 and c2 are positive constants and where v

is a d-dimensional vector satisfying the Laplace condition

E[exp(〈v,J 〉)] =
∫
Rd

exp(〈v,x〉)ρ(x)dx = 1 − 〈v,u〉.
(110)

The stationary intensities of Eq. (109) are identical, in form,
to the stationary intensities obtained in the context of spatially
inhomogeneous random walks [Eq. (63)].

IX. CONCLUSIONS

In this paper we explored the steady states of countable
ensembles of independent motions governed by common
Markov dynamics. Given general Markov dynamics taking
place in a general state space, we initiated a countable
ensemble of independent motions from initial positions which
form a general Poisson process. Consequently, the ensemble’s
positions at all future times also form Poisson processes. This
“Poissonian stability” led to the introduction of the notion
of “stationary intensity.” We defined a Poissonian intensity
function to be a stationary intensity of the Markov dynamics
if the following condition holds: If the initial Poisson process
is governed by the given Poissonian intensity function, then so
are the Poisson processes at all future times.

Analysis established that the aforementioned stationary
intensities are steady-state solutions of the Markov dynamics’
master equation. Thus, considering the positive-valued steady-
state solutions of the master equation, we obtained that

(i) These solutions characterize the Poissonian steady states
of the Markov dynamics.

(ii) If the solutions are integrable, then each motion attains
a steady state, and the ensemble’s Poissonian steady states are
equivalent to the steady states of its composing motions.
(iii) If the solutions are nonintegrable, then each motion is

nonstationary and does not attain a steady state but the entire
ensemble does attain Poissonian steady states.

We have further shown that in the integrable scenario the
ensemble consists of finitely many IID stationary motions,
whereas in the nonintegrable scenario the ensemble consists
of infinitely many nonstationary motions. In addition to
the notion of Poissonian steady states, we also introduced
the notions of Poissonian fluxes and Poissonian correlations
and have shown how these three notions relate to each
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other. The results established were applied to a host of
widely used stochastic models: Brownian motion, birth-death
processes, random walks, geometric random walks, renewal
processes, growth-collapse dynamics, decay-surge dynamics,
Ito diffusions, and Langevin dynamics.

In this paper we set forth from the elemental Markov notions
of “steady state” and “stationary density” and have generalized
them to the notions of “Poissonian steady state” and “stationary
intensity.” These novel notions facilitate both the qualitative
understanding and the quantitative description of the concept
of statistical steady state in the context of general Markov
dynamics. Moreover, these novel notions enable us to attain
the oxymoronic goal of describing the stationary structures
of nonstationary Markov dynamics. The applications of the
results established in this paper apply to all fields of science
in which nonstationary Markov dynamics arise.

APPENDIX

A key theorem from the theory of Poisson processes asserts
that [9]: a random ensemble of points {pn}n ⊂ S is a Poisson
process with intensity λ(s) (s ∈ S) if and only if

E

[∏
n

φ(pn)

]
= exp

{∫
S

[φ(s) − 1]λ(s)m(ds)

}
(A1)

holds for all test functions φ(s) (s ∈ S) for which the integral
appearing on the right-hand side of Eq. (A1) converges. We
shall use this theorem in the proofs given hereinafter.

1. Proof of Eq. (15)

In what follows we consider the setting and notation of
Sec. V, fix an arbitrary test function φ(s) (s ∈ S) and use the
shorthand notation

�(δ,s) = E[φ(Xn(t + δ))|Xn(t) = s] (A2)

(t � 0,s ∈ S).
Applying Eq. (A1) to the Poisson process E(t + δ) implies

that

E

[∏
n

φ(Xn(t + δ))

]

= exp

{∫
S

[φ(s) − 1]
(t + δ,s)m(ds)

}
. (A3)

On the other hand, conditioning implies that

E

[∏
n

φ(Xn(t + δ))

]
= E

[
E

[∏
n

φ(Xn(t + δ))|E(t)

]]
.

