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We study systems with a crossover parameter λ, such as the temperature T , which has a threshold value λ∗
across which the correlation function changes from exhibiting fixed wavelength (or time period) modulations to
continuously varying modulation lengths (or times). We introduce a hitherto unknown exponent νL characterizing
the universal nature of this crossover and compute its value in general instances. This exponent, similar to standard
correlation length exponents, is obtained from motion of the poles of the momentum (or frequency) space
correlation functions in the complex k-plane (or ω-plane) as the parameter λ is varied. Near the crossover (i.e.,
for λ → λ∗), the characteristic modulation wave vector KR in the variable modulation length “phase” is related
to that in the fixed modulation length “phase” q via |KR − q| ∝ |T − T∗|νL . We find, in general, that νL = 1/2.
In some special instances, νL may attain other rational values. We extend this result to general problems in which
the eigenvalue of an operator or a pole characterizing general response functions may attain a constant real (or
imaginary) part beyond a particular threshold value λ∗. We discuss extensions of this result to multiple other
arenas. These include the axial next-nearest-neighbor Ising (ANNNI) model. By extending our considerations,
we comment on relations pertaining not only to the modulation lengths (or times), but also to the standard
correlation lengths (or times). We introduce the notion of a Josephson time scale. We comment on the presence of
aperiodic “chaotic” modulations in “soft-spin” and other systems. These relate to glass-type features. We discuss
applications to Fermi systems, with particular application to metal to band insulator transitions, change of Fermi
surface topology, divergent effective masses, Dirac systems, and topological insulators. Both regular periodic
and glassy (and spatially chaotic behavior) may be found in strongly correlated electronic systems.
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I. INTRODUCTION

In complex systems, there are, in general, possibly many
important length and time scales that characterize correlations.
Aside from correlation lengths describing the exponential
decay of correlations, in some materials there are length scales
that characterize periodic spatial modulations or other spatially
nonuniform properties as in Fig. 1. We investigate the evolution
of these length scales as a function of some parameter λ. This
parameter may be the temperature, the chemical potential, or
some other physical quantity relevant for description of the
system being studied. To illustrate our basic premise, we will
largely focus on temperature dependencies of the correlation
function in this work. However, with a trivial change of
variables, our results are valid for any parameter that, when
tuned, connects a phase with continuously varying modulation
lengths (or times) to one in which the modulation length (or
time) is pinned to a fixed value. The crossovers we consider
are not symmetry breaking transitions. Consequences of our
considerations also relate to correlation lengths as we will
comment on later.

Many systems exhibit subtle changes in their correlation
functions at certain special temperatures. The main focus of
our work pertains to the following situation. As the temperature
is varied across a certain crossover temperature T∗, an unmodu-
lated phase of a system may start exhibiting modulations, even
though a thermodynamic phase transition does not occur. A
generalization of this occurs when modulations in a system are
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characterized by a fixed wavelength on one side of a crossover
temperature and by continuously varying wavelengths on the
other side. Such an occurrence may generally be seen when
interactions of different scales compete with one another.
A wealth of interesting periodic spatial patterns appear in
disparate arenas: e.g., the manganites [2], pnictide [3,4],
and cuprate [5–10] superconductors, quantum Hall systems
[11–13], dense nuclear matter [14,15], magnetic systems
[16–21], heavy fermion compounds [22,23], membranes [24]
cholesterols [25], magnetic garnets [26], dipolar systems
[27,28], systems with nematic phases [29], and countless other
systems [30–34].

II. OUR MAIN RESULTS AND THEIR IMPLICATIONS

In this work, we report on the temperature (or other
parameter) dependence of emergent modulation lengths that
govern the size of various domains present in some systems.
In its simplest incarnation, our central result is that if fixed
wavelength modulations characterized by a particular finite
length scale L∗ appear beyond some temperature T∗, then, the
modulation length LD on the other side of the crossover differs
from L∗ as

|LD − L∗| ∝ |T − T∗|νL . (1)

When there are no modulations on one side of T∗, i.e., L∗ →
∞, we have near the crossover

LD ∝ |T − T∗|−νL . (2)

Apart from some special situations, we find that irrespective
of the interaction, νL = 1/2. We arrive at this rather universal
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FIG. 1. (Color online) Sub-unit-cell resolution image of the
electronic structure of a cuprate superconductor at the pseudogap
energy. Inset shows Fourier space image of the same figure. Nematic
and smectic phases are highlighted using the red (small) and blue
(large) circles, respectively. The nematic phase is characterized by
commensurate wave vectors �Q. The smectic wave vector, on the
other hand, takes incommensurate value �S, which is dependent on
the amount of doping, albeit weakly. (From Ref. [1]; reprinted with
permission from AAAS.)

result assuming that there is no phase transition at the crossover
temperature T∗. Our result holds everywhere inside a given
thermodynamic phase of a system.

The large n Coulomb frustrated ferromagnet. The reader
might find it useful to think about the Coulomb frustrated
ferromagnet in the back of his/her mind when thinking about
the above result. This was discussed in Ref. [35] and will be
further elaborated in Sec. V C. In this system, the modulation
length diverges across a crossover temperature T∗ exhibiting
an exponent of νL = 1/2.

Our considerations are not limited to continuous crossovers.
A corollary of our analysis pertains to systems with discontinu-
ous (“first-order”-like) jumps in the correlation or modulation
lengths.

We will further comment on situations wherein a branch
point appears at T∗. We will present examples where we
obtain rational and irrational exponents and also the anomalous
critical exponent η. Our analysis affords general connections to
the critical scaling of correlation lengths in critical phenomena.

Our results for spatial dependence of the correlation
functions can be extended to the time domain. Amongst other
notions, by a formal interchange of spatial with temporal
coordinates, we introduce the concept of a Josephson time
scale. Similarly, by further deepening the analogy between
results in the spatial and temporal domains, we will comment
on the presence of phases with aperiodic or “chaotic” spatial

modulations (characteristic of amorphous configurations) in
systems governed by nonlinear Euler-Lagrange equations.
Such aperiodic or “chaotic” modulations may appear in
strongly correlated electronic systems.

In Appendix A, we present applications to Fermi systems
pertaining to metal-band insulator transition, change of Fermi
surface topology, divergence of effective masses, Dirac sys-
tems, and topological insulators.

III. SYSTEMS OF STUDY

In this work, we will predominantly consider translationally
invariant systems on a lattice, the Hamiltonian of which is
given by

H = 1

2

∑
�x �=�y

V (|�x − �y|)S(�x)S(�y). (3)

The quantities {S(�x)} portray classical scalar spins or fields.
The sites �x and �y lie on a d-dimensional hypercubic (or some
other) lattice with N sites. We will set the lattice constant to
unity. [In the quantum arena, we replace the spins �S(�x) in
Eq. (3) by Fermi or Bose or quantum spin operators.]

The results that will be derived in this work apply to a variety
of systems. These include theories with trivial n-component
generalizations of Eq. (3). In the bulk of this work, the
Hamiltonian has a bilinear form in the spins. We will, however,
later on, study “soft”-spin model with explicit finite quartic
terms as we now expand on. An n-component generalization
of Eq. (3) is given by the Hamiltonian

H = 1

2

∑
�x �=�y

V (|�x − �y|)�S(�x) · �S(�y)

+ u

4

∑
�x

(�S(�x) · �S(�x) − n)2. (4)

Such a Hamiltonian represents standard (or “hard”) spin or
O(n) systems in the large u limit (u � 1). The quartic term
enforces a “hard” normalization constraint of the particular
form �S(�x) · �S(�x) = n. For finite (or small) u, Eq. (4) describes
“soft”-spin systems wherein the normalization constraint is
not strictly enforced.

In what follows, v(�k) and s(�k) will denote the Fourier
transforms of V (|�x − �y|) and S(�x). We employ the following
Fourier conventions:

a(�k) =
∑

�x
A(�x)ei�k·�x, A(�x) = 1

N

∑
�k

a(�k)e−i�k·�x. (5)

With these conventions in tow, in Fourier space, Eq. (3) reads
as

H = 1

2N

∑
�k

v(�k)|s(�k)|2. (6)

When v(�k) is analytic in all momentum space coordinates,
it is a function of |�k|2 = k2 (and not a general function
of k ≡√∑d

l=1 k2
l with {kl} being the Cartesian components of

�k). This is so as |�k| has branch cuts when viewed as a
function of a particular kl (with all other kl′ �=l held fixed).
The lattice Laplacian that links nearest-neighbor sites in real

041132-2



UNIVERSALITY OF MODULATION LENGTH AND TIME . . . PHYSICAL REVIEW E 86, 041132 (2012)

space becomes

��k = 2
d∑

l=1

(1 − cos kl) (7)

in k space. ��k veers towards |�k|2 in the continuum (small
k) limit. The two point correlation function for the system in
Eq. (3) is G(�x) = 〈S(0)S(�x)〉. At large distances, x = |�x|, the
correlation function has a general asymptotic behavior

G(x) ≈
∑

i

fi(x) cos

(
2πx

L
(i)
D

)
e−x/ξi . (8)

In the ith term, fi(x) is an algebraic prefactor, L
(i)
D is the

modulation length, and ξi is the corresponding correlation
length. In general, the function fi(x) may contain a factor
with an anomalous exponent η (usually not an integer), such as
fi(x) ∝ 1/xd−2+η. Generally, there can be multiple correlation
and modulation lengths. In Fourier space, G(�k) = 1

N
〈|s(�k)|2〉.

The modulation and correlation lengths can be obtained,
respectively, from the real and imaginary parts of the poles
of G(�k) in the complex k plane.

