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Usefulness of an equal-probability assumption for out-of-equilibrium states:
A master equation approach
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We examine the effectiveness of assuming an equal probability for states far from equilibrium. For this aim, we
propose a method to construct a master equation for extensive variables describing nonstationary nonequilibrium
dynamics. The key point of the method is the assumption that transient states are equivalent to the equilibrium state
that has the same extensive variables, i.e., an equal probability holds for microscopic states in nonequilibrium.
We demonstrate an application of this method to the critical relaxation of the two-dimensional Potts model
by Monte Carlo simulations. While the one-variable description, which is adequate for equilibrium, yields
relaxation dynamics that are very fast, the redundant two-variable description well reproduces the true dynamics
quantitatively. These results suggest that some class of the nonequilibrium state can be described with a small
extension of degrees of freedom, which may lead to an alternative way to understand nonequilibrium phenomena.
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I. INTRODUCTION

A surprising property of equilibrium states is that they
can be identified by a small number of extensive variables
(EVs) even though the system has an almost infinite number
of degrees of freedom (DOFs). When EV values are given, the
equilibrium system almost surely exhibits the most typical
state, i.e., the equilibrium state is uniquely determined by
macroscopic observation. This is the basis of the equilibrium
statistical mechanics as the law of large numbers and an
equal probability for microscopic states. On the other hand,
nonequilibrium states generally need more information to be
identified, and a history dependence (non-Markov process)
appears if we label the state in a manner similar to that used
to label the equilibrium states [1]. To treat the dynamics of
a system as a Markov process, one has to deal with more
DOFs, equal to the total number of the system in the worst
case. However, it is natural to expect that there will be
many situations in which a small extension of the DOFs will
provide a sufficiently accurate description of nonequilibrium
phenomena. In this paper, we propose a method to describe
the nonstationary nonequilibrium dynamics by employing a
few more EVs that are redundant for equilibrium states. We
start from a macroscopic description with a small number of
DOFs and approach the microscopic description by increasing
degrees. This approach proceeds in the manner opposite
to the usual approach, which starts from a microscopic
description and reduces the DOFs, although approaching the
same point. Thus, this approach may be a new method to
connect the microscopic and macroscopic worlds and add a
new perspective to nonequilibrium statistical physics.

If out-of-equilibrium dynamics can be described by the
information of equilibrium states, like the successful linear
response theory [2], it can be very useful for our understanding.
In the vicinity of equilibrium, we have the phenomenological
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theory stating that the thermodynamic force that restores the
system to an equilibrium is proportional to the free energy
gradient, which is a function of EVs [3–5]. A quadratic well
of the free energy is often assumed, which leads to a linear
response to the deviation from its lowest point, i.e., the equi-
librium point. This theory is useful for a weak nonequilibrium,
but it cannot be applied for a strong nonequilibrium.

The projection operator method [1,6,7] is typically used
to extract the dynamics of slow-changing variables, i.e.,
integrating out the rapidly changing variables. In the formalism
by Mori [1], the projection leads to a generalized Langevin
equation as an equation of motion for the remaining variables.
The reduction of the number of DOFs can be seen as a local
equilibrium approach. We take a similar approach; specifically,
we develop a method to describe stochastic dynamics.

Consider the case of the relaxation dynamics far from
equilibrium, where intensive variables such as temperature are
controlled. It is difficult to relate a general transient state to the
equilibrium state that corresponds to the external condition.
However, a transient state labeled by a set of EVs, such as
internal energy, can be related to another equilibrium state
having the same energy. It is a microcanonical ensemble
that is equivalent to the canonical ensemble at a tempera-
ture different from that of the environment. As mentioned
before, nonequilibrium states need a higher number of EVs
than equilibrium states. Here we call such states “extended
equilibrium states.” The equivalence of the transient state to
the extended equilibrium state means that an equal probability
holds for the nonequilibrium state. It is worth considering
the possibility of describing nonequilibrium dynamics by
using only information from the extended equilibrium state.
If such a description is possible, it will be a useful clue
for understanding nonequilibrium phenomena based on the
well-understood equilibrium physics.

