
PHYSICAL REVIEW E 86, 041137 (2012)

Weak subordination breaking for the quenched trap model
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We map the problem of diffusion in the quenched trap model onto a different stochastic process: Brownian
motion that is terminated at the coverage time Sα = ∑∞

x=−∞(nx)α , with nx being the number of visits to site
x. Here 0 < α = T/Tg < 1 is a measure of the disorder in the original model. This mapping allows us to treat
the intricate correlations in the underlying random walk in the random environment. The operational time Sα

is changed to laboratory time t with a Lévy time transformation. Investigation of Brownian motion stopped at
time Sα yields the diffusion front of the quenched trap model, which is favorably compared with numerical
simulations. In the zero-temperature limit of α → 0 we recover the renormalization group solution obtained
by Monthus [Phys. Rev. E 68, 036114 (2003)]. Our theory surmounts the critical slowing down that is found
when α → 1. Above the critical dimension 2, mapping the problem to a continuous time random walk becomes
feasible, though still not trivial.
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I. INTRODUCTION

Random walks in disordered systems with a diverging
expected waiting time have attracted vast interest over many
decades. Two approaches in this field are the annealed con-
tinuous time random walk (CTRW) model and the quenched
trap model (QTM). Starting in the 1970s, the Scher-Montroll
CTRW approach was used to model subdiffusive photocurrents
in amorphous materials [1–4] and for contaminant transport in
hydrology [5]. Bouchaud and co-workers showed that the trap
model is a useful tool for the description of aging phenomena
in glasses [6–10]. Then fractional kinetic equations that
describe the CTRW dynamics became a popular tool [11].
More recently these models were used to describe non-self-
averaging [12,13] and weak ergodicity breaking [6,14], which
is important for the statistical description of dynamics of single
quantum dots [15] and single molecules in living cells [16,17].

This paper presents a different approach for random walks
in a quenched random environment, i.e., site disorder at each
lattice point is fixed in time. Because of its generality, this
topic has attracted tremendous interest in terms of physics
[11,18–24] and mathematics [25–27]. For the QTM the critical
dimension is 2 [19,28–31]. Above two dimensions the Scher-
Montroll CTRW, which is a mean field theory, qualitatively
describes the type of subdiffusive process that originates from
an anomalous waiting time distribution. According to Polya’s
theorem [32,33] on a simple lattice and in dimension 3, a
random walk is nonrecurrent. Hence, in a disordered system
the particle (roughly speaking) tends to visit new lattice points
along its path. In contrast, in one dimension the random walk
is recurrent and a particle visits the same lattice point many
times. Thus, above the critical dimension the CTRW approach
works well, but fails in one dimension due to correlations
of the random walk with the disorder. In other words, the
renewal theory used within the annealed CTRW framework is
not a valid description of the QTM [19]. Beyond the mean field
renormalization group methods are used to tackle the problem
of random walks in quenched environments [22,28,34,35].
For example, Machta [28] found the scaling exponents of
the QTM and Monthus [34] investigated its diffusion front

in the limit of zero temperature (see details below). While
the renormalization group method is powerful, it has its
limitations: A simple approach that can predict the diffusion
front of random walkers in the QTM is still missing.

We provide an alternative approach for random walks in
the QTM, which we call weak subordination breaking. For the
CTRW it is well known that one may decompose the process
into ordinary Brownian motion and a Lévy time process, an
approach called subordination [36–40]. In this scheme normal
Brownian motion takes place in an operational time s. The
disorder is effectively described by a Lévy time transformation
from operational time s to laboratory time t (see details below).
This method is not intended for random walks in fixed random
environments since it is based on the renewal assumption.
The latter implies the neglect of correlations in the sense that
waiting times are not specific to a lattice site. So a different
approach capable of dealing with quenched disorder is now
investigated. A brief summary of our results was published in
Ref. [41].

This paper is organized as follows. After presenting the
QTM in Sec. II, we briefly review the standard subordination
scheme in Sec. III. The concept of random time in the QTM
is presented in Sec. IV, which leads to weak subordination
breaking in Sec V. General properties of the diffusion front
〈P (x,t)〉 are found in Sec. VI, while Secs. VII and VIII deal
with the limits of strong and weak disorder, respectively.
Section IX discusses critical slowing down. Throughout the
work we compare theory with numerical simulations.

II. QUENCHED TRAP MODEL

We consider a random walk on a one-dimensional lattice
with lattice spacing equal to one. For each lattice site x

there is a quenched random variable τx , which is the waiting
time between jump events for a particle situated on x. After
time τx has elapsed the particle jumps to one of its two
nearest neighbors with equal probability. The particle starts
on the origin x = 0 at time t = 0, waits for time τ0, then
jumps (with probability 1/2) to x = 1, waits there for τ1,
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etc. Note that if the particle returns to x = 0 it will wait
there again for a time interval τ0. The {τx} are positive
independent identically distributed random variables with a
common probability density function (PDF) ψ(τx). The goal
of this paper is to find the long-time behavior of 〈P (x,t)〉, the
probability of finding the particle on x at time t averaged over
the disorder. For details on QTM see [19,31,42,43].

In the literature two related models are usually considered.
The first model, which we use in simulations presented below,
assumes that for a given lattice site x a particle will wait for a
fixed waiting time τx . A slightly more physical approach is to
assume that waiting times on lattice point x are exponentially
distributed with a mean τx . Bertin and Bouchaud [42] showed
that the two approaches yield the same asymptotic results in
the limit of long measurement times.

In this paper our main interest is with power law waiting
times

ψ(τx) ∼ A

|�(−α)| (τx)−(1+α) (1)

for τ → ∞ and 0 < α < 1. The mean waiting time 〈τx〉 = ∞
and in this sense the diffusion is scale free. According to the
Tauberian theorem [32], the Laplace transform of the waiting
time PDF is

ψ̂(u) ∼ 1 − Auα + · · · (2)

for u → 0. In the QTM the physical mechanism leading to
these power laws is based on trapping dynamics [19]. On a
lattice points x we randomly assign traps. The energy depth of
the trap on x is Ex and the process of activation from a trap
is thermal. According to the Arrhenius law, τx ∝ exp(Ex/T ),
where T is the temperature. Then assume that the PDF of
Ex > 0 is exponential f (Ex) = exp(−Ex/Tg)/Tg , where Tg

is a measure of the energy disorder. One easily finds

α = T

Tg

, A = |�(−α)|α. (3)

Due to the Boltzmann factor τx ∝ exp(E/T ), small changes
in energy lead to exponential changes in waiting times, thus it
is enough to have an exponential distribution of energy traps
to obtain power law waiting times. Experimental observation
of the linear dependence of α on temperature, in photocurrent
spectroscopy in As2Se3 can be found in Fig. 3 in Ref. [44]. We
note that the stochastic dynamics under investigation describes
several other mechanisms of anomalous diffusion (caused
by effective waiting times that are anomalously distributed)
beyond the QTM [12]. For example, random walks on comb
structures with power law distributed lengths of the comb’s
teeth mimic a random walk on the percolation cluster. Thus
the trap model describes both energetic disorder and spatial
disorder.