(A4)

In turn, the independence of the Markov motions implies that

E

[∏
n

φ(Xn(t + δ))

]
= E

[∏
n

E[φ(Xn(t + δ))|Xn(t)]

]
.

(A5)

Substituting Eq. (A2) into Eq. (A5) we obtain that

E

[∏
n

φ(Xn(t + δ))

]
= E

[∏
n

�(δ,Xn(t))

]
. (A6)

Applying Eq. (A1) to the Poisson process E(t) we further
obtain that

E

[∏
n

φ(Xn(t + δ))

]
= exp

{∫
S

[�(δ,s) − 1]
(t,s)m(ds)

}
.

(A7)

Combining together Eqs. (A3) and (A7) we conclude that∫
S

[φ(s) − 1]
(t + δ,s)m(ds) =
∫
S

[�(δ,s) − 1]
(t,s)m(ds).

(A8)

Now, subtracting the term
∫
S [φ(s) − 1]
(t,s)m(ds) from both

sides of Eq. (A8) and thereafter dividing both sides of the
equation by δ yields∫

S
[φ(s) − 1]


(t + δ,s) − 
(t,s)

δ
m(ds)

=
∫
S

[�(δ,s) − 1] − [φ(s) − 1]

δ

(t,s)m(ds). (A9)

Taking δ → 0 and using the definition of the infinitesimal
generator G [Eq. (1)], Eq. (A9) implies that∫

S
[φ(s) − 1]

∂


∂t
(t,s)m(ds)

=
∫
S

[G(φ − 1)](s)
(t,s)m(ds). (A10)

Using the definition of the adjoint operator G∗ [Eq. (2)],
Eq. (A10) further implies that∫

S
[φ(s) − 1]

∂


∂t
(t,s)m(ds)

=
∫
S

[φ(s) − 1][G∗
](t,s)m(ds). (A11)

Equation (A11) holds for arbitrary test functions φ(s). Hence,
we conclude that

∂


∂t
(t,s) = [G∗
](t,s), (A12)

where the initial condition 
(0,s) is an arbitrary Poissonian
intensity function defined on the state space.

A more “compact” proof of Eq. (15) follows from Eq. (12)


(t,s) =
∫
S


(0,x)Px(t,s)m(dx), (A13)

where Px(t,s) (t � 0,s,x ∈ S) is the solution of Eq. (3)
with the “δ-function” initial condition P (0,s) = δ(s − x).
Differentiating Eq. (A13) with respect to the time variable
t yields

∂


∂t
(t,s) =

∫
S


(0,x)

[
∂Px

∂t
(t,s)

]
m(dx). (A14)

In turn, using Eq. (3), we obtain that

∂


∂t
(t,s) =

∫
S


(0,x)[G∗Px](t,s)m(dx). (A15)
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Since the adjoint operator G∗ is a linear operator that “acts”
on the state-space variable s Eq. (A15) further implies that

∂


∂t
(t,s) = G∗

[∫
S


(0,x)Px(t,s)m(dx)

]
(A16)

(with a slight abuse of notation). Finally, using Eq. (A13) we
conclude that

∂


∂t
(t,s) = [G∗
](t,s). (A17)

2. Proofs of Eqs. (21) and (22)

In what follows, we consider the setting and notation of
Sec. VI. The probability-generating function of the random
variable NA 
→B(t)—defined in Eq. (20)—is given by

E[zNA
→B (t)] = E

[∏
n

zIA(Xn(0))IB (Xn(t))

]
(A18)

(z complex). Conditioning implies that

E[zNA
→B (t)] = E

[
E

[∏
n

zIA(Xn(0))IB (Xn(t))|E(0)

]]
. (A19)

In turn, the independence of the Markov motions implies that

E[zNA
→B (t)] = E

[∏
n

E[zIA(Xn(0))IB (Xn(t))|Xn(0)]

]
. (A20)

A straightforward calculation yields

E[zIA(Xn(0))IB (Xn(t))|Xn(0)]

= zIA(Xn(0)) Pr (Xn(t) ∈B|Xn(0))