This paper is organized as follows. In the next section, we
propose a method to construct a master equation by using
only the equilibrium and macroscopic information. In Sec. III,
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we analyze the all-to-all coupling Ising model as the simplest
example. In Secs. IV and V, we apply our approach to the
three-state Potts model on the square lattice with one- and
two-variable descriptions, respectively. Section VI presents a
discussion and perspective.

II. METHOD

A. Master equation

We consider a dynamics represented by a master equation in
terms of a microscopic state variable �X = (σ1,σ2, . . . ,σN ) as

∂p( �X,t)

∂t
=

∑
�X′

[w̃(�b; �X| �X′)p( �X′,t) − w̃(�b; �X′| �X)p( �X,t)],

(1)

where p( �X,t) is the probability distribution function (PDF)
of �X at time t , and w̃(�b; �X′| �X) is the transition probability per
unit time from �X to �X′ with given �b. Here �b = (b1,b2, . . . ,bn)
is a set of intensive variables, such as inverse temperature,
magnetic field, or chemical potential, introduced as an external
control parameter. Our aim is to derive the corresponding
master equation in terms of the EVs �A = (A1,A2, . . . ,An)
that are conjugate to �b, such as internal energy, magnetization,
or number of particles. �A is a function of �X, which we denote
as �A = �A �X; thus, the PDF of �A is given by

P ( �A,t) =
∑

�X
p( �X,t)δ �A �X �A. (2)

The main assumption of the present formulation is the equal
probability for microstates for any given �A and t as

p( �X,t) = P ( �A �X,t)/g( �A), (3)

where g( �A) is the number of states having �A as g( �A) ≡∑
�X δ �A �X �A. By multiplying Eq. (1) by δ �A �X �A and taking the

summation over �X, the left-hand side yields ∂P ( �A,t)/∂t . This
represents a projection from the �X space to the �A space. The
second term on the right-hand side becomes∑

�X, �X′

w̃(�b; �X′| �X)p( �X,t)δ �A �X �A

=
∑

�A′

∑
�X, �X′

δ �A′
�X′ �A′w̃(�b; �X′| �X)δ �A �X �Ap( �X,t)

=
∑

�A′

W (�b; �A′| �A)P ( �A,t). (4)

To obtain the last line, we use Eq. (3) and put

W (�b; �A′| �A) ≡ 1

g( �A)

∑
�X, �X′

δ �A �X′ �A′w̃(�b; �X′| �X)δ �A �X �A

=
〈∑

�X′

δ �A �X′ �A′w̃(�b; �X′| �X)

〉
�A
, (5)

where the angular brackets indicate the unweighted average
with �A fixed as

〈f ( �X)〉 �A ≡ 1

g( �A)

∑
�X

f ( �X)δ �A �X �A. (6)

By performing the same operation to the first term on the
right-hand side of Eq. (1), we obtain the following form closed
for P ( �A,t):

∂P ( �A,t)

∂t
=

∑
�A′

[W (�b; �A| �A′)P ( �A′,t) − W (�b; �A′| �A)P ( �A,t)].

(7)

It is often the case that the transition probability w̃ is
expressed as

w̃(�b; �X′| �X) = w(�b; �A �X′ − �A �X)D( �X′| �X), (8)

where the function D( �X′| �X) equals unity if a direct (one-step)
transition path exists between �X and �X′, and is zero otherwise.
For example, w(�b; � �A) is proportional to min[1,e−�b·� �A] with
� �A = �A �X′ − �A �X in the Metropolis dynamics. The expression
Eq. (8) reflects the fact that the change of �A is decomposed to
the local change by the short-range interaction, which is not
explicitly dependent on the accumulated value �A itself. In such
a case, W is expressed as

W (�b; �A + � �A| �A) = μ( �A; � �A)w(�b; � �A) (9)

with μ( �A; � �A) =
〈∑

�X′

δ �A �X′ �A+� �AD( �X′| �X)

〉
�A
. (10)

Here μ( �A; � �A) is regarded as the (unnormalized) PDF of the
possible change � �A for a given �A. Note that μ itself is not
a dynamical variable but a state quantity that is statistically
evaluated in the extended equilibrium ensemble mentioned
before. Thus, the information of the spatial configuration is
reduced to a small number of quantities: the components of
� �A.