In what follows we will also consider the limit α → 1. This
limit is meant in the sense that ψ̂(u) ∼ 1 − Au . . . , which
means that the average waiting time is finite (a Gaussian
diffusion front). The very special border case ψ(τx) ∝ τ−2

was treated by Bertin and Bouchaud [42]. It yields Gaussian
diffusion with logarithmic corrections and is not treated here.

III. SUBORDINATION IN THE ANNEALED TRAP MODEL,
CTRW APPROACH

We now briefly review the annealed version of the
model: For the well investigated Scher-Montroll-Weiss CTRW
[11,19,32] in particular we discuss the concept of time
subordination [36–40]. Later we contrast the CTRW approach
with the intricate problem of the quenched type. The CTRW
model considered here is for a one-dimensional random walk
on a lattice with lattice spacing equal to unity. Starting on
the origin x = 0 at time t = 0, the particle waits for a time
t1 and then jumps to one of its nearest neighbors (lattice
points x = 1 or −1) with equal probability. The process is
then renewed, namely, the particle waits on lattice point 1 (for
example) for time t2 until it jumps back to 0 or 2, etc. The
waiting times {t1,t2, . . . ,tn, . . .} are independent, identically
distributed random variables with a common PDF φα(t). Here
tn is the nth waiting time, which is not correlated with a specific
lattice point x and hence clearly the CTRW model is very
different from the quenched case. Similar to the quenched
case, we consider waiting time PDFs with a diverging averaged
waiting time

∫ ∞
0 tφα(t)dt = ∞, namely,

φα(t) ∼ Aα

|�(−α)| t
−(1+α), (4)

with 0 < α < 1 and Aα > 0. The corresponding Laplace
transform of the waiting time PDF behaves like

φ̂α(u) ∼ 1 − Aαuα + · · · (5)

when u is small. It is well known that the diffusion is
anomalous 〈x2〉 ∝ tα [11,19].

Let P (x,t) be the probability of finding the particle on x

at time t . By conditioning the number of jumps s performed
until time t ,

P (x,t) =
∞∑

s=0

nt (s)q(x,s), (6)

where nt (s) is the probability of performing s jumps in the
time interval (0,t) and q(x,s) is the probability that after s

steps the particle is located on x. In the limit of large t the
number of jumps s is also large. Following Ref. [19], we apply
the Gaussian central limit theorem

q(x,s) ∼ 1√
2πs

e−x2/2s , (7)

which is valid when s → ∞. Here we used the model
assumption that the variance of the jump lengths is unity, i.e.,
the lattice spacing is equal to 1.

To find nt (s) we consider the random time

t =
s∑

i=1

ti . (8)

In the limit of large s the time is a sum of many independent
identically distributed random variables with a diverging mean
waiting time (since 0 < α < 1). Hence Lévy’s limit theorem
applies. Let

η = t

s1/α
; (9)
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then in the s → ∞ limit

〈e−uη〉 = φ̂s
α

(
u

s1/α

)
=

(
1 − Aαuα

s
+ · · ·

)s

→ e−Aαuα

. (10)

Namely, the PDF of η > 0 is a one-sided Lévy function
denoted by lα,Aα,1(η), which is defined via its Laplace pair

∫ ∞

0
e−uηlα,Aα,1(η)dη = e−Aαuα

. (11)

These Lévy PDFs are well investigated: Their series expansion,
asymptotic behaviors, and graphic presentations can be found
in Refs. [45–47]. Information on these PDFs essential for our
work are summarized in Appendix A. From the PDF of η we
find the PDF of s. Since both s and t are increasing along the
process the transformation is straightforward. Using Eq. (10)
and η−α = s/tα we find the well known PDF of s [19],

nt (s) ∼ t

α
s−1/α−1lα,Aα,1

(
t

s1/α

)
. (12)

In the long-time limit the Green’s function of the CTRW
process is thus given by [19,36]

P (x,t) ∼
∫ ∞

0
nt (s)e−x2/2s/

√
2πsds, (13)

where we switched from a summation in Eq. (6) to integration.
The time transformation (13) maps normal Gaussian diffu-

sion to anomalous diffusion. In Ref. [37] P (x,t) was obtained
in d dimensions by solving the integral transformation, which
applies more generally to solutions of the fractional time
Fokker-Planck equation [48]. More importantly, we may think
of s as an operational time in which usual Brownian motion
is performed. The operational time s is a random variable
whose statistics is determined by the PDF nt (s), where t

is a laboratory time. In other words, the annealed disorder
turns the operational time to a random variable. We note that
subordination scheme can be formulated for the trajectories of
the corresponding paths, in a continuum limit of the walk, and
has been the topic of extensive research [49–56].

Not surprisingly, subordination of this type does not
work for the QTM in one dimension. As mentioned in the
Introduction, the process of a random walk in a QTM is clearly
not a simple renewal process. The particle returning to a lattice
point already visited “remembers” its waiting time there.
Mathematicians have rigorously shown that in dimensions
higher than one [30] or in the presence of a bias [57] (see
also Refs. [58–60]) the CTRW approach describes well the
quenched dynamics since the particle does not tend to revisit
the same lattice points many times, thus confirming physical
insight in Refs. [18,19,28] (for dimension d = 2 logarithmic
corrections are also important). Nevertheless, some specific
quantities are still different for the annealed and the quenched
type of behavior even for dimension higher than one (see,
for example, Refs. [8,9]). While the diffusion front for the
three-dimensional QTM belongs to the domain of attraction
of the CTRW, the calculation of the anomalous diffusion
constant is not trivial (see the discussion in the summary).
Here we focus our attention on the unsolved case, i.e., the
QTM in one dimension, since there the Scher-Montroll CTRW
picture [11,19,32] breaks down.

IV. TIME IN THE QUENCHED TRAP MODEL

The time t in the QTM is

t =
∞∑

x=−∞
nxτx, (14)

where nx is the number of visits to lattice point x, which we
call the visitation number of site x. Since we are interested in
〈P (x,t)〉, where the angular brackets are for an average over
the disorder, we will consider ensembles of paths on a large
ensemble of realizations of disorder. As mentioned, the {τx}
are independent identically distributed random variables with
a common PDF ψ(τx) and the {nx} are also random variables.

Let us consider the random variable

η = t

(Sα)1/α
, (15)

where

Sα =
∞∑

x=−∞
(nx)α (16)

and we callSα the α coverage time. At this stage it is convenient
to consider paths whereSα is fixed and t is random and later we
will switch to the opposite situation (similar to the arguments
for s and t in the CTRW model). When α = 1, Sα is the
total number of jumps made

∑∞
x=−∞ nx = s. In the opposite

limit α → 0, the α coverage time S0 is the distinct number of
sites visited by the random walker, which is called the span
of the random walk. Notice that t in Eq. (14) is a sum of
nonindependent and nonidentical random variables.