A. General considerations: Correlation and modulation lengths
from momentum space correlation function

The correlation function G(�x) in (d-dimensional) real space
is related to the momentum space correlation function G(�k) by

G(�x) =
∫

ddk

(2π )d
G(�k)e−i�k·�x. (9)

On the lattice, the integral above must be replaced by
summation over �k values belonging to the first Brillouin zone.
In the continuum, which we discuss here, the integral range
is unbounded. Even in lattice systems, doing an unbounded
summation over �k values provides a good approximation for
the correlation function in real space in many scenarios.

For spherically symmetric problems, i.e., when G(�k) =
G(k),

G(x) =
∫ ∞

0

kd−1dk

(2π )d/2

Jd/2−1(kx)

(kx)d/2−1
G(k), (10)

where Jν(x) is a Bessel function of order ν. The above integral
can be evaluated by choosing an appropriate contour in the
complex k plane. The contour can be closed along a circular

arc of radius R → ∞ provided

|G(k)| � k− d+1
2 as k → ∞. (11)

In evaluating the integral in Eq. (10), we obtain contributions
from residues associated with the poles of the integrand as well
as contributions from its branch points. We use K = KR + iKI

to represent the poles and branch points of the integrand in the
complex plane. The correlation and modulation lengths in the
system are determined, respectively, by the imaginary (KI )
and real parts (KR) of these poles and branch points. Together,
all these singularities can be compactly expressed as

1

G(m)(K)
= 0 , (12)

where 0 � m < ∞ is the order of the smallest order derivative
of G(k) which diverges at k = K [36].

In Ref. [37], we comment on the situation in which the
function G(T ,k) is an entire function of k (i.e., when G is
analytic everywhere).

IV. A UNIVERSAL DOMAIN LENGTH EXPONENT:
DETAILS OF ANALYSIS

We now derive (via various interrelated approaches) our
central result: the existence of a domain length exponent in
rather general systems with real or complex scalar fields,
vectorial (or tensorial) fields of both the discrete (e.g., Potts
type) and continuous variants.

We will now consider the situation in which the system
exhibits modulations at a fixed wave vector q for a finite
range of temperatures on one side of T∗ [viz., (i) T > T∗ or
(ii) T < T∗] and starts to exhibit variable wavelength mod-
ulations on the other side [(iii) T < T∗ for (i) and T > T∗
for (ii)]. A schematic illustrating this is shown in Fig. 2.
In Sec. IV A, we will assume that the pair correlation
function is meromorphic (realized physically by absence of
phase transitions) at the crossover point and illustrate how
modulation length exponents may appear. In Sec. IV D, we
will comment on the situation where the crossover point may
be a branch point of the correlation function.

A. Crossovers at general points in the complex k plane

In the up and coming, we will assume that the pair correlator
G(T ,k) is a meromorphic function of k and T near a crossover
point. Our analysis below is exact as long as we do not

<>

k k

<
> k

(a)Variable modulation length. (b)The crossover point (T = T∗). (c)Fixed modulation length.

FIG. 2. Schematic showing the trajectories of the singularities of the correlation function near a fixed-variable modulation length crossover.
Two poles of the correlation function merge at k = k∗ at T = T∗. On the fixed modulation length side of the crossover point, Rek = q.
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cross any phase boundaries. Such a case is indeed materi-
alized in the incommensurate-commensurate crossovers in the
three-dimensional axial next-nearest-neighbor Ising (ANNNI)
model [38,39] [which is of type (ii) in the classification above].
This phenomenon is also seen in the ground state phase
diagram of Frenkel-Kontorova models [40] in which one of
the coupling constants is tuned instead of temperature.

In the following, we present two alternative derivations for
the universal exponent characterizing this crossover.

1. First approach

In general, if the pair correlation function G(T ,k) is a
meromorphic function of the temperature T and the wave
vector k near a crossover point (T∗,k∗), then G−1(T ,k) must
have a Taylor series expansion about that point. We have

G−1(T ,k) =
∞∑

m1,m2=0

Am1m2 (T − T∗)m1 (k − k∗)m2 . (13)

Since G−1(T∗,k∗) = 0, we have A00 = 0. In the simple
canonical case, the leading order terms in Eq. (13) are given
by

G−1 = A(T − T∗)a + B(k − k∗)b + · · · (14)

with a and b natural numbers and where A, B are constants.
We may examine the trajectory of the pole K(T ) of

G(T ,k) [wherein K(T∗) = k∗] in the complex k plane as
the temperature is varied around T∗. The case of Eq. (14)
was written both for clarity and pedagogical purposes as
well as its prevalence. In such a case, the pole K for which
G−1(T ,k = K) = 0 will scale as

K(T ) ∼ k∗ + C(T − T∗)a/b, (15)

where C is some constant, yielding νL = a/b. There can, of
course, be more interesting situations in which some number
of mixed terms, all of which are products of powers of (k − k∗)
and (T − T∗), are of the same order as K(T ) approaches k∗.
In the general case, more interesting situations arise wherein
some number of mixed terms in Eq. (13) [i.e., terms containing
products of powers of both (T − T∗) and (k − k∗)] are of the
same order as K(T ) approaches k∗. After grouping the leading
order terms, we will once again obtain Eq. (15) with some
rational exponent (a/b).

By the very definition of T∗, on one side of T∗ [(i) or (ii)
above], there exists at least one root K(T ) of G−1 satisfying
KR(T ) = q, where q is a constant. On the other side [(iii)
above], KR(T ) �= q. As such, the function K(T ) is nonanalytic
at T∗. The left-hand side of Eq. (15) is therefore not analytic at
T = T∗, implying that the right-hand side can not be analytic.
This means that (a/b) can not be an integer, which in turn
implies that b � 2. Therefore, in the most common situations
we might encounter,

G−1(T ,k) ∼ A(T − T∗) + B(k − k∗)2 ⇒ a = 1 and b = 2.

(16)

When Fourier transforming G(T ,k) by evaluating the integral
in Eqs. (9) and (10) using the technique of residues, the real part
of the poles (i.e., KR) gives rise to oscillatory modulations of
length LD = 2π/KR . If the modulation length locks its value

to 2π/q on one side of the crossover point, then, on the other
side, near T∗, it must behave as

|2π/LD − q| ∝ |T − T∗|1/2 ⇒ νL = 1/2. (17)

2. Second approach

We now turn to a related alternative approach that similarly
highlights the universal character of the modulation length
exponent. If the correlation function G(T ,k) is a meromorphic
function of k, then, expanding about a zero K1(T ) of G−1, we
have

G−1(T ,k) = A(T )[k − K1(T )]m1G−1
1 (T ,k), (18)

where G−1
1 (T ,k) is an analytic function of k and

G−1
1 [T ,K1(T )] �= 0. We can do this again for the function

G−1
1 (T ,k), choosing one of its zeros K2(T ), and continue the

process until the function left over does not have any more
zeros. We have

G−1(T ,k) = A(T )
p∏

a=1

[k − Ka(T )]maG−1
p (T ,k), (19)

where the function G−1
p (T ,k) is an analytic function with no

zeros, ma’s are integers, and, in principle, p may be arbitrarily
high. This factorization can be done in each phase where G is
meromorphic. Let K1(T ) be a nonanalytic zero of G−1, i.e.,
one for which ReK1(T ) = q on one side of T = T∗. To ensure
analyticity of G−1 in T in the vicinity of T = T∗, there must
be at least one other root K2(T ), such that as T → T∗, both
K1(T ) and K2(T ) veer towards k∗, where Rek∗ = q [e.g., see
Fig. 3 which is of type (i) above, k∗ = ±i]. In other words, p in
Eq. (19) can not be smaller than two. The proof of this assertion
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FIG. 3. Location of the poles of the correlation function of
the large n Coulomb frustrated ferromagnet for J = Q = 1 in the
complex k plane. The circle and the Y axis show the trajectory K(T )
of the poles as the temperature T is varied.
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is simple. If p = 1, then, according to Eq. (19), G−1(T ,k) =
A[k − K1(T )]G−1

1 (T ,k). At T = T∗, however, K1(T ) is not
analytic, implying that G−1(T ,k) can be analytic only if p � 2.
For p � 2, at T∗, G−1 will, to leading order, vary quadratically
in (k − k∗) in the complex k plane near k∗. Thus,

∂G−1

∂k

∣∣∣∣
(T∗,k∗)

= 0. (20)

Now, if G−1 has a finite first partial derivative relative to the
temperature T , then, for a pole K near k∗ to leading order

G−1(T∗,k∗) + (T − T∗)
∂G−1

∂T

∣∣∣∣
(T∗,k∗)

+ (K − k∗)2

2!

∂2G−1

∂k2

∣∣∣∣
(T∗,k∗)

= 0. (21)

By its definition, k∗ satisfies the equality G−1(T∗,k∗) = 0.
Therefore,

|K − k∗| =

√√√√√√2(T∗ − T ) ∂G−1

∂T

∣∣∣
(T∗,k∗)

∂2G−1

∂k2

∣∣∣
(T∗,k∗)

. (22)

Equation (17) is an exact equality. It demonstrates that the
exponent νL = 1/2 universally unless one of ∂2G−1

∂k2 and ∂G−1

∂T

vanishes at (T∗,k∗) [41]. Often, G−1(T ,k) is a rational function
of k, i.e.,

G−1(T ,k) = G−1
n (T ,k)

G−1
d (T ,k)

, (23)

where G−1
n (T ,k) and G−1

d (T ,k) are polynomial functions of k.
In those instances, we get the same result as above by using
G−1

n (T ,k) in the above arguments. The value of the modulation
length exponent is similar to that appearing for the correlation
length exponent for mean-field or large n theories. It should
be stressed that our result of Eq. (17) is far more general.