Since the general nonequilibrium state requires a macro-
scopic number of DOFs, the present master equation to resem-
ble a Markov process with finite DOFs is an approximated
one. However, it is possible to improve its accuracy in a
systematic manner by increasing the number of EVs. In our
strategy, μ is estimated from the equilibrium ensemble: an
equal probability with fixed EVs �A. Although the factorization
of Eq. (9) is practically very useful and naturally derived for
standard Monte Carlo (MC) dynamics, it is not clear whether
it can be used for any system. If it cannot be used, we have to
treat W (�b; �A + � �A| �A) for every pair of �b and �A as in Eq. (5).

One may think that the dynamics with the transition
probability of Eq. (9) with w(�b; � �A) ∝ min[1,e−�b·� �A] is
similar to that with

W (�b; �A′| �A) ∝ min[1,e−[F (�b; �A′)−F (�b; �A)]], (11)

where F (�b; �A) ≡ �b · �A − ln g( �A) is the dimensionless free
energy, and g( �A) is the number of states having �A. Such
an approach was examined in Refs. [8–10]. Although both
Eqs. (9) and (11) lead to the equilibrium PDF Peq ∝ e−F (�b; �A)

as a stationary distribution, the time evolutions are different.
Our strategy can construct the equation of motion for the EVs
from first principles, as shown below. The resultant equation
depends on the function form of w(�b,� �A) and does not include
a fitting parameter, such as a dissipation coefficient.
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B. Equation of motion for the EVs

Let n be the dimension of �b and �A. At equilibrium, �A is
a unique function of �b except for the multistable points. (On
the other hand, �b is a unique function of �A even in coexisting
phases.) The equilibrium state of a given �b is represented by a
point in the n-dimensional space, which we call the A space.
On the other hand, the trajectory of nonequilibrium dynamics
is given by a curved line. Generally, each point of the trajectory,
i.e., a transient state, is not related to the equilibrium state with
�b of the environment.

We can define the mean velocity field �V = (VA1 , . . . ,VAn
)

at the point �A as

�V (�b; �A) ≡
∑
� �A

� �AW (�b; �A + � �A), (12)

by which the probability current is expressed as �j (�b; �A,t) =
P ( �A,t) �V (�b; �A). Note that �V is independent of time. The dy-
namics is deterministic in the thermodynamic limit, where the
fluctuation of the EVs can be ignored in comparison with the
mean values. The time evolution of 〈 �A〉(t) ≡ ∫

d �A �AP ( �A,t)
can then be given as a solution of the equation of motion,

d〈 �A〉
dt

= �V (�b; 〈 �A〉). (13)

Hereafter, we only treat the most probable dynamics.
If the rotation (∂/∂ �A) × �V equals zero, we can define

a potential function Fneq(�b; �A), which can be regarded as
nonequilibrium free energy, as

�V (�b; �A) = − ∂

∂ �AFneq(�b; �A). (14)

This potential depends on the details of the dynamics repre-
sented by w(�b; � �A). This is in contrast to the dynamics cor-
responding to Eq. (11), which is governed by the equilibrium
free energy.

C. Equilibrium ensemble with fixed EVs

To construct the master equation, we need to calculate μ

for various �A values as a statistical distribution in the extended
equilibrium ensemble. We calculate it by MC simulations. It
is not efficient to perform an independent simulation for each
�A. Instead, we perform the Wang-Landau sampling [11,12]

to obtain a flat histogram of �A. The Wang-Landau sampling
enables us to cover a wide range of �A uniformly by a single run.
In addition, a joint density (number) of states g( �A) is obtained
as a byproduct, which leads to the microcanonical entropy
ln g( �A). The generalized dimensionless free energy is given
by F (�b; �A) = �b · �A − ln g( �A), and its extremal condition,
∂F/∂ �A = 0, gives an equilibrium relation, �b = ∂ ln g( �A)/∂ �A
[13].