We show that the PDF of η, ηPDF, in the limit Sα → ∞, is
a one-sided Lévy stable function

ηPDF ≡ lα,A,1(η). (17)

Namely, the heavy tailed distribution of the waiting times
τx determines the statistics of η through the characteristic
exponent α, while the visitation numbers {nx} determine the
scaling throughSα . By definition the Laplace η → u transform
of the PDF of η is

〈e−ηu〉 =
〈

exp

[
−

∞∑
i=−∞

niτi

(Sα)1/α
u

]〉
. (18)

We average with respect to the disorder, namely, with respect
to the independent and identically distributed random waiting
times τx , and obtain

〈e−uη〉 =
∞∏

x=−∞
ψ̂

[
nxu

(Sα)1/α

]
, (19)

where ψ̂(u) is the Laplace transform of the PDF of wait-
ing times ψ(τx). Now assume ψ̂(u) = exp(−Auα) ∼ 1 −
Auα + · · ·. Then, using Eq. (19) we have

〈e−uη〉 =
∞∏

x=−∞
exp

[
− A(nx)αuα

Sα

]
= e−Auα

. (20)

Hence, if the waiting PDF is a one-sided Lévy PDF, i.e.,
ψ̂(u) = exp(−Auα), so is the PDF of η. In Appendix B we
consider the general case where ψ(τx) belongs to the domain
of attraction Lévy PDFs [i.e., families of PDFs satisfying
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the equation ψ̂(u) ∼ 1 − Auα + · · ·]. We prove there that the
statement in Eq. (17) is still valid.

From Eq. (17) we learn that the CTRW operational time
s, that is, the number of jumps made in the random walk,
loses its importance in the quenched model. In the QTM the
operational time is the α coverage time Sα . We now invert the
process fixing time t to find the PDF of Sα ,

nt (Sα) ∼ t

α
(Sα)−1/α−1lα,A,1

[
t

(Sα)1/α

]
. (21)

In the following section we explain how to use the operational
time Sα to obtain the desired diffusion front of the QTM.

V. WEAK SUBORDINATION BREAKING

To find the solution of the problem, namely, to find 〈P (x,t)〉
for the QTM, we follow the following steps.

(i) Choose the laboratory time t , which is a fixed parameter.
(ii) Use a random number generator and draw the stable

random variable η from the one-sided Lévy law lα,A,1(η).
(iii) With η and t determine the hitting target Sα , which

according to Eq. (15) is Sα = (t/η)α .
(iv) Generate a binomial random walk on a lattice, with

probability 1/2 for jumping left and right. Stop the process
once its Sα crosses the hitting target set in step (iii).

(v) Record the position x of the particle at the end of the
previous step.

(vi) Go to step (ii). After this loop is repeated many times,
we generate a histogram of x.

The histogram once normalized yields 〈P (x,t)〉 when t is
large. Notice that in this scheme there is no disorder. The
second step is implemented with a simple algorithm provided
by Chambers et al. [61]. These authors show how to generate
stable random variables such as η using two independent
uniformly distributed random variables and for convenience
their formula is provided in Appendix A.

More importantly, we can now start treating the problem
analytically and find the diffusion front. So far we have
replaced the problem of random walks in the QTM with
a different stochastic process: Brownian motion, which is
stopped when the hitting target Sα is crossed. In other words,
we got rid of the disorder. Notice that the CTRW process and
standard subordination [36–40] are reached once we replace
Sα with s. In this sense the QTM exhibits what we call
weak subordination breaking: The operational time is now
Sα , although the Lévy time transformation used already in the
usual subordination scheme of Eq. (13) remains a useful tool.

VI. DIFFUSION FRONT OF THE QUENCHED
TRAP MODEL

Let PB(x,Sα) be the PDF of x for a binomial random walk
on a lattice at operational time Sα . The subscript B indicates
that the underlying motion is Brownian. The corresponding
paths are generated from a random walk on a one-dimensional
lattice, with equal probability of jumping left and right, which
is stopped when Sα is reached (or crossed for the first time).
The averaged over disorder propagator of the QTM is found
by using Eq. (21) and the scheme presented in the preceding

section:

〈P (x,t)〉 ∼
∫ ∞

0
PB(x,Sα)nt (Sα)dSα, (22)

which is valid in the long-time limit. Equation (22) is a
generalization of the subordination equation (13). Namely, it
transforms Brownian motion stopped at the coverage time Sα

to the QTM dynamics in laboratory time t .
From Eq. (22) we may find general properties of the Green’s

function 〈P (x,t)〉 in terms of its corresponding Brownian
partner PB(x,Sα). For example, the Laplace t → u transform

〈P̂ (x,u)〉 = Auα−1P̂B(x,Auα). (23)

Less formal relations are found if we exploit the scaling
behavior of Brownian motion, as we now explain.

A. Scaling arguments

Brownian motion follows the usual diffusive scaling x2 ∝
s, where s is the number of steps. In Appendix A we show
that s ∝ (Sα)2/(1+α), which is now explained using simple
arguments. For Brownian motion the particle explores a region
that scales like s1/2. The visitation number nx within this
region (i.e., roughly |x| < s1/2) is the number of jumps made
s divided by the number of sites in the explored region s1/2, so
nx ∝ s/s1/2 = s1/2. Since particles typically visit |x| 
 s1/2

rarely, we have in that region nx ∝ 0. Hence Sα ∝ √
s(nx)α ∝

s(1+α)/2. Indeed, in Appendix C we show that

〈Sα〉 = Cαs(1+α)/2 (24)

with

Cα = 2(α+3)/2�
(
1 + α

2

)
√

π (1 + α)
. (25)

When α = 1 we have C1 = 1 since S1 = ∑∞
x=−∞ nx = s. In

the opposite limit α = 0 we find a well known result obtained
by Dvoretzky and Erdös [62],

〈S0〉 =
√

8s

π
. (26)

By definition 〈S0〉 is the averaged number of distinct sites
visited by an unbiased random walker [32].

Using x ∝ s1/2 and Sα ∝ s(1+α)/2 scalings, we have x ∝
(Sα)1/(1+α). We emphasize that this is a property of simple
binomial random walks, which we can now exploit to
investigate the solution of the QTM. More specifically this
scaling implies

PB(x,Sα) = 1

(Sα)1/(1+α)
Bα

[
x

(Sα)1/(1+α)

]
. (27)

Here Bα(z) is a non-negative function normalized according
to

∫ ∞
−∞ Bα(z)dz = 1. Further from the symmetry of the walk

Bα(z) = Bα(−z). As shown in Fig. 1, the PDF Bα(z) exhibits
an interesting transition between a V shape for α → 0 and a
Gaussian shape when α → 1. In the following sections we will
investigate Bα(z) in detail.

With Bα(z) we obtain useful relations between the diffusion
front of the trap model and Brownian motion. Define the
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z
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B
α(z

)

α=0.5
α=0
α=0.9
Eq. (39)
Eq. (50)

FIG. 1. (Color online) Presented behavior of the PDF Bα(z) as
obtained by simulations of Brownian motion on a lattice (symbols)
and compared to theoretical predictions [Eqs. (39) and (50)] without
fitting. Here Bα(z) exhibits a transition between a Gaussian shape
when α → 1 to a V shape when α → 0.

dimensionless time t̃ = t/A1/α and the scaling variable

ξ = x

(t̃)α/(1+α)
. (28)

Then it is easy to show that

〈P (x,t)〉 ∼ gα(ξ )

(t̃)α/(1+α)
(29)

and using Eq. (22)

gα(ξ ) =
∫ ∞

0
dy yα/(1+α)Bα(ξyα/(1+α))lα,1,1(y). (30)

For the behavior of 〈P (x,t)〉 on the origin we use∫ ∞

0
dy yqlα,1,1(y) =

{∞ for q/α > 1
�(1−q/α)
�(1−q) for q/α < 1

(31)

and then find

〈P (x = 0,t)〉 ∼ Bα(0)
�

(
α

1+α

)
�

(
1

1+α

)
(t̃)α/(1+α)

. (32)

This is a useful result since the behavior of Bα(z) on the
origin z = 0 gives the corresponding behavior of 〈P (x = 0,t)〉
without the need to solve any integral. Further, Eq. (32) hints
at an interesting behavior when α → 0. The ratio of the �

functions diverges in that limit, hence, as shown in Fig. 1,
Bα(z = 0) must go to zero when α → 0 for 〈P (x = 0,t)〉 to
remain finite. Such a behavior is analytically investigated in
the following section.