B. Lock-in of the correlation length

Apart from the crossovers across which the modulation
length locks in to a fixed value, we can also have situations
where the correlation length becomes constant as a crossover
temperature T∗∗ is crossed. If this happens, our earlier analysis
for the modulation length may be replicated anew for the
correlation length. Therefore, if the correlation length has
a fixed value ξ0 on one side (T < T∗∗ or T > T∗∗) of the
crossover point, then, on the other side (T > T∗∗ or T < T∗∗,
respectively), near T∗∗ it must behave as

|1/ξ − 1/ξ0| ∝ |T − T∗∗|νc , (24)

where, like νL, νc = 1/2 apart from special situations where
it may take some other rational values. Here and throughout,
we use νc to represent the usual correlation length exponent ν

to distinguish it from the modulation length exponent νL.

C. Exponents in parity invariant systems associated
with real (or imaginary) poles

Our results of Secs. IV A1 and IV A2 pertained to general
crossovers associated with general wave vectors. A simplifica-

tion occurs in parity (or reflection) invariant systems with real
spatial correlation functions, when either the real or imaginary
parts of the poles of the correlation function vanish (i.e.,
KI = 0 or KR = 0). In this case, we can reobtain the results
of Secs. IV A1 and IV A2 along an alternate route as we now
illustrate.

As is well known, whenever the spatial pair correlation
functions G(T ,�x) are real, a Fourier transform about the lth
direction yields

G(T ,{xl′ �=l},−k
) = G∗(T ,{xl′ �=l},kl), (25)

with G∗ the complex conjugate of G. Furthermore, in systems
with an invariance associated with a reflection about the lth
Cartesian direction,

G(T ,{kl′ �=l},kl) = G(T ,{kl′ �=l}, − kl). (26)

Taken together, Eqs. (25) and (26) imply that if, for a fixed
value of {xl′ �=l}, G as a function of kl has a pole at K, then
it must also have poles at {−K,K∗,−K∗}. In rotationally
invariant systems, G(T ,�k) is a function of k2 (k is the modulus
of the wave vector �k) and similar results hold. That is, if G(k)
has a pole at K, then it also has poles at {−K,K∗,−K∗}.

We now consider two situations.

1. The crossover is associated with k∗ that lies
on the imaginary axis in the complex k plane

In this case, by virtue of the above considerations, as a
pole K veers towards k∗ so must its counterpart −K∗ (which
as illustrated above is also a pole of G). Thus, in expanding
G−1(T ,kl) or G(T ,k) (with k2 = �k · �k) about the zero at k∗ and
T = T∗, we have, exactly as in Eq. (16),

G−1 ∼ A(T − T∗) + B(k − k∗)2s , (27)

with s = 1 and where A, B are constants. In such a case,
as in our earlier discussion, the modulation length diverges
at T = T∗ with an exponent of νL = 1/2. [The size of the
modulation length scales as the reciprocal of the absolute value
of the real part (|KR|) of K .] It is, of course, also possible to
have any even number (2s) of pairs of momenta {K, − K∗} in
the complex k plane converging on k = k∗ at T = T∗. In such
instances, the modulation length diverges:

νL = 1

2s
. (28)

2. The crossover is associated with k∗ that lies on the real axis
in the complex k plane

Here, invoking anew the results that stem from Eqs. (25) and
(26), we have that as a pole K of G veers towards a real k∗, so
does the pole K∗ of G. Replicating the considerations above,
we arrive at Eq. (27) once again. The point k∗ on the real axis
is associated with a diverging correlation length [whose size
scales as the reciprocal of the absolute value of the imaginary
part (|KI |) of K]. Similar to Eq. (28), the correlation length
exponent νc associated with this crossover will be given by

νc = 1

2s
(29)

with s a natural number.
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D. Branch points

A general treatment of a situation in which the crossover
point is a branch point of the inverse correlation function in
the complex k plane is beyond the scope of this work. Branch
points are ubiquitous in correlation functions in both classical
as well as quantum systems.

For example, in the large n rendition of a bosonic system
[with a Hamiltonian of Eq. (3) and S(x) representing bosonic
fields], the momentum space correlation function at tempera-
ture T is given by Refs. [35,42]

G(�k) =
√

μ1

v(�k) + μ

[
nB

(√
μ1[v(�k) + μ]

kBT

)
+ 1

2

]
, (30)

where μ1 is a constant having dimensions of energy, μ

is the chemical potential, nB(x) = 1/(ex − 1) is the Bose
distribution function, and kB is Boltzmann’s constant.

Similar forms, also including spatial modulations in G(r),
may also appear. We briefly discuss examples where we have
a branch cut in the complex k plane.

The one-dimensional momentum space correlation func-
tion

G(k) = 1√
(k − q)2 + r

+ 1√
(k + q)2 + r

(31)

reflects a real space correlation function given by

G(x) = 2 cos(qx)K0(x
√

r)

π
, (32)

where K0(. . .) is a modified Bessel function. Thus, as is to be
expected, we obtain length scales associated with the branch
points K = ±q ± i

√
r .

Similarly, the three-dimensional real space correlation
function corresponding to

G(k) = 1√
(k − q)2 + r

(33)

exhibits the same correlation and modulation lengths along
with an algebraically decaying term for large separations.
Another related G−1(k) involving a function of |�k| (i.e., not an
analytic function of k2) was investigated earlier [43].

Throughout the bulk of our work, we consider simple
exponents associated with analytic crossovers. In considering
branch points, our analysis may be extended to critical points.
As is well known, at critical points of d-dimensional systems,
the correlation function for large r scales as

G(r) ∝ 1

rd−2+η
, (34)

with η the anomalous exponent. Such a scaling implies, for
noninteger η, the existence of a branch point of G(k) at k = 0.

If the leading order behavior of 1/G(m)(T ,k) is algebraic
near a branch point (T∗,k∗), then we get an algebraic exponent
characterizing a crossover at this point [m being the lowest
order derivative of G(k) which diverges at k = k∗ as in
Eq. (12)]. That is, we have

1

G(m)(T ,k)
∼ A(T − T∗)z1 − B(k − k∗)z2

as (T ,k) → (T∗,k∗), (35)

with some constants A and B. This implies that the branch
points K deviate from k∗ as

(K − k∗) ∼
(

A

B

)1/z2

(T − T∗)z1/z2 . (36)

We therefore observe a length scale exponent ν = z1/z2 at
this crossover. This exponent may characterize a correlation
length and/or a modulation length. The exponent z1/z2 may
assume irrational values in many situations in which the
function G−1(T ,k) is not analytic near the crossover point.
Such a situation could give rise to phenomena exhibiting
anomalous exponents η. For example, if we have a diverging
correlation length at a critical temperature Tc for a system with
a correlation function which behaves as in Eq. (34), then we
have in Eq. (35) z2 = 2 − η. Thus, we have

|LD − LDc| ∝ |T − Tc|
z1

2−η ⇒ νL = z1

2 − η
, (37)

where LDc = 2π/|Rek∗|, and more importantly

ξ ∝ |T − Tc|−
z1

2−η ⇒ νc = z1

2 − η
. (38)

Other critical exponents could also, in principle, be calculated
using hyperscaling relations.

If G−1(T ,k) has a Puiseux representation about the
crossover point, i.e.,

G−1(T ,k) =
∞∑

m=m0

∞∑
p=p0

amp(k − k∗)m/a(T − T∗)p/b, (39)

with am0p0 = 0, where m0,p0,a, and b are integers, then, the
result we derived above applies to the relevant length scale and
the crossover exponent ν = a/b is again a rational number.
Generalizing, if G−1(T ,k) is the ratio of two Puiseux series,
we use the numerator to obtain the leading order asymptotic
behavior and hence obtain a rational exponent.

E. A corollary: Discontinuity in modulation lengths implies
a thermodynamic phase transition

Nonanalyticities in the correlation function G(k) for a real
wave vector k imply the existence of a phase transition. This
leads to simple corollaries as we now briefly elaborate on.
A sharp discontinuous jump in the value of the modulation
lengths (and/or correlation lengths) implies that the zeros
{Ka} of G−1(k) in the complex k plane exhibit discontinuous
(“first-order-like”) jumps as a function of some parameter
(such as the temperature T ). When this occurs, as seen by,
e.g., differentiating the reciprocal of the product of Eq. (19),
the correlation function will, generally, not be analytic as a
function of T at T = T∗. Putting all of the pieces together,
we see that a discontinuous change in the modulation (or
correlation) lengths implies the existence of a bona fide phase
transition. Thus, all commensurate-commensurate crossovers
must correspond to phase transitions. An example is afforded
by the ANNNI model [44].
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F. Diverging correlation length at a spinodal transition

Our analysis is valid for both annealed and quenched
systems so long as translational symmetry is maintained
(and thus, the correlation function is diagonal in k space).
In particular, whenever phase transitions are “avoided,” the
rational exponents of Eq. (15) will appear [42,45,46].

In diverse arenas, we may come across situations in which
there are no diverging correlation lengths even when the
inverse correlation function has zeros corresponding to real
values of the wave vector. These are signatures of a first-order
phase transition, e.g., transition from a liquid to a crystal. If
the first-order phase transition is somehow avoided, then the
system may enter a metastable phase and may further reach
a point where the correlation length diverges, e.g., a spinodal
point. If it is possible to reach this point and if the inverse
correlation function is analytic there, then our analysis will
be valid, thereby leading to rational exponents characterizing
the divergence of the correlation length. There are existing
works in the literature which seem to suggest that such a
point may not be reachable. For example, in mode coupling
theories of the glass transition, the system reaches the mode
coupling transition temperature TMCT, at which the viscosity
and relaxation times diverge and the system does not reach the
point where the correlation length blows up [47].