III. THE ALL-TO-ALL COUPLING ISING MODEL

Here we demonstrate how the above method is applied
to an analytically solvable model. Consider a two-state Potts
model, equivalent to the Ising model, containing N spins with

all-to-all coupling. The energy function is

E = − 1

N

∑
i,j

δσiσj
= − 1

N

[
N2

0 + (N − N0)2
]
. (15)

The spin variables {σi} take the value 0 or 1. The number of
spins at state 0 is defined as

N0 =
∑

i

δσi0 ≡ Nn0. (16)

Due to the Z2 symmetry, it is sufficient to consider N0 �
N/2. Since the present system does not have a meaningful
spatial structure, the state can be accurately identified only by
N0. Therefore, the magnetization and energy cannot change
independently but have a one-to-one relation unlike infinite-
dimensional systems. By utilizing this property, we use the
notation as if N0 were conjugate to inverse temperature β in
the following: E and �E as the arguments of w and μ are
replaced with N0 and �N0, respectively.

The number of states g(N0) is a function of N0 as

g(N0) = N !

N0!(N − N0)!
, (17)

and the dimensionless free energy per site is written as
F

N
≈ −β

[
n2

0 + (1 − n0)2]
−

[
ln

1

1 − n0
− n0 ln

n0

1 − n0

]
(18)

=
[

ln 2 − β

2

]
+ 1

2
(1 − β)m2 + 1

6
m4 + O(m6), (19)

where β = 1/kBT is an inverse temperature and m ≡ 2n0 − 1
is the order parameter. It is well known that this is equivalent to
the �4 free energy, i.e., the Landau model, which has a single
minimum at m = 0 for β � βc = 1 and has two symmetric
minima at ±m(β) with 0 < m(β) � 1 for β > βc, and m(β) =
±√

3(β − 1) for m 
 1.
We consider the Metropolis dynamics, i.e., randomly

picking up one spin and changing the state to 1 if it is 0
and vice versa. Therefore, the PDF of update is

μ(N0; +1) = 1 − n0 and μ(N0; −1) = n0. (20)

The spin flip is accepted with probability rate

w̃(�b; � �A) = N

q − 1
min[1,e−�b·� �A], (21)

where q = 2 in the present case. For N0 > N/2, we have

w(β; +1) = N, w(β; −1) = Ne−β�E (22)

with �E = 2(2n0 − 1) + O(N−1). (23)

The velocity can now be written as

vN0 ≡ VN0/N

= μ(N0; +1)w(β; +1) − μ(N0; −1)w(β; −1)

= 1 − n0[1 + e−2β(2n0−1)]. (24)

The time evolution is formally solved as

t = N

∫ n0(t)

n0(0)

dn0

vN0 (β,n0)
. (25)
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FIG. 1. Time evolutions of order parameter m = 2n0 − 1 (mul-
tiplied by t1/2) in the all-to-all coupling Ising model. The decimal
logarithm is shown on the horizontal axis. The result of the exact
solution is denoted by “master eq.” and that obtained from the
free-energy gradient is denoted by “free energy.” While the long-time
behaviors of the two results are the same as m ∝ t−1/2, the short-time
dynamics is significantly different.

At the critical point β = 1, we have vN0 = −m3 + O(m5),
which leads to m ∝ t−1/2 for m 
 1. The time evolution of
energy per site behaves as (Ec − E)/N ≈ m2/2 ∝ t−1, where
Ec = N/2 is the equilibrium energy at βc.

We now consider the relation between the above dynamics
and the free-energy landscape. The free-energy gradient is
written as

− ∂F

∂N0
= 2β(2n0 − 1) − ln

n0

1 − n0
. (26)

We have −∂F/∂N0 = −4m3/3 + O(m5) at β = 1. Thus, the
phenomenological equation of motion, dN0/dt = −∂F/∂N0,
also yields m ∝ t−1/2. The short-time dynamics is, however,
distinctly different from the exact solution, Eq. (25). In
particular, ∂F/∂N0 diverges for n0 = 0 and 1, as against the
exact solution. Figure 1 shows the results of the numerical

integrations of Eqs. (25) and (26) with an initial condition
n0 = 0.95 at t = 0. It is observed that the approximated
dynamics with the equilibrium free energy is valid only in the
vicinity of the destination state, i.e., the equilibrium.