Another useful relation is found between the moments
〈|x|q〉 = 〈∫ ∞

−∞ |x|qP (x,t)dx〉 of the original QTM and the
moments 〈|z|q〉 = ∫ ∞

−∞ |z|qBα(z)dz. Using Eqs. (30) and (31)
we find

〈|x|q〉 = 〈|z|q〉 �
(

q

1+α

)
α�

(
qα

1+α

) (t̃)αq/(1+α). (33)

The scaling x2 ∝ (t̃)2α/(1+α) was obtained long ago in
Refs. [19,29] using elegant scaling arguments and in Ref. [28]

TABLE I. Values of 〈z2〉 and Bα(z = 0),
obtained from Brownian simulations on a lattice.

α 〈z2〉 Bα(z = 0)

0 0.5 0
0.1 0.592 0.08
0.2 0.673 0.15
0.3 0.746 0.2
0.4 0.808 0.24
0.5 0.859 0.28
0.6 0.907 0.3
0.7 0.929 0.33
0.8 0.961 0.35
0.9 0.986 0.38

1 1 1/
√

2π

using a renormalization group approach. The important con-
tent of Eqs. (30), (32), and (33) is that once we obtain Bα(z)
from either theory or simulations of Brownian trajectories, we
have a useful method to obtain exact statistical properties of
the diffusion front.

On a computer our approach is very useful. For example, we
have numerically generated Brownian trajectories on a lattice
and obtained Bα(z) in Fig. 1 while 〈z2〉 and Bα(0) are reported
in Table I. With 〈z2〉 given in Table I and Eq. (33) we get the
mean square displacement of the QTM 〈x2〉. Direct simulations
of the QTM are favorably compared with the predictions of
our theory in Fig. 2.

Finally, the cumulative distribution function Gα(ξ < 
) =∫ 


−∞ gα(ξ )dξ , the probability that the random variable ξ attains
a value less than 
, is found using Eq. (27):

Gα(ξ < |
|) = 1 −
∫ ∞

0
dz Bα(z)Lα

[(
z

|
|
)(1+α)/α]

. (34)

Here Lα(y) = ∫ y

0 lα,1,1(y)dy is the cumulative distribution
of a one-sided stable random variable. From symmetry

1 10
2

10
4

10
6

10
8

10
9

t

  1   

10
2

10
4

10
6

10
8

<
x2 >

QTM α=0.2
QTM α=0.4
QTM α=0.6
QTM α=0.8
Eq. (33)
Eq. (53)
Eq. (47)

FIG. 2. (Color online) Mean square displacement versus time as
obtained from QTM simulations (symbols), compared to the theory
(lines) based on weak subordination breaking. Equation (53) is used
for analytical predictions for α = 0.4,0.6,0.8 and Eq. (47) is used for
α = 0.2.
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Gα(ξ, − |
|) = 1 − Gα(ξ < |
|). The integral representation
of the distribution Lα(y) can be found in Ref. [61].

VII. LIMIT α → 0

As mentioned in the Introduction, the diffusion front
〈P (x,t)〉 was treated using a renormalization group method by
Monthus [34]. We will now investigate this interesting limit
using our approach. For that we must first find Bα(z) in the
limit α → 0.

A. limα→0 Bα(z) has a V shape

We consider Brownian motion on a lattice that is stopped
once the distinct number of sites visited by the walker reaches
the threshold S0 and as a reminder S0 is called the span. The
position of the particle is then x and we are interested in the
probability P (x,S0) of finding the particle on x.

The particle starts on the origin, hence clearly we have
|x| � S0. Further, P (x = 0,S0) = 0 since a particle starting
on the origin cannot reach the threshold S0 when it is on the
origin, i.e., a particle returning to the origin is not increasing
S0 since the origin is not a new site visited by the walker. From
symmetry P (−x,S0) = P (x,S0).

Consider first P (x = S0,S0). After the first step the particle
can be either on x = 1 with probability 1/2 or on x = −1
with the same probability. Clearly a trajectory going through
x = −1 cannot contribute to P (x = S0,S0) since to reach
x = S0 through x = −1 the span must be at least of length
S0 + 1. So we consider only trajectories going through x = 1.
Trajectories going through x = 1 are divided into three
nonintersecting categories: (i) trajectories that never reach
the origin x = 0 along their path, (ii) trajectories that reach the
origin but never cross it [see Fig. 3(a)], and (iii) trajectories
that go below x = 0. The latter will have a total span greater
than S0 and hence do not contribute. For class (i) the span
(after stepping into x = 1 in the first step) is S0 − 1. Similarly
for class (ii), the span is S0. For both cases the displacement
(from x = 1 to S0) is clearly S0 − 1. Hence we have

P (x = S0,S0) = 1
2 [P (x = S0 − 1,S0)

+P (x = S0 − 1,S0 − 1)], (35)

where the first (second) term on the right-hand side describes
trajectories returning (never returning) to the origin. The half
in front of the square brackets is due to the displacement in the
first jump event.

Continuing with similar reasoning, consider P (x =S0 − 1,

S0). The particle after the first step can be on either x = 1
or −1. As shown in Fig. 3(b), if it is on x = −1 it must travel
a distance S0 to reach its destination S0 − 1 while keeping
the span S0. In contrast, if it jumps to x = 1 the distance the
particle must travel is S0 − 2 and the span is S0. Hence we
have

P (x = S0 − 1,S0) = 1
2P (x = S0,S0)

+ 1
2P (x = S0 − 2,S0), (36)

where the first (second) term on the right-hand side describes
trajectories starting on the origin and in the first step jumping to
x = −1 (x = 1). Similarly, for S0 − n > 0 with n > 0 being

FIG. 3. (a) Trajectory with a span S0. The particle returns to the
origin along its path [category (ii) in text]; hence, in the time interval
s > 1 (excluding the first step) the displacement isS0 − 1 and the span
is S0. (b) A random walker with span S0 reaching x = S0 − 1 must
pass through x = −1. Here the first jump event brings the particle to
x = −1 and hence the span in s > 1 is S0 and the displacement is S0.

an integer we have

P (x = S0 − n,S0) = 1
2P (x = S0 − n − 1,S0)

+ 1
2P (x = S0 − n + 1,S0). (37)

Equations (35) and (37) are easily solved

P (x,S0) = |x|
S0(S0 + 1)

for − S0 � x � S0 (38)

and x ∈ Z. In the limit S0 
 1 we have, for the scaled variable
z = x/S0, the PDF

lim
α→0

Bα(z) =
{

|z| for |z| < 1

0 otherwise.
(39)

We see that Bα=0(z) has a V shape. This reflects the observation
that the particle reaching a large span S0 is most likely far from
the origin and the probability of reaching the span S0 for the
first time while the particle is on the origin is zero. We now
use this property of Brownian motion to solve the quenched
trap model in the limit α → 0.