+ [1−Pr (Xn(t)∈B|Xn(0))]

= 1 + (zIA(Xn(0)) − 1) Pr (Xn(t) ∈ B|Xn(0))

= 1 + (z − 1)IA(Xn(0)) Pr (Xn(t) ∈ B|Xn(0))

= 1 + (z − 1)IA(Xn(0))
∫

B

PXn(0)(t,s)m(ds). (A21)

Substituting Eq. (A21) into Eq. (A20) we obtain that

E[zNA
→B (t)] = E

[ ∏
n

[
1 + (z − 1)IA(Xn(0))

×
∫

B

PXn(0)(t,s)m(ds)

]]
. (A22)

Applying Eq. (A1) to the Poisson process E(0) = {Xn(0)} we
further obtain that

E[zNA
→B (t)] = exp

(
(z − 1)

∫
S

[
IA(x)

∫
B

Px(t,s)m(ds)

]

× 
(x)dx

)
. (A23)

Equation (A23) implies that the random variable NA 
→B (t) is
Poisson distributed with mean

E[NA 
→B(t)] =
∫
S

[
IA(x)

∫
B

Px(t,s)m(ds)

]

(x)dx

=
∫

A

(∫
B

Px(t,s)m(ds)

)

(x)m(dx). (A24)

This proves Eq. (21).

Let X be a Markov motion whose dynamics are character-
ized by the infinitesimal generator G. Using Eq. (A24) note
that

E[NA 
→B(t)] =
∫
S

[
IA(x)

∫
B

Px(t,s)m(ds)

]

(x)dx

=
∫
S

IA(x) Pr (X(t) ∈ B|X(0) = x)
(x)m(dx)

=
∫
S

IA(x)E[IB(X(t))|X(0) = x]
(x)m(dx).

(A25)

Consequently, we obtain that

d

dt
E[NA 
→B(t)]|t=0 = lim

t→0

1

t
(E[NA 
→B(t)] − E[NA 
→B(0)]).

(A26)

In turn, Eq. (A25) implies that

lim
t→0

1

t
(E[NA 
→B(t)] − E[NA 
→B(0)])

= lim
t→0

1

t

(∫
S

IA(x)E[IB(X(t))|X(0) = x]
(x)m(dx)

−
∫
S

IA(x)E[IB(X(0))|X(0) = x]
(x)m(dx)

)

=
∫
S

IA(x)

(
lim
t→0

1

t
E[IB(X(t)) − IB(X(0))|X(0) = x]

)
×
(x)m(dx). (A27)

Finally, combining together Eqs. (1), (A26), and (A27), we
conclude that

d

dt
E[NA 
→B(t)]|t=0 =

∫
S

IA(x)[GIB](x)
(x)m(dx).

(A28)

This proves Eq. (22).

3. Proofs of Eqs. (26) and (27)

First, note that conditioning implies that

E
[
z
NA(0)
1 z

NB (t)
2

] = E
[
E

[
z
NA(0)
1 z

NB (t)
2

∣∣E(0)
]]

= E
[
z
NA(0)
1 E

[
z
NB (t)
2

∣∣E(0)
]]

(A29)

(z1,z2 complex). Equation (25) further implies that

z
NA(0)
1 =

∏
n

z
IA(Xn(0))
1

=
∏
n

[z1IA(Xn(0)) + (1 − IA(Xn(0)))]

=
∏
n

[1 + (z1 − 1)IA(Xn(0))], (A30)

and

E
[
z
NB (t)
2

∣∣E(0)
] = E

[∏
n

z
IB (Xn(t))
2

∣∣E(0)

]
. (A31)
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In turn, the independence of the Markov motions implies that

E

[∏
n

z
IB (Xn(t))
2

∣∣E(0)

]
=

∏
n

E
[
z

IB (Xn(t))
2

∣∣Xn(0)
] =

∏
n

[z2 Pr (Xn(t) ∈ B|Xn(0)) + (1−Pr (Xn(t)∈B|Xn(0)))]