IV. ONE-VARIABLE DESCRIPTION

Next, we investigate a finite-dimensional system, namely
the ferromagnetic three-state Potts model on the square lattice,
which exhibits a second-order transition at the critical point
βc = ln(1 + √

3) ≈ 1.005 05. Here we did not choose the Ising
model (q = 2) to avoid an unusual critical behavior, i.e., the
logarithmic divergence of specific heat.

We start with the minimal case, i.e., a description with one
EV. For a system with fixed temperature, the most relevant EV
is internal energy E, which is an EV conjugate to temperature.
If we do not use it, the transition rate, which is a function of
βE, cannot be determined. The energy E is defined as

E = 2N −
∑

〈i,j〉∈n.n.

δσiσj
, (27)

where the summation is taken over all the nearest-neighbor
pairs. Each spin σi takes a value 0, 1, or 2. The energy
change by single spin flip is in the range of −4 � �E � 4.
We performed the Wang-Landau sampling simulations [12]
for samples with size N = L × L and L = 64–1024 by
imposing a periodic boundary condition. We averaged the PDF
μ(E; �E) over four independent runs. In the estimation of
μ, we eliminated the update that the spin state remains the
same. We also performed corresponding kinetic Monte Carlo
(KMC) simulations [14,15] as a nonapproximated dynamics
and compared the results with those obtained by the master
equation. One MC step involves the following process N times:
picking up a spin randomly and flipping it to one of the q − 1
states with probability min[1,e−�b·� �A]. Thus, the transition rate
of � �A �= �0 is written as Eq. (21).

Figure 2(a) shows the velocities VE(E) at several temper-
atures, which were obtained by the master equation with the

FIG. 2. (Color online) (a) Energy dependence of velocity for the one-variable description. Colors denote temperatures. (b) Velocity observed
in the KMC. Colors denote temperatures. Nonmonotonic behaviors are observed and finite-size dependence appears near the zero-crossing
points of VE .
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FIG. 3. (Color online) (a) Time evolution of energy. Colors denote
temperatures. The decimal logarithm is shown on the horizontal axis.
The results of the one-variable description are denoted by lines,
and those of KMC simulations are denoted by symbols. While
the equilibrium values are the same, the short-time dynamics is
significantly different between the two methods. (b) Relaxation of
energy at the critical temperature. The decimal logarithm is shown
on both axes. Colors denote temperatures. Three groups are shown:
the KMC (symbol), the one-variable description (dashed line), and
the two-variable description (solid line).

one-variable description. Each zero-crossing point of VE is
related to the equilibrium state at each temperature. From these
velocities, the time evolutions of the energies are obtained by a
numerical integration like Eq. (25) and are plotted in Fig. 3(a)
along with the results of the KMC simulations. While the
results obtained by the two methods have a similar equilibrium
energy, the relaxations obtained by the master equation are
significantly faster than those obtained by the KMC method.

Figure 2(b) shows the velocities calculated by the PDF
μ obtained by nonequilibrium sampling through KMC sim-
ulations. These velocities reproduce the time evolution of
the energy obtained by the KMC method. Nonmonotonic
behaviors observed just before VE crosses zero level arise
as a result of the crossover from nonequilibrium sampling
to equilibrium sampling in the long-time regime, and the
latter sampling coincides with the equilibrium velocity in
Fig. 2(a). When the system size is increased, this equilibrium
region becomes smaller because the equilibrium fluctuation
of E/N disappears for N → ∞. In the thermodynamic limit,
the velocities of equilibrium and nonequilibrium sampling are
different for all E except for the equilibrium point. This means
that the typical spin configuration of a given E, which is
represented by μ, is different between the two states. Thus,
a one-variable description is insufficient to describe this type
of dynamics, although it yields the correct equilibrium state.