G. Conservation of total number of characteristic length scales

In Ref. [35], it was mentioned that the total number of
characteristic length scales in a large n system remains constant
in systems in which the Fourier space interaction kernel v(�k) is
a rational function of k2 and the real space kernel is rotationally
invariant. (Similar results hold for systems with reflection
point group symmetry [48].) In this section, we generalize that
argument and say that whenever the Fourier space correlator
G(�k) of a general rotationally invariant system is a rational
function of k2, i.e.,

G(�k) = P (k2)

Q(k2)
, (40)

the total number of correlation and modulation lengths remains
constant apart from isolated points as a tuning parameter
λ is smoothly varied. In Eq. (40), the functions P (k2) and
Q(k2) are polynomial functions of k2. Rotational invariance
requires that G(�k) is real valued for real wave vectors k. As
argued in Ref. [35], all length scales in the such systems are
associated with the poles of G(k) in the complex k plane
and these remain constant for a given form of the function
G(k). Each real root of the function Q(k2) gives rise to a
term in the real space correlation function, which has one
correlation or one modulation length. Nonreal roots (which
necessarily come in complex conjugate pairs) give rise to a
correlation and a modulation length. Thus, the total number of
characteristic length scales in the system is equal to the order
of the polynomial function Q(k2) which remains fixed.

V. O(n) SYSTEMS

The correlation function for O(n) systems can be calculated
exactly at both the low and the high temperature limits.
At intermediate temperatures, various crossovers and phase

transitions may appear. In this section, we discuss the low and
high temperature behavior length scales characterizing O(n)
systems.

A. Low temperature configurations

It was earlier demonstrated [49] that for O(n � 2), all
ground states of a system have to be spirals (or polyspirals) of
characteristic wave vectors �qα , given by

v(�qα) = − min
�k∈Rd

v(�k), (41)

where R
d represents the set of all d-dimensional real vectors.

At T = 0, the modulation lengths in the system are given by

L
i,α
D (T = 0) = 2π/qi,α, (42)

where i(1 � i � d) labels the Cartesian directions in d

dimensions. This, together with Eq. (43), gives us the high
and low temperature forms of the correlation function and its
associated length scales.

B. High temperatures

As is well appreciated, diverse systems behave in the same
way at high temperatures [50]. For O(n) systems [51] (any n),

G−1(T ,k) = 1 + v(�k)/kBT + O(1/T 3). (43)

The high temperature series may be extended and applied at
the crossover temperature T∗ if there is no phase transition at
temperatures above T∗ and for all relevant real k’s, |v(�k)| �
kBT∗. (A detailed example will be studied in Sec. V E.)
Generally, Eq. (43) may be analytically continued for complex
k’s and in the vicinity of T∗:

δk ∼
[
m!kB(T∗ − T )

v(m)(k∗)

] 1
m

, (44)

where k∗ is a characteristic wave vector at T∗. In the above, δk

denotes the change in the location of the poles K of G−1 when
the temperature is changed from T∗ to T (i.e., δk ≡ K − k∗)
and m is the order of the lowest nonvanishing derivative of
v(�k) at k∗. As in previous analysis, v′(k∗) = 0 and m � 2. For
general v(�k), typically m = 2 and νL = 1/2 as before.

We now turn to examples which explicitly illustrate how
our results are realized including exceptional systems with
nontrivial exponents.

C. Large n Coulomb frustrated ferromagnet: Modulation
length exponent at the crossover temperature T∗

In this section and the two that follow, we will discuss the
large n limit in O(n) systems. The results in the previous two
sections pertain to arbitrary n. We illustrate how our result
applies to the large n [51] Coulomb frustrated ferromagnet.
As is well known [52], in the large n limit, O(n) systems are
exactly solvable and behave as the spherical model [53]. The
correlation function in k space is given by

G−1(T ,k) = [v(�k) + μ(T )]/kBT , (45)

where v(�k) is the Fourier space interaction kernel and μ(T ) is
a Lagrange multiplier (see e.g. Refs. [35,46]) that enforces the
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spherical constraint

1

N

∑
�x

〈�S(�x) · �S(�x)〉 = 1. (46)

The paramagnetic transition temperature TC is obtained from
the relation μ(TC) = − mink∈R v(�k). Below TC , the Lagrange
multiplier μ(T ) = μ(TC). Above TC , μ(T ) is determined by
the global average constraint that G(�x = 0) = 1

N

∑
�k G(�k)=1.

This global constraint also implies that, above TC , small
changes in temperature result in proportional changes in μ(T )
and at high temperatures, μ(T ) is a monotonic increasing
function of T . The Fourier space kernel v(�k) for the “Coulomb
frustrated ferromagnet” (in which nearest-neighbor ferromag-
netic interactions of strength J compete with Coulomb effects
of strength Q) is given by v(�k) = Jk2 + Q/k2, where J

and Q are positive constants. The critical temperature TC

of this system is given by μ(TC) = −2
√

JQ. At TC , the
correlation length is infinity and the modulation length is LD =
2π 4

√
J/Q. As the temperature is increased, the modulation

length increases and the correlation length decreases. At T∗,
given by μ(T∗) = 2

√
JQ, the modulation length diverges and

the correlation length becomes ξ = 4
√

J/Q. At temperatures
above T∗, the correlation function exhibits no modulations and
there is one decreasing correlation length and one increasing
correlation length. The term in the correlation function with
the increasing correlation length becomes irrelevant at high
temperatures because of an algebraically decaying prefactor.
The divergence of the modulation length at T∗ shows an
exponent of νL = 1/2 [35].

D. An example with νL �= 1/2

In what follows, we demonstrate, as a matter of principle,
that the exponent for the divergence of the modulation length
(and also the correlation length) can be different from 1/2 in
certain special cases. As an illustrative example, we consider
a large n (or spherical model) system for which, in Eq. (6),

v(�k) = A
(
k2 + l−2

s

)2 + 4B
(
k2 + l−2

s

)
+ 4C/

(
k2 + l−2

s

) + D/
(
k2 + l−2

s

)2
, (47)

where ls is a screening length and A, B, C, D are constants.
If we set A = B = C = D = 1, then in the resultant system
νL �= 1/2 at a crossover temperature. It has a critical tempera-
ture TC , given by μ(TC) = −10. At TC , the modulation length
is LD = 2π/

√
1 − 1/l2

s and the correlation length blows up
(as required by definition). At the crossover temperature,
T∗ [for which μ(T∗) = 6], the modulation length diverges
and the correlation length scales as ξ = 1/

√
1 + 1/l2

s . A
temperatures just below T∗, the modulation length LD diverges
as LD ∝ (T∗ − T )−1/4, meaning that νL = 1/4. This is because
the first three derivatives of v(�k) vanish at k = i, which is the
characteristic wave vector at T∗ (see Fig. 4).

E. An example in which T∗ is a high temperature

We now provide an example in which the high temperature
result of Sec. V B [valid for any O(n) system with arbitrary
n] can be applied at a crossover point. Consider the large
n system in Eq. (47) with A = 1, B � 1, C = 1/4, D = 0,
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FIG. 4. Location of the poles of the correlation function of the
system in Eq. (47) for large ls (small screening) in the complex k

plane.

and the screening length ls � B. The critical temperature of
this system is given by μ(TC) ∼ −4

√
B where the modulation

length is LD ∼ 2π
4
√

4B. There is a crossover temperature T∗
such that μ(T∗) ∼ 4B2. One of the modulation lengths diverges
at T∗. The corresponding correlation length is given by ξ ∼
1/

√
2B. This provides an example in which |v(�k)| � kBT∗

for all real k’s satisfying |k| � π . The second derivative of
v(�k) is nonzero at the crossover point, resulting in a crossover
exponent νL = 1/2.

J
2

J
1

J
1

J
1

Z↑

FIG. 5. The coupling constants in the three-dimensional ANNNI
model.
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VI. CROSSOVERS IN THE ANNNI MODEL

We now comment on one of the oldest studied examples
of a system with a crossover temperature. The following
Hamiltonian represents the axial next-nearest-neighbor Ising
(ANNNI) model [38,39,44]:

H = −J1

∑
〈�x,�y〉

S(�x)S(�y) + J2

∑
〈〈�x,�y〉〉

S(�x)S(�y), (48)

where, as throughout, {�x} is a cubic lattice, and the (Ising)
spins S(�x) = ±1. The couplings J1,J2 > 0. In the summand,
〈. . .〉 represents nearest neighbors and 〈〈. . .〉〉 represents
next-nearest neighbors along one axis (say the Z axis) (see
Fig. 5). Depending on the relative strength J2/J1, the ground
state may be either ferromagnetic or in the “〈2〉 phase.” The
“〈2〉 phase” is a periodic layered phase, in which there are
layers of width two lattice constants of “up” spins alternating

with layers of “down” spins of the same width along the Z

axis. As the temperature is increased, the correlation function
exhibits jumps in the modulation wave vector at different
temperatures. At these temperatures, the system undergoes
first-order transitions to different commensurate phases. The
inverse correlation function G−1(T ,k) is therefore not an
analytic function of k and T at the transition points. The
phase diagram for the ANNNI model, however, also has several
crossovers where the system goes from a commensurate phase
to an incommensurate phase with a continuously varying
modulation length (see Fig. 6) [54,55]. At these crossover
points, following our rigorous analysis, we expect a crossover
exponent νL = 1/2. Such a scaling of the modulation length
has been estimated by several approximate techniques near
the “Lifshitz point” PL [44,56–61]. The Lifshitz point is the
point in the phase diagram of the ANNNI model at which
the high temperature paramagnetic phase coexists with the

FIG. 6. Existence of incommensurate phases between the commensurate regions in the phase diagram of the ANNNI model. (a) Mean-field
phase diagram of the ANNNI model in three dimensions. The shaded regions show higher order commensurate phases which have variable
modulation length incommensurate phases in-between. (From Ref. [54], reprinted with permission from APS.) (b) Phase diagram for the
three-dimensional ANNNI model using a modified tensor product variational approach. (From Ref. [55], reprinted with permission from APS.)
(c) Variation of wavelength along paths A1B1 and A3B3 of (b) showing a smooth variation of the wavelength near the paramagnetic transition
line. (From Ref. [55], reprinted with permission from APS.) (d) Cartoon of an incommensurate-commensurate crossover region from (a).