B. Diffusion front in the α → 0 limit

Define the Fourier transform of the scaling function gα(ξ )
[Eq. (29)]

gα(kξ ) =
∫ ∞

−∞
eikξ ξ gα(ξ )dξ, (40)
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which as usual is also the moment generating function

gα(kξ ) =
∞∑

q=0

(ikξ )2q〈ξ 2q〉
(2q)!

. (41)

According to our theory, the moments 〈(ξ )2q〉 =∫ ∞
−∞ gα(ξ )ξ 2qdξ and similarly 〈x2q〉 for the QTM are

determined by Brownian motion with the help of the PDF
Bα(z) [Eq. (33)]. In the limit α → 0 we find, using Eq. (39),

〈z2q〉 = 2
∫ 1

0
z2qz dz = 1

1 + q
(42)

and hence for α → 0 Eqs. (28) and (33) give

〈ξ 2q〉 = (2q)!

q + 1
. (43)

Therefore

lim
α→0

gα(kξ ) =
∞∑

q=0

(−1)q
(

1

q + 1

)
(kξ )2q . (44)

Summing this series we find

lim
α→0

gα(kξ ) = ln[1 + (kξ )2]

(kξ )2
. (45)

An inverse Fourier transform yields

lim
α→0

gα(ξ ) = e−|ξ | − |ξ |E1(|ξ |), (46)

where E1(ξ ) = ∫ ∞
ξ

(e−t /t)dt is the tabulated exponential
integral [63]. This result (written in a different but equivalent
form) was obtained by Monthus [34] using the renormalization
group method, which is exact in the limit α → 0. In Fig. 4 we
show gα(ξ ) for simulations of the QTM (α = 0.1), Brownian
simulations using weak subordination breaking outlined in
Sec. V, and an analytical curve [Eq. (46)]. We see that the
theory that is exact when α → 0 works well also as an
approximation for small values of α.

When α is small we find a useful approximation for the
moments. Inserting 〈|z|q〉 [Eq. (42)] in Eq. (33) we have

〈|x|q〉 � 2

2 + q

�
(

q

1+α

)
α�

(
αq

1+α

)(
t

A1/α

)αq/(1+α)

. (47)

Notice that in this limit �[q/(1 + α)]/{α�[αq/(1 + α)]} �
�(1 + q); hence for q = 0 we have 〈|x|0〉 = 1, as expected
from normalization. In Fig. 2 we show 〈x2〉 versus time for
α = 0.2. Numerical simulation of the QTM perfectly matches
Eq. (47). Note that the theory based on Table I and Eq. (33)
does a slightly better job since that approach is not limited to
the α 
 1 regime.

VIII. APPROACHING THE GAUSSIAN LIMIT α = 1

In this section we consider the case α → 1 from below. We
now find an approximation for Bα(z) that yields the solution
of the QTM in this limit.
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-1

1

(a) α=0.1
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-1

1

g α(ξ
)

(b) α=0.5

-5 0 5

ξ
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-4
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-2
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-1

1
(c) α=0.75

FIG. 4. (Color online) Diffusion front of the QTM [simulations
(squares)] compared to the theory based on weak subordination
breaking [the algorithm in Sec. V (circles)] and analytical predictions
[Eqs. (46) and (52) (solid lines)] for α = 0.1and 0.75, respectively.

A. Bα(z) is Gaussian when α → 1

As before, to find Bα(z) we consider Brownian motion. The
probability of finding the particle on x at time s is a Gaussian

P (x,s) = exp
(− x2

2s

)
√

2πs
, (48)

as is well known. For α = 1 we have S1 = ∑∞
x=−∞ nx = s,

namely, S1 is not a random variable at all since it is equal
to the number of steps made in the underlying random walk.
In other words, the PDF of S1 is a δ function centered on
s. Therefore, when α is close enough to 1 we may neglect
fluctuations. This means that we omit the average in Eq. (25)
and use Sα = Cαs(1+α)/2. This approach together with Eq. (48)
gives the PDF of finding the particle on x for a random walk
stopped at the α coverage time Sα ,

PB(x,Sα) �
exp

[− x2

2(Sα/Cα )2/(1+α)

]
[2π (Sα/Cα)2/(1+α)]1/2

. (49)

Hence

Bα(z) � exp
[− (Cα )2/(1+α)z2

2

]
[2π/(Cα)2/(1+α)]1/2

(50)
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and it follows that

〈z2〉 = (Cα)−2/(1+α). (51)

In Fig. 1 Bα(z) obtained from Brownian simulations is
compared with the analytical prediction [Eq. (50)] for α = 0.9.

B. 〈P(x,t)〉 when α � 1

From Eqs. (22) and (49) we have

〈P (x,t)〉 �
∫ ∞

0
dSα

exp
[− x2

2(Sα/Cα )2/(1+α)

]
[2π (Sα/Cα)2/(1+α)]1/2

n(Sα,t). (52)

From Eq. (52) it is easy to get gα(ξ ), which is given in Eq. (D1)
in Appendix D. In Fig. 4 we compare the scaling function
obtained analytically and numerical simulations of the QTM
with Brownian simulations according to the disorder-free
algorithm in Sec. V. The approximate theory works reasonably
well even for α = 0.75.

Using Eqs. (33) and (51) we find the mean square
displacement of the QTM

〈x2〉 � (Cα)−2/(1+α)
�

(
2

1+α

)
α�

(
2α

1+α

)(
t

A1/α

)2α/(1+α)

. (53)

Calculation of other moments is as simple since the reader
may easily obtain 〈|z|q〉 from the Gaussian PDF [Eq. (50)] and
then apply Eq. (33). The behavior on the origin is found using
Eqs. (32) and (50):

〈P (x = 0,t)〉 � (Cα)1/(1+α)

√
2π

�
(

α
1+α

)
�

(
1

1+α

) (t̃)−α/(1+α). (54)

When α = 1 we get the expected behavior 〈P (x = 0,t)〉 =
(2πt̃)−1/2, which is normal diffusion.

The scaling function gα(ξ ) is analyzed in Appendix D.
Using properties of stable PDFs, we show that when ξ 
 1

gα(ξ ) ∼ gα(0) − 2(α−1)/2

(
1 + α

α

) Cα

�
(

1−α
2

)ξα + · · · , (55)

with

gα(0) = (Cα)1/(1+α)

√
2π

�
(

α
1+α

)
�

(
1

1+α

) . (56)

In the limit α → 1 we use limα→1 Cα = 1 and Eq. (55) gives

lim
α→1

gα(ξ ) ∼ 1√
2π

− lim
α→1

2

�
(

1−α
2

)ξα + · · · . (57)

The first term clearly reflects an ordinary Gaussian diffusion
front. The second term vanishes in the limit α = 1 since �(0) =
∞. This is because g1(ξ ) is Gaussian and hence the second term
in the expansion must be a ξ 2 term. So the 1/�(0) eliminates
the ξα in Eq. (57) as α → 1. In the opposite limit of ξ 
 1 a
steepest descent method gives

gα(ξ ) ∼ b1ξ
−2[(1−α)/(3−α)]e−b2ξ

2[(1+α)/(3−α)]
, (58)

where b1 and b2 are found in Appendix D. In the limit we find

lim
α→1

gα(ξ ) = 1√
2π

e−ξ 2/2, (59)

the expected Gaussian behavior.