As mentioned above, the dynamics obtained by the one-
variable description fails even in the vicinity of the equilibrium
point. Here we look at it more closely. Figure 4(a) shows the
relation between VE and E at βc, which indicates a power
law, |VE| ∝ |Ec − E|1.5, in the limit E → Ec. This leads
to Ec − E ∝ t−2.0, although it is not confirmed yet in the
short-time relaxation as shown in Fig. 3(b) (dashed lines). The
exponent 2.0 is distinctly different from that obtained by the
KMC method, 0.367 [16,17].

Next, we examine the relation between the velocity and
the free-energy gradient, −∂F (βc; E)/∂E = β(E) − βc. The
microcanonical temperature β(E) is defined as ∂ ln g(E)/∂E.
Figure 4(b) shows a power-law singularity β(E) − βc ∝ (E −
Ec)1/(1−α), where α is the critical exponent of the specific
heat. The exponent is consistent with the known value 3/2

FIG. 4. (Color online) Confirmation of the power law at β = βc. (a) The microcanonical velocity and (b) the microcanonical temperature.
It is shown that |VE | and |β − βc| converge to finite values by multiplying x1.5, where x = |E − Ec|/N , and taking the limit x → 0. This
means the two quantities are proportional to |E − Ec|1.5.
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(α = 1/3). Therefore, the phenomenological dynamics using
free energy also fails to reproduce the true dynamics in a simi-
lar manner to that using VE . We can write the relation VE(E) ∝
−∂F (βc; E)/∂E since both the velocity and the gradient are
proportional to (E − Ec)1.5. Therefore, the nonequilibrium
free energy defined in Eq. (14) is essentially equivalent to
the equilibrium energy in the one-variable description. This
will be discussed more closely after seeing the two-variable
description in the next section.

V. TWO-VARIABLE DESCRIPTION

Next, we employ one more EV, N0, that is the number
of spins taking the 0 state, which is related to the order
parameter m = (N0/N − 1/q)/(1 − 1/q). The extensive and
intensive variables are given by �A = (E,N0) and �b = (β, − h),
respectively. Here h is the magnetic field coupled with the 0
state as −hN0. In the following, we set h = 0. The update of N0

with a single spin flip is restricted to −1 � �N0 � 1. For the
two-dimensional A space, we calculate μ(E,N0; �E,�N0),
whose total number of components is proportional to N2 ×
9 × 3. This requires such a large memory space during the
Wang-Landau sampling that we divided E and N0 into bins

FIG. 5. (Color online) (a) Time evolution of the internal energy.
The results using the two-variable description (lines) and those
obtained by the KMC method (symbols) are in good agreement.
(b) Time evolution of the order parameter. The line with the slope
β/zν = 0.0602 [17] is also shown. The two-variable description
reproduces the critical behavior well.

FIG. 6. (Color online) The trajectory in (E × N0) space of βext =
1.010 > βc with various initial conditions. The fixed point is indicated
by the open circle at (E,N0)/N = (0.370,0.805). The dashed line
denotes h(E,N0) = 0.

of width
√

N/4. Due to this coarse-graining, the integration
with the initial condition E = 0 and N0 = N was difficult
because the trajectory runs near the upper edge of the A space,
N0 = 1 − E/4, above which there is no state. As an initial
condition, we used the values of E and N0 obtained by the
KMC simulations at t = 4 for each temperature.

We integrated the equation of motion, Eq. (13), with the
second-order Runge-Kutta method with a discrete time step of
0.01. Because we had �V values only on the lattice points, we
interpolated the value at the off-lattice points as �V (E,N0) =
�c0 + �c1E + �c2N0, where the coefficients were determined by
the three nearest lattice points.

The time evolution of E is shown in Fig. 5(a). The results
of two different system sizes L = 64 and 128 are shown as
dashed and solid lines, respectively. In a regime where the two
lines are identical, the behaviors can be considered to be in
the thermodynamic limit. We found that the results of the two-
variable description show a reasonably better agreement with
those of the KMC method than the one-variable description
results do (the relaxations are still slightly faster than those of
the KMC). The critical behavior is shown in Fig. 3(b) as solid
lines. Again, the relaxations obtained by the master equation
agree reasonably well with those of the KMC method. The
time evolutions of the order parameter are shown in Fig. 5(b).
The relaxations obtained by the master equation and KMC are
in good agreement, as is the internal energy.