=
∏
n

[1 + (z2 − 1) Pr (Xn(t) ∈ B|Xn(0))] =
∏
n

[
1 + (z2 − 1)

∫
B

PXn(0)(t,s)m(ds)

]
. (A32)

Using Eqs. (A30) and (A32), note that

lz
NA(0)
1 E

[
z
NB (t)
2

∣∣E(0)
] =

(∏
n

[1 + (z1 − 1)IA(Xn(0))]

)(∏
n

[
1 + (z2 − 1)

∫
B

PXn(0)(t,s)m(ds)

])

=
∏
n

[1 + (z1 − 1) IA(Xn(0))]
[

1 + (z2 − 1)
∫

B

PXn(0)(t,s)m(ds)

]

=
∏
n

[
1 + (z1 − 1)IA(Xn(0)) + (z2 − 1)

(∫
B

PXn(0)(t,s)m(ds)

)

+ (z1 − 1)(z2 − 1)IA(Xn(0))
(∫

B

PXn(0)(t,s)m(ds)

)]
. (A33)

Substituting Eq. (A33) into Eq. (A29), and applying Eq. (A1) to the Poisson process E(0) = {Xn(0)}, we obtain that

E
[
z
NA(0)
1 z

NB (t)
2

] = exp
(∫

S

[
(z1 − 1)IA(x) + (z2 − 1)

(∫
B

Px(t,s)m(ds)

)

+ (z1 − 1)(z2 − 1)IA(x)

(∫
B

Px(t,s)m(ds)

)]

(0,x)m(dx)

)
. (A34)

Now, note that
(i) ∫

S
(z1 − 1)IA(x)
(0,x)m(ds) = (z1 − 1)

∫
A


(0,x)m(dx) = (z1 − 1)E[NA(0)], (A35)

(ii) ∫
S

(z2 − 1)

(∫
B

Px(t,s)m(ds)

)

(0,x)m(dx) = (z2 − 1)

∫
B

(∫
S

Px(t,s)
(0,x)m(dx)

)
m(ds)

= (z2 − 1)
∫

B


(t,s)m(ds) = (z2 − 1)E[NB(t)] (A36)

(in the transition from the second to the third line we applied Eq. (12)),
(iii) ∫

S
(z1 − 1)(z2 − 1)IA(x)

(∫
B

Px(t,s)m(ds)

)

(0,x)m(dx) = (z1 − 1)(z2 − 1)

∫
A

(∫
B

Px(t,s)m(ds)

)

(0,x)m(dx)

= (z1 − 1)(z2 − 1)E[NA 
→B(t)] (A37)

[in the transition from the second to the third line we applied Eq. (21)]. Thus, substituting Eqs. (A35)–(A37) into Eq. (A34), we
conclude that

E
[
z
NA(0)
1 z

NB (t)
2

] = exp ((z1 − 1)E[NA(0)]) exp ((z2 − 1)E[NB(t)]) exp ((z1 − 1)(z2 − 1)E[NA 
→B(t)]) (A38)

(z1,z2 complex). This proves Eq. (26).
Finally, differentiating Eq. (A38) twice—once with respect to the variable z1 and once with respect to the variable z2—we

obtain that

E
[
NA(0)zNA(0)−1

1 NB(t)zNB (t)−1
2

] = E
[
z
NA(0)
1 z

NB (t)
2

]
E[NA 
→B(t)] + E

[
z
NA(0)
1 z

NB (t)
2

]
(E[NA(0)] + (z1 − 1)E[NA 
→B(t)])(E[NB(t)]

+ (z2 − 1)E[NA 
→B(t)]). (A39)
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Setting z1 = z2 = 1 in Eq. (A39) yields

E[NA(0)NB(t)] = E[NA 
→B(t)] + E[NA(0)]E[NB(t)], (A40)

which, in turn, implies that

Cov[NA(0),NB(t)] = E[NA 
→B(t)]. (A41)

This proves Eq. (27).
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