041132-9



SAURISH CHAKRABARTY et al. PHYSICAL REVIEW E 86, 041132 (2012)

ferromagnetic phase as well as a phase with continuously
varying modulation lengths. It is marked as PL in Fig. 6(b).
Although the point PL has a first-order transition, it can
be thought of as a limit in which the incommensurate and
commensurate regions in Fig. 6(a) shrink and merge to a single
point. We would also like to point out that it is known [62] that
if the wave vector takes all possible rational values (“complete
devil’s staircase”), we have no first-order transitions. Addi-
tionally, nonanalyticity of the correlation function does not
prohibit other quantities from having continuous crossover
behavior. For example, the correlation of the fluctuations,
i.e., the connected correlation function may generally exhibit
continuous variation from a fixed to a variable modulation
length phase. If the inverse connected correlation function is
analytic, our result can be applied to it, resulting in a crossover
exponent of 1/2.

Aside from its theoretical appeal, the ANNNI model
has numerous applications and natural generalizations. We
note that aside from the spin only ANNNI Ising exchange
Hamiltonian of Eq. (48), it is notable that, inspired by
experimental results, much work has further focused on the
effects of additional applied magnetic field that augment such
bare spin exchange interactions [63,64].

VII. PARAMETER EXTENSIONS
AND GENERALIZATIONS

It is illuminating to consider simple generalizations of
our result to other arenas. We may also replicate the above
derivation for a system in which, instead of temperature,
some applied other field λ is responsible for the changes in
the correlation function of the system. Some examples could
be pressure, applied magnetic field, and so on. The complex
wave vector k could also be replaced by a frequency ω, the
imaginary part of which would then correspond to some decay
constant in the time domain.

More generally, we look for solutions to the equation

G−1(λ,u) = 0, (49)

with the variable u being a variable Cartesian component of
the wave vector, the frequency, or any other momentum space
coordinate appearing in the correlation function between two
fields (u = ki,ω, and so on). Replicating our steps mutatis
mutandis, we find that the zeros of Eq. (49) scale as |u − u0| ∝
|λ − λ∗|1/2 whenever the real (or imaginary) part of some
root becomes constant as λ crosses λ∗. Thus, our predicted
exponent of νL = 1/2 could be observed in a vast variety
of systems in which a crossover occurs as the applied field
crosses a particular value, in the complex wave-vector-like
variable.

Another generalization of our result proceeds as follows
[65]. Suppose that we have a general analytic operator
(including any inverse propagator) G−1(λ) that depends on
a parameter λ. Let aα be a particular eigenvalue

G−1(λ)|aα(λ)〉 = aα(λ)|aα(λ)〉. (50)

The secular equation for the eigenvalues of G−1 is an analytic
function in λ. We may thus replicate our earlier considerations
to obtain similar results. In doing so, we see that if aα(λ)

changes from being purely real to becoming complex as we
vary the parameter λ beyond a particular threshold value λ∗
[i.e., if aα(λ > λ∗) is real and aα(λ < λ∗) is complex, or vice
versa], then the imaginary part of aα(λ) will scale (for λ < λ∗
in the first case noted above and for λ > λ∗ in the second one)
as Im {aα(λ)} ∝ |λ − λ∗|1/2. A particular such realization is
associated with the spectrum of a non-Hermitian Hamiltonian
[playing the role of G−1 in Eq. (50)] which, albeit being non-
Hermitian, may have real eigenvalues (as in PT symmetric
Hamiltonians) [66]. In this case, the crossover occurs when
a system becomes PT symmetric as a parameter λ crosses a
threshold λ∗.

Similarly, if aα(λ) changes from being pure imaginary
to complex at λ = λ∗, then the real part of the eigenvalue
will scale in the same way. That is, in the latter instance,
Re {aα(λ)} ∝ |λ − λ∗|1/2.

Our next brief remark pertains to some theories with
multicomponent fields, e.g., n component theories with Hamil-
tonians of the form Ref. [42]

H = 1

2N

∑
�k,i,j

vij (k)si(�k)sj (�k), (51)

in which, unlike Eq. (6) [as well as standard O(n) theories], the
interaction kernel vij might not be diagonal in the internal field
indices i,j = 1,2, . . . ,n. An example is afforded by a field
theory in which n component fields are coupled minimally
to a spatially uniform (and thus translationally invariant)
non-Abelian gauge background which emulates a curved space
metric [42]. Due to the density of states of this system, an exact
dimensional reduction occurs at low energies [67]. In the large
n system of Eq. (51), the index α in Eq. (50) is a composite
of an internal field component coordinate w = 1,2, . . . ,n

and �k-space coordinates. For each of the n branches w, we
may determine the associated �k-space zero eigenvalue of
Eq. (50) which we label by Kw [i.e., aw,k=Kw

(λ) = 0]. The
largest correlation length is associated with the eigenvector
which exhibits the smallest value of |ImKw|. As usual, as
λ is varied, we may track for each of the n branches the
trajectories poles of G in the complex k plane. Although
the location of the multiple poles may vary continuously with
the parameter λ, the dominant poles (those associated with the
largest correlation length) might discontinuously change from
one particular subset of eigenvectors to another (see Fig. 7).
As such, the correlation function of the system may show
jumps in its dominant modulation length at large distances
as λ crosses a threshold value λ∗ even though no transitions
(nor crossovers similar to that of Fig. 2 which form the focus
of this work) are occurring. Such jumps in the large distance
modulation lengths indeed appear in O(n) systems defined on
a fixed, translationally invariant, non-Abelian background or
metric as in Ref. [42].

In Appendix A, we discuss exponents associated with
lock-ins of correlation and modulation lengths in Fermi
systems. When dealing with zero temperature behavior, we
use the chemical potential μ as the control parameter λ. We
discuss metal-insulator transition, exponents in Dirac systems,
and topological insulators. Additionally, we comment on
crossovers related to changes in the Fermi surface topology as
well as those related to situations with divergent effective mass.
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FIG. 7. “Jumps” in the modulation length: The figure shows the
evolution of the poles associated with two different eigenvectors with
the parameter λ in the complex k plane. The solid portions of the
trajectories show which pole corresponds to the dominant term (larger
correlation length) in the correlation function. The ×’s denote the
poles at λ = λ∗ and the arrows denote the direction of increasing λ.
It is evident, therefore, that the modulation length corresponding to
the dominant term jumps from LD1 to LD2 as λ crosses the threshold
value λ∗.

VIII. IMPLICATIONS FOR THE TIME DOMAIN:
JOSEPHSON TIME SCALES AND

RESONANCE LIFETIMES

As we alluded to above, the results that we derived earlier
that pertained to length scales can also be applied to time
scales in which case we look at a temporal correlation function
characterized by decay times (corresponding to correlation
lengths) and oscillation periods (corresponding to modulation
lengths). We may obtain decay time and oscillation period
exponents whenever one of these time scales freezes to a
constant value as some parameter λ crosses a threshold value
λ∗.

Many other aspects associated with length scales have
analogs in the temporal regime. Towards this end, in what
follows, we advance the notion of a “Josephson time scale.”
We first very briefly review below the concept of a Josephson
length scale. In many systems [with correlation functions
similar to Eq. (34)], just below the critical temperature, the
correlation function as a function of wave vector k behaves as

G(k) ∝
{

k−2+η for k � 1/ξJ ,

k−2 for k � 1/ξJ ,
(52)

thus defining the Josephson length scale ξJ [68]. Such an
argument may be extended to a time scale τJ (real or
imaginary) in systems with Lorentz invariant propagators. For
a given wave vector k, τJ may be defined as

G(k,ω) ∝
{

ω−2+ηt for ω � 1/τJ ,

ω−2 for ω � 1/τJ ,
(53)

where ω is the frequency conjugate to time while performing
the Fourier transform and ηt ( �= 0) is an anomalous exponent
for the time variable.

We next briefly allude to another possible simple ap-
plication of our result. As is well known in high energy
(see, e.g., Ref. [69] for a standard textbook treatment) and
many body theories, the Fourier transform of the two-point
correlation function G(�k,ω) generally exhibits isolated poles
corresponding to the one-particle states as well as bound states
and a branch cut that reflects a continuum of multiparticle
states (i.e., two particles or more). Such a continuum of states
arises when the squared four-momentum p2 ≡ E2/c2 − �p2

exceeds the threshold necessary for the production of two
particles, i.e., p2 � (2m)2c2 with m the particle rest mass
and c the speed of light in vacuum. Single particle (and
bound) states and continuous multiparticle states lead to the
aforementioned respective single poles and branch cuts along
the real p2 axis. We may consider an application of our
ideas in the vicinity of zero energy bound states [as in, e.g.,
the Feshbach resonance of the Bardeen-Cooper-Schrieffer to
Bose-Einstein condensate (BCS to BEC) crossover [70–73]
in dilute gases where the crossover is driven by varying an
attractive contact interaction of strength g] when poles on the
real axis are just about to splinter into poles with a infinitesimal
imaginary part. Generally, when, by virtue of self-energy
corrections, the poles attain a finite imaginary part in the p2

plane, the corresponding states attain a finite lifetime [with the
lifetime being the analog of the correlation length (time) in the
two-point correlation functions that we discussed hitherto].
The relations (and exponents) that we derived thus far may
be applied, mutatis mutandis, for the description of processes
associated with the depinning of the poles off the real axis
due to the imaginary part of the self-energy �, leading to
resonances with a finite lifetime. This relates to the scaling of
the lifetime τ of resonances in cold atomic gases as a function
of (g0 − g) where g0 is the strength of the contact interaction
at the BCS to BEC crossover point.