A. Trajectory

Figure 6 shows the flow diagram in the (E × N0) space at
β = 1.010 > βc. The flow line is drawn by trajectories that
are obtained by integrating �V for various initial conditions.
The trajectories rapidly join the unique one flowing into the
fixed point. Because of the rotation-free velocity field, the
nonequilibrium free energy Eq. (14) can be defined, and it
differs from the equilibrium one. In Fig. 7(a), trajectories
obtained by the master equation and KMC are plotted and
show good agreement for each temperature.

041133-6



USEFULNESS OF AN EQUAL-PROBABILITY ASSUMPTION . . . PHYSICAL REVIEW E 86, 041133 (2012)

FIG. 7. (Color online) (a) Trajectories for the system L = 128.
The results obtained by the integration of the master equation are
denoted by lines, and those obtained by the KMC method are denoted
by symbols. The results of the two-variable description reproduce
the true dynamics significantly well. The contour line h(E,N0) = 0
(dashed line) is also shown. (b) The contour line of β( �A).

The line h(E,N0) ≡ −∂ ln g(E,N0)/∂N0 = 0 is shown in
Figs. 6 and 7. This line represents the state equation without
the magnetic field. [The lower-left region is the coexisting
phase of domains ordered to states 0, 1, and 2. To be
precise, h(E,N0) uniformly equals zero in this region in
the thermodynamic limit.] Each point on this line is related
to the most probable state in the fixed E ensemble, i.e.,
the microcanonical ensemble, without the magnetic field.
Therefore, in the one-variable description, the transient state
is confined to this equilibrium line independently of β. On
the other hand, the trajectory of the disordering process in the
two-variable description runs above and to the right of the
equilibrium line and stops when touching the line. By adding
the second variable N0, the system can take a path away from
the equilibrium line of h = 0 depending on β. This is the reason
for the drastic improvement in accuracy from the one-variable
description.

B. Comparison with the free-energy valley

While the contour line h(E,N0) = 0 is related to the equilib-
rium line in the fixed-E ensemble for h = 0, β(E,N0) = βext is

related to the equilibrium line for the fixed-N0 ensemble for a
given βext. The latter gives a trajectory of the quasiequilibrium
dynamics when the relaxation of the magnetization is much
slower than that of the energy. Figure 7(b) shows the contour
lines of β. The contour lines are similar to the trajectory of the
isothermal relaxation obtained by the KMC method, although
the agreement is slightly less than that of the master equation
results [Fig. 7(a)] far from equilibrium. The quasiequilibrium
dynamics cannot reproduce the rapid change in N0, but that
has an almost negligible effect in the present case. This is a
useful approximation for the trajectory; note, however, that the
contour lines of the temperature provide no information on the
time evolution.

VI. SUMMARY AND DISCUSSION

In this paper, we propose a method to analyze the non-
stationary nonequilibrium state by using a master equation
for extensive (macroscopic) variables, and we show some
applications of the method. The method uses the quantity
μ( �A; � �A) calculated by the equilibrium ensemble for fixed
EVs, which means an equal probability is assumed for
microscopic states in nonequilibrium.

For the all-to-all coupling model, the state can be identified
accurately only by the single variable N0 since the system
lacks a spatial structure. Thus, there is no difference between
equilibrium and nonequilibrium states in this case, and the
one-variable description gives rigorous dynamics. For the two-
dimensional three-state Potts model, while the one-variable
description is far from adequate to resemble the true dy-
namics, the two-variable description is reasonably good. This
improvement can be attributed to the fact that we have a unique
trajectory for any external conditions β in the one-dimensional
A space corresponding to E; this trajectory is equivalent to the
equilibrium line in two dimensions. [This is the reason why
strange inflection points, which correspond to the singularity
at β = βc, are observed for off-critical temperatures as in
Fig. 2(a).] It has been suggested that transient states in finite-
dimensional systems have distinctly different kinds of spatial
fluctuations depending on temperature even for the same
internal energy. Specifically, the trajectory runs in the region
where h(E,N0) > 0. For the same E, N0 on the trajectory is
larger for higher temperatures. This is because the minority
spins with number (N − N0) have a lower tendency to
aggregate at higher temperatures and thus acquire E with
smaller (N − N0) from the surface energy.