0 0.2 0.4 0.6 0.8 1
α

0.2

0.4
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1

1.2

1.4

<
z2 >

Subordination
Gaussian Fit
QTM Simulation

FIG. 5. (Color online) Behavior of 〈z2〉 versus α as obtained
using Brownian simulations as in Table I (solid curve), direct QTM
simulations (circles), and a Gaussian fit (dashed line). According to
theory 〈z2〉 = 1/2 for α → 0 and 〈z2〉 = 1 for α → 1. For α = 0.8
and 0.9 the convergence of direct QTM simulations to theoretical
results is very slow (see Fig. 6) and is achieved only by extrapolating
the data in Fig. 6.

IX. CRITICAL SLOWDOWN α → 1

As discussed in Ref. [42], close to the critical point α = 1
convergence of direct simulations of the QTM is extremely
slow. In contrast, simulations of Brownian trajectories using
a weak subordination scheme converges in reasonable time,
at least on our computer. In this sense our approach is much
more efficient compared with direct simulation of the QTM
because our scheme, among other things, is a numerical tool
that is able to investigate the limit α → 1, using reasonable
amount of computational time.

In Fig. 5 we show 〈z2〉 versus α. Here 〈z2〉 was obtained
by several means: (i) simulation of the QTM, which gives
〈x2〉, and then with Eq. (33) we extract 〈z2〉; (ii) Brownian
simulations on a lattice (results in Table I); and (iii) analytical
theory [Eqs. (42) and (51)]. For α > 0.8 our simulations of the
QTM did not converge even for t = 109. To check this issue
better we define the deviation

�(t) ≡
∣∣∣∣∣ 〈x2〉α�

(
2α

1+α

)
�

(
2

1+α

)
(t/A1/α)2α/(1+α)

− 〈z2〉
∣∣∣∣∣ . (60)

According to Eq. (33), limt→∞ �(t) = 0. In Fig. 6 we present
�(t) versus time. Here 〈x2〉 is obtained from QTM simulations
and 〈z2〉 from Brownian trajectories (see Table I). In Fig. 6 we
show that �(t) ∼ tα−1 for α = 0.9 and observe a very slow
decay towards the asymptotic value �(t) → 0. Simulations
of the QTM did not converge (even for t = 109); however,
by extrapolating the data (assuming that nothing dramatic
happens for times larger than 109) we can conclude that
�(t) → 0 and in that sense our theory is consistent with the
simulations.

To overcome a critical slowdown in the region α → 1
we use the weak subordination scheme in Sec. V instead
of direct numerical simulations of the QTM. In Fig. 7 we
show the diffusion front. Good agreement between analytical
predictions (valid for α → 1) [Eqs. (52), (55), and (58)] and
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FIG. 6. (Color online) Behavior of � [Eq. (60)] as a function
of t for α = 0.8 and 0.9. A very slow convergence of � toward 0
for α close to 1 (a transition point between anomalous and normal
types of diffusion) suggests a critical slowdown for α → 1 as noticed
previously by Bertin and Bouchaud. The dashed line is a guide to the
eye with a t−0.1 behavior. The theoretical value of 0 for � hence can
be achieved only by extrapolation.

the weak subordination breaking algorithm is presented for
α = 0.9.

X. DISCUSSION

The main focus of this paper has been on the diffusion front
〈P (x,t)〉 of random walkers in the quenched trap model in one
dimension. We have shown that 〈P (x,t)〉 is found with a Lévy
time transformation acting on Brownian motion stopped at the
operational time Sα . Thus we mapped the random walk in a
disordered environment to a Brownian motion that is stopped
at the α coverage time Sα . This type of Brownian motion

-5 0 5
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7

Large ξ
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Analytical Prediction

FIG. 7. (Color online) Scaling PDF gα(ξ ) for α = 0.9 obtained by
using the weak subordination scheme of Sec. V for t = 105,106,107

and compared to the analytical prediction [Eq. (52)] and large-
and small-ξ expansions [Eqs. (55) and (58)]. A convergence of the
weak subordination scheme is achieved already for t = 105 and thus
overcomes the issue of a critical slowdown for direct simulations of
the QTM that do not converge even for t = 109 (see Figs. 5 and 6).

is interesting in its own right. For example, we have found a
transition from a V shape to a Gaussian behavior for the scaling
function Bα(z) describing this motion. Properties of this
function determine the statistics of diffusion in the QTM. For
α close to 1 and 0 we obtained analytical expressions for Bα(z)
and 〈P (x,t)〉, while numerical information easily obtained
from Brownian simulations provide a detailed description of
the diffusion front in the range 0 < α < 1.

For α → 0 our formulas reduce to the renormalization
group results obtained by Monthus [34]. The approach
presented here is an alternative to the renormalization group
method. Its advantage is that it is capable of dealing with
the whole spectrum of α, at least numerically, including the
critically slowed down regime of α → 1.

Is our method general or is it limited to the one-dimensional
quenched trap model? Clearly our approach can be extended
to higher dimensions or for random walks with biases. As
mentioned in the Introduction, beyond the critical dimension,
the QTM belongs to the domain of attraction of the CTRW.
Hence, for an ordinary random walk on a lattice in dimension 3
we expect thatSα is nonrandom and is equal to cαs when time s

is large and that cα is a constant not yet determined. In that case
the usual subordination method works for the corresponding
trap model. Hence, once the constant cα and the diffusion
coefficient of the corresponding discrete time random walk
are determined, we have the statistical information needed for
the determination of the diffusion front of the QTM. A detailed
analysis of the QTM for dimensions higher than one and for
biased processes, using methods developed here, are left for
future work.
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APPENDIX A

Here we summarize some known results on one-sided Lévy
stable random variables, which are used throughout this work.
By definition lα,1,1(t) is the inverse Laplace transform of
exp(−uα). The large-t series expansion

lα,1,1(t) = 1

π

∞∑
n=1

�(1 + nα)

n!
(−1)n−1 sin(πnα)t−(αn+1). (A1)

The asymptotic small-t behavior is [45]

lα,1,1(t) ∼ Bt−σ e−κt−τ

, (A2)

where

τ = α

1 − α
, κ = (1 − α)αα/(1−α), σ = 2 − α

2(1 − α)
,

(A3)
B = {[2π (1 − α)]−1α1/(1−α)}1/2.