IX. CHAOS AND GLASSINESS

Thus far, we have considered phases in which the mod-
ulation length is well defined. For completeness, in this
section, we mention situations in which aperiodic phases
may be observed. The general possibility of such phenomena
in diverse arenas is well known [62,74]. We focus here on
translationally invariant systems of the form of Eqs. (3) and
(4) with competing interactions on different scales that lead to
kernels such as

v(�k) = k4 − c1k
2 + c2, (54)

where c1 and c2 are positive constants that may give rise to
glassy structures for nonzero u. Such a dispersion may arise in
the continuum (or small k) limit of hypercubic lattice systems
with next-nearest-neighbor interactions (giving rise to the k4

term) and nearest-neighbor interactions (giving rise to the k2

term). Within replica type approximations, such kernels that
have a finite k minimum (i.e., ones with c1 > 0) may lead to
extensive configurational entropy that might enable extremely
slow dynamics [42,75].
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The simple key idea regarding “spatial chaos” is as follows.
It is well known that nonlinear dynamical systems may have
solutions that exhibit chaos. This has been extensively applied
in the time domain yet, formally, the differential equations
governing the system may determine not how the system
evolves as a function of the time t , but rather how fields
change as a spatial coordinate (x) [replacing the time (t)].
Under such a simple swap of t ↔ x, we may observe spatial
chaos as a function of the spatial coordinate x. In general,
of course, more than one coordinate may be involved. The
resultant spatial configurations may naturally correspond to
amorphous systems and realize models of structural glasses.
A related correspondence in disordered systems has been
found in random Potts systems wherein spin glass transitions
coincide with transitions from regular to chaotic phases in
derived dynamical analogs [76].

In the translationally invariant systems that form the focus
of our study, an effective free energy of the form

F[s] = 1

2

∫
ddk

(2π )d
[v(�k) + μ]|s(�k)|2

+ u

4

∫
ddx[S2(�x) − 1]2 (55)

is generally associated with single component (n = 1) systems
of the form of Eqs. (4). In Eq. (55), μ represents the deviation
from the transition temperature in Ginzburg-Landau theories
[or equivalently related to Eq. (45)]. When the constant u in the
second term tends to infinity, spin normalization is enforced at
all spatial points x. Finite small u corresponds to the so-called
“soft-spin” model.

Euler-Lagrange equations for the spins S(�x) are obtained
by extremizing the free energy of Eq. (55). These equations
are, generally, nonlinear differential equations (as discussed
in Appendix B). As is well appreciated, however, nonlinear
dynamical systems may exhibit chaotic behavior. In general,
a dynamical system may, in the long time limit, either veer
towards a fixed point, a limit cycle, or exhibit chaotic behavior.
We should therefore expect to see such behavior in the spatial
variables in systems which are governed by Euler-Lagrange
equations with forms similar to nonlinear dynamical systems.
Upon formally replacing the temporal coordinate by a spatial
coordinate, chaotic dynamics in the temporal regime map onto
to a spatial amorphous (glassy) structure.

In Fig. 8(a), we illustrate the spatial amorphous glasslike
chaotic behavior that a one-dimensional rendition of the
system of Eq. (54) exhibits. In Figs. 8(b)–8(g), we provide
plots of the spatial derivatives of different order versus each
other [and S(x) itself].

Another example comes from the spatial analog of dy-
namical systems with nonlinear “jerks.” It is well known
that systems with nonlinear “jerks” often give rise to chaos
[77]. “Jerk” here refers to the time derivative of a force, or,
something which results in a change in the acceleration of a
body. Translating this idea from the temporal regime to the
spatial regime, one can expect to obtain a aperiodic or glassy
structure in a system for which the Euler Lagrange equation
(B1) may seem simple. For example, if we have the following
Euler Lagrange equation for a particular one-dimensional
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FIG. 8. Glassiness in system with v(�k) as in Eq. (54) with c1 = 5,
c2 = 4 and u = 1 and μ = 1 in Eq. (55).

system,

S ′′′(x) = J [S(x),S ′(x),S ′′(x)], (56)

with a nonlinear function J [S(x),S ′(x),S ′′(x)], then the system
may have aperiodic structure. An example is depicted in Fig. 9.

We now discuss O(n) systems and illustrate the existence
of periodic solutions (and absence of chaos) in a broad class
of systems. The Euler-Lagrange equations for the system in
Eq. (55) [written longhand in Eqs. (B1) and (B7)] become
linear in case of “hard” spins, i.e., when the O(n) condition is
strictly enforced, i.e., u → ∞. In this limit, all configurations
in the system can be described by a finite set of modulation
wave vectors (as was the case for the ground states in Sec. V A).

There are several ways to discern this result. First, it may
be simply argued that since the Euler-Lagrange equations
represent a finite set of coupled linear ordinary differential
equations, chaotic solutions are not present. The configura-
tions, therefore, must be characterized by a finite number of
modulation wave vectors.

A second approach is more quantitative. The idea used here
is the same as the one used in Ref. [49]. An identical construct
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FIG. 9. Example of aperiodic structure inspired by system with
nonlinear jerks. Here, J [S(x),S ′(x),S ′′(x)] = −2S ′(x) + (|S(x)| −
1) and initial conditions are S(0) = −1, S ′(0) = −1, S ′′(0) = 1
(chosen from Ref. [77]).

can be applied to illustrate that spiral and polyspiral states
are the only possible states that satisfy the Euler-Lagrange
equation if n > 1. With v being a functional of the lattice
Laplacian of Eq. (7), the lattice rendition of the Euler-Lagrange
equations in Fourier space reads as

D(��k)s(�k) = 0. (57)

In what follows, we consider what transpires when the
Euler-Lagrange equations have real wave vectors K = {�qm}
as solutions

D(��k)s(�k)|�k=�qm
= 0. (58)

To obtain a bound on the number of wave vectors that can be
used to describe a general configuration satisfying the Euler-
Lagrange equations, we consider general situations wherein
(i) 2(�qm ± �qm′) �= �krec for any �qm,�qm′ ∈ K, where �krec repre-
sents a reciprocal lattice vector; and (ii) �qm ± �qm′ �= �qp ± �qp′

for any �qm,�qm′ ,�qp,�qp′ ∈ K. Let a particular state be described
as

�S0(�x) =
∑
m

�ame−i �qm·�x, (59)

where the vectors �am have n components for O(n) systems.
As the states must have real components, the above equation
must take the form

�S0(�x) =
Nq∑

m=1

(�ame−i �qm·�x + �a∗
mei �qm·�x). (60)

In the above, �a∗
m denotes the vector whose components are

complex conjugate those of the vector �am. In Eq. (60), we
do not count terms involving the wave vectors �qm and −�qm

separately as such terms have been explicitly written in the
sum.

We next define the complex vectors { �Um} and { �Vm} as

�Um = �ame−i �qm·�x, �Vm = �amei �qm·�x. (61)

The O(n) normalization condition can then be expressed as∑
m

| �Um|2 = n,
∑
m

| �Vm|2 = n,

∑
�qm−�qm′ = �A

( �U ∗
m · �Um′ + �V ∗

m′ · �Vm)

+
∑

�qm+�qm′ = �A
( �U ∗

m · �Vm′ + �U ∗
m′ · �Vm) = 0. (62)

Solutions to Eq. (62) are spanned by the set of mutually
orthonormal basis vectors { �Um} ∪ { �Vm}. As these 2Nq basis
vectors are described by n components each, it follows that

Nq � n/2. (63)

Therefore, such states satisfying the Euler-Lagrange equations
for an O(n � 2) system can at most be characterized by n/2
pairs of wave vectors. These states can be described by Nq

spirals (or “polyspirals”), each of which is described in a
different orthogonal plane.

A few remarks are in order.
(i) When u in Eq. (55) is finite, i.e., in the soft-spin regime,

polyspiral solutions could be present even though aperiodic
solutions are also allowed.

(ii) Continuum limit. In the hard-spin limit, i.e., u → ∞
in Eq. (55), if the Fourier space Euler-Lagrange equation is
satisfied by nonzero real wave vectors, we have polyspiral
solutions as in the lattice case. When u is finite, aperiodic
solutions may also be present.

(iii) If the Fourier space Euler-Lagrange equation does not
have any real wave-vector solution, polyspiral states are not
observed.

In nonlinear dynamical systems, chaos is often observed
via intermittent phases. As a tuning parameter λ is varied,
the system enters a phase in which it jumps between periodic
and aperiodic phases until the length of the aperiodic phase
diverges. This divergence is characterized by an exponent ν =
1/2 similar to ours [78].

X. CONCLUSIONS

Most of the work concerning properties of the correlation
functions in diverse arenas has to date focused on the corre-
lation lengths and their behavior. In this work, we examined
the oscillatory character of the correlation functions when they
appear.

We furthermore discussed when viable nonoscillatory
spatially chaotic patterns may (or may not appear); in these,
neither uniform nor oscillatory behavior is found. Our results
are universal and may have many realizations. In the following,
we provide a brief synopsis of our central results.