To investigate equilibrium critical properties from nonequi-
librium relaxation at the critical point, the so-called nonequi-
librium relaxation analysis [18] can be used. In the relaxation,
a nonequilibrium correlation length grows with time in a
power law, which is similar to the growth of the equilibrium
correlation length by tuning external parameters to approach
the critical values. The critical exponents are estimated using
this similarity [19]. The two paths on which the growth
of the nonequilibrium and equilibrium correlation length
are observed correspond to the trajectory of β = βc and
the equilibrium line h(E,N0) = 0, respectively. Both paths
approach the critical point (E,N0) = N (ec,1/3), where ec ≡
1 − 1/

√
3, and the paths are expressed as (N0/N − 1/3)1/β =
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C(ec − E/N)1/(1−α). However, the proportionality constant C

is different between the two, which makes the two paths macro-
scopically distinguishable. Interestingly, while the relaxation
dynamics along them are different, the critical exponents, such
as α and β, are the same.

For the two-dimensional three-state Potts model, the second
variable, the order parameter, has special importance because
its relaxation is much slower than that of the energy. Thus,
it has a bigger impact on the total dynamics. Therefore, the
quasiequilibrium dynamics with respect to the order parameter
is a good approximation. Indeed, the contour line of the
temperature, i.e., the array of equilibrium points for various
temperatures, gives a good analog of the relaxation trajectory,
but it does not provide information on the time evolution. One
would think that the one-variable description with N0 would
give good results comparable to those of the two-variable
description with E and N0. However, in our formulation,
the EV conjugate to the nonzero intensive variable must be
employed to determine w(�b; � �A).

It is possible to improve the accuracy of our method by
employing more DOFs; however, the difficulty is to find
appropriate variables independent of each other. Important
criteria are the slowness of the relaxation and the capture
of the spatial structure. One good candidate would be the
structure factor, S0(q) = | ∑i δσi0e

iq·ri |2/N . The quantity N0

is equivalent to
√

NS0(0). By adding S0 from small q to larger
ones, a finer structure of the space would be included stepwise.
However, in practice, the addition of DOFs is very difficult in
the implementation adopted here because the dimensionality
of the A space increases. Depending on the problem, we might
not need information on the wide range of the A space. In
addition, the calculation of μ is suitable for trivial parallel
computation.

One relaxation dynamics of a given intensive variable can
be generated with a reasonably lower computational cost by
the KMC method than by the present method. Our method
takes significant computational time to estimate μ( �A; � �A).

Once this is obtained, however, one can easily generate
time evolutions for various �b. This is similar to the efficient
calculation method of equilibrium expectation values by
using the reweighting method with extended ensembles [12].
This aspect is very useful when calculating the fluctuation
of quantities, which requires many samples. However, our
main aim is not to develop an efficient way to yield time
evolution but to find a way to understand the system far
from equilibrium in the framework of equilibrium statistics.
The basic concept proposed here is not only for numerical
analysis but for analytical treatment. It is possible to develop an
approach to nonequilibrium dynamics by utilizing the attained
knowledge of equilibrium physics. The success in the present
demonstration encourages us to continue in this direction.

We have found that the present method works well for
critical relaxation dynamics. The next interesting application
is the dynamics taking first-order transitions [20], such as
the liquid-vapor transition and protein folding [21]. It is
often explained that the nucleation dynamics is governed
by the free-energy barrier determined by the competition
between bulk and surface free energies. However, for a
finite-dimensional system with short-range interaction, this
picture is not applicable to the macroscopic free energy, which
is a convex function of EVs [13]. Therefore, the addition of
DOFs is essential for nucleation dynamics.

The basic idea of the present method can be applied to
a nonstationary state of an open system with certain driving
forces; a nonstationary state is described by a nonequilibrium
stationary state. By replacing the word “equilibrium” with
“stationary,” we obtain a parallel framework for transient
dynamics toward stationary states.
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