Closed form PDFs are found by summing the series
of equations (A1) for specific choices of α [37,47]. For
example, we insert the series (A1) in MATHEMATICA and use
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the command “Simplify” to get Lévy PDFs in terms of a
combination of hypergeometric functions (e.g., for α = 1/4).
Similarly, Lévy’s PDFS with α = 1/4,1/3,1/2,2/3,9/10 can
be expressed in terms of special functions. In this way we
construct stable distributions. Some care must be practiced
since on some occasions we found that for extremely small
t MATHEMATICA yields wrong results [37]. This problem is
easily fixed since we can use Eq. (A2) in that regime. Further,
the problem is not crucial in the sense that it is found for so
small t that practically the PDF there is zero, though not being
aware of this issue solving integral transformations such as
Eq. (49) can lead to wrong results. A useful special case is
α = 1/2 since

l1/2,1,1(t) = 1

2
√

π
t−3/2 exp

(
− 1

4t

)
. (A4)

Chambers et al. [61] showed how to generate the stable
random variable we call η from a one-sided Lévy PDF lα,1,1(η).
Let

a(θ ) = sin[(1 − α)θ ][sin(αθ )]α/(1−α)

(sin θ )1/(1−α)
, 0 < θ < π. (A5)

Then η = [a(θ )/W ](1−α)/α , where θ is a uniform random
number on (0,π ) and W is a random variable drawn from
a standard exponential distribution W = − ln(x), where x is
uniform on (0,1).

APPENDIX B

In this appendix we obtain the distribution of η defined in
Eq. (15). We are interested in random walks with fixed Sα and
in the limit Sα → ∞. A large Sα implies also a large number
of steps (denoted with s); however, since Sα is fixed s remains
random. Our starting point is Eq. (19),

〈e−uη〉 =
∞∏

x=−∞
ψ̂

[
nxu

(Sα)1/α

]
. (B1)

It is important to note that the visitation numbers {nx} are
determined by the probabilities of jumping left and right (equal
to 1/2 in our model) and that these random numbers do not
depend on the waiting times since here Sα is fixed. Hence the
statistics of these visitation numbers are determined by simple
binomial random walks.

The Laplace τ → u transform of a rather general waiting
time PDF is in the small-u limit

ψ̂(u) = 1 − Auα + Buβ + · · · , (B2)

where as mentioned 0 < α < 1, A > 0, and β > α. The goal
is to show that when Sα → ∞ parameters such as B and β are
not important. To see this insert Eq. (B2) in Eq. (B1) and find

〈e−uη〉 =
∞∏

x=−∞

[
1 − A

(nx)α

(Sα)
uα + B

(nx)β

(Sα)β/α
uβ + · · ·

]
. (B3)

This can be rewritten as

〈e−uη〉 = 1 − Auα +
∞∑

x=−∞

∞∑
y=−∞,y �=x

A2

2

(nx)α(ny)α

(Sα)2
u2α

+B

∑∞
x=−∞(nx)β

(Sα)β/α
uβ + · · · . (B4)

We note that
∞∑

x=−∞

∞∑
y=−∞,y �=x

(nx)α(ny)α

=
∞∑

x=−∞

∞∑
y=−∞

(nx)α(ny)α −
∞∑

x=−∞
(nx)2α = (Sα)2 − S2α;

(B5)

hence

〈e−uη〉 = 1 − Auα + A2

2

(Sα)2 − S2α

(Sα)2
u2α

+B
Sβ

(Sα)β/α
uβ + · · · . (B6)

We use S2α/(Sα)2 → 0, which is justified at the end of this
appendix, and hence

(Sα)2 − S2α

(Sα)2
→ 1 (B7)

when Sα → ∞. Similarly, Sβ/(Sα)β/α → 0 for α < β. Sum-
marizing we find

〈e−ηu〉 ∼ 1 − Auα + A2u2α

2
+ · · · = e−Auα

. (B8)

The parameters B and β are unimportant. Further, for a typical
path there is no trace of the random variables {nx} in the final
expression (B8). The latter equation implies that the PDF of η

is a one-sided Lévy PDF as stated in Eq. (17).
To better estimate the convergence to this law we use a result

obtained in Appendix C. There we show that for a binomial
random walk with s steps we have

〈Sα〉 = Cαs(1+α)/2, (B9)

where Cα is a constant [Eq. (C15)]. We then assume the
following relation to hold:

Sα = rs(1+α)/2, (B10)

where r is a random variable that is independent of the number
of steps s. Since in the QTM jumps to nearest neighbors
have probability 1/2 like the binomial random walk and since
the statistics of the visitations numbers {nx} are independent
of the waiting times (for fixed Sα), we may use Eq. (B9),
derived for the binomial random walk, to analyze the QTM.
We have S2α ∝ s(1+2α)/2 and hence S2α ∝ (Sα)(1+2α)/(1+α),
so S2α/(Sα)2 ∝ (Sα)−1/(1+α), which goes to zero in the
scaling limit Sα → ∞, as we stated. Similarly, Sβ/(Sα)β/α ∝
s(1+β)/2/sβ(1+α)/2α = s(α−β)/(2α), which approaches zero since
α < β.

APPENDIX C

We consider a binomial random walk on a one-dimensional
lattice. Time s is discrete s = 0,1,2, . . . and the particle has
probability 1/2 to jump to its nearest neighbors on its left or
right. The walk starts on the origin x = 0. We now calculate
the average 〈Sα〉 for an s step random walk. For that aim we
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obtain 〈(nx)α〉 and then sum over x,

〈Sα〉 =
∞∑

x=−∞
〈(nx)α〉. (C1)

We consider this problem in the continuum limit of the model,
namely, we consider Brownian motion (see details below).
Thus our final expression for 〈Sα〉 describes the limit of
large s.

Let Ps,x(nx) be the probability of making nx visits on lattice
point x in the time interval (0,s). As usual in these problems
the Laplace transform

P̂u,x(nx) =
∫ ∞

0
e−usPs,x(nx)ds (C2)

is useful. Here we already started taking the continuum limit
since in the discrete time random walk s is not a continuous
variable. We avoid a formal transition from a discrete random
walk to the continuum limit to save space and time.

For a random walk starting on the origin let τ be the first
time the particle reaches lattice point x and fx(τ ) be its PDF.
Here τ is a first passage time for an unbiased random walk and
it distribution is well known [33]. From symmetry f−x(τ ) =
fx(τ ). The number of visits on lattice point x, nx , is determined
by a first passage time from the origin to point x and then by
the probability to revisit point x. Due to translation symmetry
of the random walk the probability of nx − 1 revisits to a lattice
point x in a time interval s − τ (once reaching that point at
τ ) is identical to the probability of nx − 1 visits on the origin
(starting on the origin) within the same time interval. Hence
translational symmetry gives

Ps,x(nx) =
∫ s

0
fx(τ )Ps−τ,0(nx − 1)dτ. (C3)

Using the convolution theorem, P̂u,x(nx) = fx(u)P̂u,0(nx −
1). Here Ps,0(n0) is the probability to visit the origin n0 times
in the time interval (0,s).