(1) We have shown the existence of a universal modulation
length exponent νL = 1/2 [Eq. (17)]. Here, the scaling could
be as a function of some general parameter λ such as tem-
perature. This is observed in systems with analytic crossovers
including the commensurate-incommensurate crossover in the
ANNNI model.

(2) In certain situations, the above exponent could take
other rational values [Eq. (15)].
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(3) This result also applies to situations where a correlation
length may lock in to a constant value as the parameter λ is
varied across a threshold value [as in Eq. (24)].

(4) We extended our result to include situations in which
the crossover might take place at a branch point. In this case,
irrational exponents could also be present. In Eqs. (37) and
(38), we provide universal scaling relations for correlation and
modulation lengths.

(5) We illustrate that discontinuous jumps in the modulation
and correlation lengths mandate a thermodynamic phase
transition.

(6) We showed that in translationally invariant systems
(with rotational and/or reflection symmetry), the total number
of correlation and modulation lengths is generally conserved
as the general parameter λ is varied.

(7) Our results apply to both length scales as well as time
scales. We further introduce the notion of a Josephson time
scale.

(8) We comment on the presence of aperiodic modulations
or amorphous states in systems governed by nonlinear Euler-
Lagrange equations. We illustrate that in a broad class of
multicomponent systems, chaotic phases do not arise. Spiral
or polyspiral solutions appear instead.

(9) Our results have numerous applications. We discussed
several nontrivial consequences for classical system in the text.
For completeness, in Appendix A, we discuss rather simple
applications of our results to noninteracting Fermi systems.
We mention situations in which the Fermi surface changes
topology, situations with divergent effective masses, and the
metal-insulator transition. We further discuss applications to
many other systems including Dirac systems and topological
insulators. Aside from uniform and regular modulated periodic
states of various strongly correlated electronic systems [2–10],
there are numerous suggestions and indications of glassy (and
spatially nonuniform or chaotic) behavior that naturally lead
to high entropy in these systems, e.g., see Refs. [75,79–82].
When spatial modulations are present in the ground states of
rotationally invariant (and other) systems, they may lead to
“holographiclike” entropy (as in large n renditions) [42]. In
future work, we will elaborate on nontrivial consequences of
our results for interacting Fermi systems.

Our general analysis regarding the expansion of the inverse
correlator G−1 as a function of k about points k∗ and the myriad
conclusions that we draw from it (including exponents) may, in
some cases, be viewed as a formal analog of Ginzburg-Landau
method of expanding an effective free energy F in an order
parameter field φ (i.e., δk ↔ φ and G−1 ↔ F).

Finally, we make a brief parenthetic remark concerning the
“fractal dimension” in glasses and other systems. The notion
of fractal dimensionality was recently applied in Ref. [83]
based on a comparison between the atomic volume and the
reciprocal of the dominant peak KR in the structure factor in
metallic glasses. Specifically, the volume V ∼ K

−Df

R with Df

being the fractal dimension. This definition is very intuitive
and such a relation between volume and structure factor peaks
is to be expected for a system of dimension Df if all natural
scales in the parameter expand or contract with temperature
(or other parameters) in unison. However, as we elaborated on
at length, aside from global changes in the lattice constant, KR

can change nontrivially with temperature and other parameters

in some regular lattice and other systems. Formally, this may
give rise to an effective nontrivial fractal dimension in various
systems.
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APPENDIX A: FERMI SYSTEMS

In this appendix, we discuss several examples of noninter-
acting fermionic systems where we observe a correlation or
modulation length exponent. We will, in what follows, ignore
spin degrees of freedom which lead to simple degeneracy
factors for the systems that we analyze. In noninteracting
Fermi systems, the mode occupancies are given by the Fermi
function. That is,

〈n(�k)〉 = 〈c†(�k)c(�k)〉 = 1

eβ[ε(�k)−μ] + 1
, (A1)

where we suppressed the spin indices and where c(�k) and c†(�k)
are the annihilation and creation operators at momentum �k and
β = 1/(kBT ) with T the temperature. The correlation function
associated with the amplitude for hopping from the origin to
lattice site �x is given by

G(�x) = 〈C†(0)C(�x)〉 =
∑

�k
〈n(�k)〉e−i�k·�x, (A2)

where C(�x) [and C†(�x)] are the annihilation [and creation]
operators for a fermion at site �x.

Thus far, in most explicit examples that we considered, we
discussed scaling with respect to a crossover temperature. In
what follows, we will, on several occasions, further consider
the scaling of correlation and modulation lengths with the
chemical potential μ. We will use the letter υ to represent expo-
nents corresponding to scaling with respect to μ and continue
to use ν to represent scaling with respect to the temperature T .

The existence of modulated electronic phases is well
known [2–13,22,23,84,85]. In particular, the Fermi wave
vector dominated response of diverse modulated systems as
evident in Lindhard functions, particular features of charge and
spin density waves dominated by Fermi surface considerations
in quasi-one-dimensional and other systems have long been
discussed and have numerous experimental realizations in
diverse compounds [84,85]. The exponents that we derived in
this work appear for all electronic and other systems in which
a crossover occurs in the form of the modulations seen in
charge, spin, or other degrees of freedom. Our derived results
concerning scaling apply to general interacting systems. To
highlight essential physics as it pertains to the change of
modulations in systems of practical importance, we briefly
review and further discuss free electron systems.
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FIG. 10. Transition from a metal to a band insulator. This figure
is for illustration only.

1. Zero temperature length scales: Scaling as a function
of the chemical potential μ

We first consider a noninteracting fermionic system with a
dispersion ε(�k). At zero temperature, the number of particles
occupying the Fourier mode �k is given by

〈n(�k)〉 =
{

1 for ε(�k) < μ,

0 for ε(�k) > μ.
(A3)

All correlation functions, as all other zero temperature
thermodynamic properties, are determined by the Fermi
surface geometry. We now consider the correlation function
of Eq. (A2). This correlation function will generally exhibit
both correlation and modulation lengths. To obtain the mod-
ulation lengths along a chosen direction (the direction of the
displacement �x), a ray along that direction may be drawn.
The intercept of this ray with the Fermi surface provides the
pertinent modulation wave vectors. As we vary μ, we alter the
density ρ via

ρ = gs

∫
ε(�k)<μ

ddk

(2π )d
, (A4)

gs being the spin degeneracy (gs = 2 for noninteracting spin-
half particles such as electrons). As the Fermi surface topology
is varied, the following effects may be observed.

(1) If two branches of the Fermi surface touch each other
at μ = μ0 and are disjoint for all other values of μ, then
a smooth crossover will appear from one set of modulation
lengths to another with |LD − LD0| ∝ |μ − μ0| on both sides
of the crossover. This crossover will be associated with an
exponent υL = 1 characterizing the scaling of the modulation
lengths with deviations in the chemical potential. An example
where a crossover of this kind is realized is the εg = 0 case of
the schematic shown in Fig. 10 in which the crossover occurs
at μ = μ0. Other examples of this occur at half-filling of the
square lattice tight binding model and at three-quarters filling
of the triangular lattice tight binding model. These will be
discussed later.

(2) If, on the other hand, one branch of the Fermi surface
vanishes as we go past μ = μ0, the crossover is not so smooth
and we get some rational fraction υL (usually υL = 1/2) as the
crossover exponent: |LD − LD0| ∝ |μ − μ0|υL , on one side of
the crossover. An example of this is shown in Fig. 11. Here,

|LD − LD0| = L2
D0

2π

√
2|μ − μ0|

|ε′′(2π/LD0)| , (A5)

where LD0 is the modulation length at the point where the
μ = μ0 line touches the ε(k) curve, such that ε′(2π/LD0) = 0.
The hopping correlation function takes the form

G(x) = (ax)d/2Jd/2(ax)

(2π )d/2xd
− (bx)d/2Jd/2(bx)

(2π )d/2xd
+ (cx)d/2Jd/2(cx)

(2π )d/2xd
,

(A6)

where μ′
0 < μ < μ0 and a, b, and c in Eq. (A6) (corresponding

to modulation lengths of 2π/a, 2π/b, and 2π/c) are the values
of k for which ε(k) = μ (as shown in Fig. 11).

At arbitrarily small but finite temperatures, the correlation
function exhibits modulations of all possible wavelengths. The
prefactor multiplying a term with spatial modulations at wave
vector �k is the exponential of (−|ε(�k) − μ|). An illustrative
example is provided in Fig. 12. Apart from the dominant zero
temperature modulations, associated with the wave vector k2 in
Fig. 12, at finite temperature, there are additional contributions

(a)

a b c kx

ky

(b) (c)

FIG. 11. Example of a Fermi system where the modulation length exponent is 1/2. The gray region shows the filled states. When μ > μ0,
modulations corresponding to wave vectors k = a and b cease to exist and we get an exponent of 1/2 at this crossover. Similarly, when μ < μ′

0,
modulations corresponding to wave vectors k = b and c die down.
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FIG. 12. The same Fermi system as in Fig. 11, but now with
a chemical potential μ = μ0 + �, slightly higher than μ0. The
temperature is small but finite.

from wave vectors for which |ε(k) − μ| is small relative to
kBT . Near k2, we can assume ε(k) is linear such that ε(k) ≈
μ + (k − k2)ε′(k2). Similarly, near k1, ε(k) − μ ≈ −� − (k −
k1)2ε′′(k1)/2, where � = μ − μ0 (see Fig. 12). For large β,
both these contributions are highly localized around k2 and
k1, respectively, making the above approximations very good
and the Fourier transforming integrals easy to evaluate (〈n(�k)〉
taking exponential and Gaussian forms). We have

G(x) = (k2x)d/2Jd/2(k2x)

(2π )d/2xd
− 2(k2x)d/2Jd/2−1(k2x)

(2π )d/2βε′(k2)xd−1

+ e−β�(k1x)d/2Jd/2−1(k1x)

(2π )
d−1

2
√

βε′′(k1)xd−1
, (A7)

where β → ∞ and � → 0, such that β� → ∞.
Next, we will discuss scaling of the modulation length

in with the chemical potential, μ in the familiar tight
binding models on the square and triangular lattices at zero
temperature.

a. Tight binding model on the square lattice

We consider a two-dimensional tight binding model of the
square lattice. The dispersion in this model is given by

ε(�k) = −2t(cos kx + cos ky). (A8)

The constant energy contours corresponding to Eq. (A8) are
drawn in Fig. 13.