For the origin x = 0 we have

P̂u,x=0(n0) =
{

1−f̂1(u)
u

n0 = 0

f̂1(u)n0 1−f̂1(u)
u

n0 �= 0.
(C4)

Here f̂1(u) is the Laplace transform of f1(τ ). To get a better
insight about Eq. (C4) note that if n0 = 0 we have Ps,x=0(n0 =
0) = 1 − ∫ s

0 f1(τ )dτ , which is the probability of not returning
to the origin. To see this note that after one jump the particle
is on either x = 1 or −1 and hence for n0 to remain zero the
particle must not return to the origin [of course f1(τ ) is the
PDF of first passage times from x = 1 or −1 to the origin].
Applying the convolution theorem of the Laplace transform
to Ps,x=0(n0 = 0) = 1 − ∫ s

0 f1(τ )dτ , we get the first line in
Eq. (C4). Note that the original stay on the origin, at time
s = 0, is not counted, so we may have n0 = 0 once the particle
never returns to the origin. The probability that n0 = 1 is given
by

Ps,1(n0 = 1) =
∫ s

0
f1(τ )Ps−τ,0(n0 = 0)dτ. (C5)

Again using the convolution theorem, we find Eq. (C4) for
n0 = 1 and similarly for n0 > 1. Using Eq. (C3) it is easily

shown that for x �= 0

P̂u,x(nx) =
{

1−f̂x (u)
u,

nx = 0

f̂x(u)f̂1(u)nx−1 1−f̂1(u)
u

, nx �= 0.
(C6)

The Laplace transform of the first passage time PDF is

f̂x(u) = exp(−
√

2xu1/2). (C7)

The
√

2 comes from the fact that the diffusion constant is equal
to 1/2 since the variance of jump lengths is unity. In time τ ,
fx(τ ) is the one-sided Lévy PDF with index 1/2 [see Eq. (A4)]
and fx(τ ) ∼ τ−3/2 as is well known [33].

We now calculate 〈(n0)α〉u: The Laplace transform of
〈(n0)α〉s

〈(n0)α〉u =
∫ ∞

0
(n0)αP̂u,0(n0)dn0, (C8)

where the integration (instead of summation) implies that we
are considering the continuum limit of the random walk (i.e.,
Brownian motion). Inserting in Eqs. (C8), (C4), and (C7)
we find

〈(n0)α〉u ∼
(

1√
2

)α

�(1 + α)u−1−α/2, (C9)

which is valid for small u corresponding to large s. Using
Eqs. (C6) and (C7) we get the α moment of the visitation
number for lattice point x,

〈(nx)α〉u = e−x
√

2u1/2
�(1 + α)

(
1√
2

)α

u−1−α/2. (C10)

Notice that 〈(nx)α〉u ∼ f̂x(u)〈(n0)α〉u, reflecting the first arrival
at x and the translation symmetry of the lattice.

Denote 〈Sα〉u as the Laplace s → u transform of 〈Sα〉s . In
the Brownian limit we replace the summation in Eq. (C1) with
integration

〈Sα〉u = 2
∫ ∞

0
〈(nx)α〉udx (C11)

and with the help of Eq. (C10)

〈Sα〉u ∼
√

2
1−α

�(1 + α)u−3/2−α/2. (C12)

Using the Laplace pair

u−(3+α)/2 → s(α+1)/2

�
(

α+3
2

) , (C13)

we find with simple identities for the � function [63] the main
result of this appendix:

〈Sα〉 = Cαs(1+α)/2, (C14)

with

Cα = 2(α+3)/2�
(
1 + α

2

)
√

π (1 + α)
. (C15)

For α = 1 we have S1 = ∑∞
x=−∞ nx = s, a result that is

retrieved from Eq. (C14) since C1 = 1. In the limit α = 0 we
have S0 equal to the span of the random walk, namely, to the
number of distinct sites visited by the walker. As mentioned
in the main text, in this limit we retrieve Eq. (26), which was
found a long time ago in Ref. [62].
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APPENDIX D

Here we investigate the function gα(ξ ) in the limit where
α < 1 is close to unity with the Gaussian approximation for
Bα(z). Changing variables in Eq. (49) according to Sα =
tαη−(1+α)/2, we find, using the definition in Eq. (29),

gα(ξ ) = (Cα)1/(1+α)

√
2π

1 + α

2α

×
∫ ∞

0
e−uηη1/(2α)lα,1,1(η(1+α)/(2α))dη, (D1)

where

u = ξ 2(Cα)2/(1+α)/2. (D2)

Equation (D1) is a Laplace transform. Inserting in Eq. (D1)
ξ = 0, changing variables according to y = η(1+α)/(2α), and
using Eq. (31), we get gα(ξ = 0) [Eq. (56)]. The small-u limit
(corresponding to small ξ ) of Eq. (D1) is controlled by the
large-η behavior of

η1/(2α)lα,1,1(η(1+α)/(2α)) ∼ sin πα

π
�(1 + α)η−1−α/2, (D3)

where we used the large-η expansion of stable PDFs
[Eq. (A1)]. Using the Tauberian theorem, noting that uα/2 and
η−(1+α/2)/|�(−α/2)| are Laplace pairs, Eqs. (D1) and (D3) to-
gether with some identities of the � function [63] give Eq. (55).

In the opposite limit of large ξ (i.e., large u) we use the
small-η behavior of η1/(2α)lα,1,1(η(1+α)/(2α)) in Eq. (D1). For
that aim we use the small-η behavior of one-sided stable PDFs
[Eq. (A2)]. We get

gα(ξ ) = C̄

∫ ∞

0
e−uηη−γ e−κη−δ

dη, (D4)

γ = 3 − α

4(1 − α)
, δ = 1 + α

2(1 − α)
,

(D5)

C̄ = B
(Cα)1/(1+α)

√
2π

1 + α

2α
.

where κ and B are defined in Appendix A [Eq. (A3)].

We now use steepest descent method. Let h(η) = uη +
κη−δ . The extremum is on ηe, which is determined us
usual from ∂h/∂η = 0, so ηe = (u/κδ)−1/(1+δ). Using the
expansion

h(η) = h(ηe) + 1
2κδ(δ + 1)(ηe)−δ−2�2 + · · · , (D6)

where � = η − ηe is small, we then have, after extending the
domain of integration,

gα(ξ ) ∼ C̄(ηe)−γ e−h(ηe)

×
∫ ∞

−∞
exp[−δ(1 + δ)κ(ηe)−δ−2�2/2]d�. (D7)

Solving this Gaussian integral, we obtain

gα(ξ ) = ˜̃Cu−μe−κ̄uδ/(1+δ)
, (D8)

where ˜̃C = C̄
√

2π [δ(1 + δ)κ]−1/2(κδ)μ, κ̄ = (κδ)1/(1+δ) +
κ(κδ)−δ/(δ+1), and μ = (1 − α)/(3 − α). Reverting to the
variable ξ (instead of u) using Eq. (D2), we get Eq. (58),

gα(ξ ) = ˜̃C

[
ξ 2(Cα)2/(1+α)

2

]−μ

× exp

{
− κ̄

[
(Cα)2/(1+α)ξ 2

2

][(1+α)/(3−α)]}
. (D9)

To prepare for the limit α → 1 we rewrite

˜̃C = (Cα)1/(1+α) 1 + α

2α

B√
δ(1 + δ)κ

. (D10)

Using limα→1 Cα = 1,

lim
α→1

B√
δ(1 + δ)κ

= 1√
2π

, (D11)

and limα→1 κ̄ = 1, we find the expected Gaussian behavior
[Eq. (59)]. Rewriting we obtain

gα(ξ ) ∼ b1ξ
−2[(1−α)/(3−α)]e−b2ξ

2[(1+α)/(3−α])
(D12)

for ξ 
 1 with b1 = √
(1 + α)/[2πα(3 − α)]D, b2 =

[(3 − 2α)/2]D2, and D = [(1 + α)1−αααCα]1/(3−α).
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