As is clear from Fig. 13, there are certain directions (e.g.,
along the X axis) along which there is no �k for ε(�k) > 0. If we
consider the same system at zero temperature, the following
three crossovers are observed.

(i) Half-filling. The chemical potential μ is zero at the half-
filling state. The Fermi surface is given by ±kx ± ky = π . For
small μ, we have

±kx ± ky = π + μ

2t sin kx

, (A9)

thus giving us an uninteresting modulation exponent, υL = 1.
(ii) Empty band. When μ = −4t , none of the states

are occupied. As we increase μ by a tiny amount δμ

0-1-2-3 1 2 3
k

x

-3

-2

-1

0

1

2

3

k y
FIG. 13. (Color online) Constant energy contours for two-

dimensional tight binding model on the square lattice in Eq. (A8).
The red dashed square corresponds to the particle hole symmetric
contour where ε(�k) = 0. The contours inside it are for negative ε(�k)
and those outside are for positive ε(�k).

above this value, we observe a nonzero modulation wave
vector k = √

δμ/t , thus showing a modulation exponent
υL = 1/2.

(iii) Full inert bands. When μ = +4t , all the states are
occupied. As we lower μ by a tiny amount δμ below this
value, we observe a difference δk of the modulation vector
from ±êxπ ± êyπ . We have δk = √

δμ/t , thus showing a
modulation exponent υL = 1/2 again.

b. Tight binding model on the triangular lattice

The analysis of the triangular lattice within the tight binding
approximation is very similar to the square lattice discussed
above. The dispersion ε(�k) is given by

ε(k) = −2t cos kx − 4t cos
kx

2
cos

ky

√
3

2
. (A10)

We have exponents similar to the square lattice.
(i) Three-quarters filling. The chemical potential μ = 2t

corresponds to the three-quarters filling state. If we concen-
trate on the {kx = π,ky : −π/

√
3 → π/

√
3} segment (same

phenomenon is present at all the other segments of the
quarter-filling Fermi surface), we get

δkx ∼ δμ

2 cos
( ky

√
3

2

) , (A11)

where kx = π + δkx is obtained when μ = 2t + δμ. This
leads to a modulation exponent of υL = 1. The Fermi surfaces
for chemical potentials μ close to three-quarters filling are
schematically shown in Fig. 14.

(ii) Empty band. When μ = −6t , none of the states is
occupied. As we increase μ by a tiny amount δμ above
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FIG. 14. (Color online) Fermi surface for a triangular lattice with tight binding. The dashed lines are the Brillouin zone boundaries. This
demonstrates a smooth crossover from one set of Fermi surface branches to another as μ is changed across μ = 2. The points where the
crossovers take place are (0, ± 2π/

√
3), (±π, ± π/

√
3). The modulation length exponent for this crossover is υL = 1.

this value, we observe a nonzero modulation wave vector
k = √

2δμ/3, thus showing a modulation exponent υL = 1/2.
(iii) Full inert bands. When μ = 3t , all of the states are

occupied, and close to this value the Fermi surface is composed
of six small circles around �k = x̂ cos(nπ/3) + ŷ sin(nπ/3),
n = {0,1,2,3,4,5}. If μ = 3t − δμ, we get | �δk| = 2

√
δμ/3,

again giving us a modulation length exponent υL = 1/2.

c. Metal-insulator transition

We discuss here the metal to band insulator transition at zero
temperature. In a noninteracting system, this occurs when the
Fermi energy is changed such that all occupied bands become
completely full, as shown in Fig. 10. In the insulator, the Fermi
energy lies in-between two bands and thus the filled states are
separated from the empty states by a finite energy gap. As the
Fermi energy is tuned, the Fermi energy might touch one of
the bands, thereby rendering the system metallic. Close to this
transition, the energy is quadratic in the momentum k, i.e.,
|k| ∝ |δμ|1/2. This implies that

|δk| ∝ |δμ|1/2. (A12)

Following the scaling convention in Eq. (17), we adduce a
similar exponent

υL = 1/2 (A13)

that governs the scaling of the modulation lengths with the
shift δμ of the chemical potential (instead of temperature
variations).

d. Dirac systems

The low energy physics of graphene and Dirac systems is
characterized by the existence of Dirac points in momentum
space where the density of states vanishes and the energy ε(k)
is proportional to the momentum k for small k. When we
invoke and repeat our earlier analysis to these systems, we
discern a trivial exponent

|δk| ∝ |δμ| ⇒ υDirac = 1.

This exponent may be contrasted with that derived from
Eq. (A13).

e. Topological insulators: Multiple length scale exponents
as a function of the chemical potential μ

The quintessential low energy physics of three-dimensional
topological insulators can be gleaned from the following
effective Hamiltonian [86] in momentum space:

H (�k)= ε0(�k)I4×4 +

⎛
⎜⎜⎜⎜⎝
M(�k) A1kz 0 A2k−
A1kz −M(�k) A2k− 0

0 A2k+ M(�k) −A1kz

A2k+ 0 −A1kz −M(�k)

⎞
⎟⎟⎟⎟⎠,

(A15)

where ε0(�k) = C + D1k
2
z + D2k

2
⊥, M(�k) = M − B1k

2
z −

B2k
2
⊥, with k± = kx + iky , k⊥ =

√
k2
x + k2

y , and A1, A2, B1,

B2, C, D1, and D2 constants for a given system. The energy
bands are given by

ε(�k) = ε0(�k) ±
√
M(�k)2 + A1k2

z + A2k
2
⊥. (A16)

These bands are plotted in Figs. 15(a) and 15(b). The finite
gap between the two bands leads to an exponentially damped
hopping amplitude, characterized by a finite correlation length
when the Fermi energy lies within this gap. These energy bands
disperse quadratically for small k, thus yielding

|δk| ∝
√

|δμ| ⇒ υbulk = 1/2 (A17)

whenever the correlation length diverges and a insulator to
metal transition takes place in the bulk, thus allowing long
range hopping. The same exponent is also expected whenever
the modulation length becomes constant as μ crosses some
threshold value.
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FIG. 15. Energy levels of Bi2Se3 topological insulator. (a) ε(�k) as a function of k⊥ at kz = 0; (b) ε(�k) as a function of kz at k⊥ = 0;
(c) εsurf (kx,ky) as a function of �k⊥ ≡ (kx,ky).

The effective Hamiltonian for the surface states is given by

Hsurf =
(

0 A2k−
A2k+ 0

)
, (A18)

leading trivially to surface energies

εsurf(kx,ky) = ±A2k⊥. (A19)

Similar to the Dirac points in graphene [see Fig. 15(c)], we
trivially find an exponent of

υsurf = 1. (A20)

f. An example of a zero temperature Fermi system
in which υL is not half or one

Very large (or divergent) effective electronic masses meff

can be found in heavy fermion systems (and at putative
quantum critical points) [87,88]. If the electronic dispersion
ε(�k) has a minimum at �k0, then a Taylor expansion about that
minimum is, trivially,

ε(�k) = ε(�k0) + h̄2

2

∑
ij

(
m−1

eff

)
ij

(ki − k0i)(kj − k0j )

+
∑
ij l

Aijl(ki − k0i)(kj − k0j )(kl − k0l) + . . . ,

(A21)

with constants {Aijl}. When present, parity relative to �k0 or
other considerations may limit this expansion to contain only
even terms. As an example, we consider the dispersion

ε(k) = c1 − c2
(
k2 − k2

0

)4
, (A22)

where c1, c2 are constants and c2 > 0. The hopping correlation
function [of the form Eq. (A2)] of such a system has a
term which exhibits modulations at wave vector k = k0 at
μ = μ∗ = c1. At higher values of the chemical potential, such
a term ceases to exist. At lower values (μ = μ∗ − δμ), this
term breaks up into two terms, the modulation wave vectors
of which are different from k0 by

k − k0 ∼ ± δμ1/4

2k0c
1/4
2

⇒ υL = 1/4. (A23)

g. Other systems

Numerous realizations in other systems, such as similar
quadratic, Dirac type (linear), or other dispersions, were, e.g.,
found in Hubbard chains [89]. If, in the vicinity of its extrema
at k = q, the dispersion is generally of the form

|ε(k) − ε(q)| ∼ |k − q|z, (A24)

then the analysis that we invoked above may be replicated
anew. In the general case, we will trivially obtain that

υL = 1/z. (A25)

Equations (A13) and (A14) are particular realizations of this
general relation.

2. Finite temperature length scales: Scaling as a function
of temperature

At finite temperatures, apart from the modulation lengths,
there generally is a set of characteristic correlation lengths.
From Eq. (A2), these are obtained by finding the poles
(or other singularities) of the Fermi function. Along some
direction ê0, the wave vector �k0 = ê0k0 is associated with a
pole k0 = ±2π/L0 ± i/ξ0. At this wave vector,

ε( �k0) = μ + 2n + 1

β
i, (A26)

where n is an integer. For a given μ, let us suppose that as we
change the temperature, at T = T0, we reach a saddle point of
ε(�k) in the complex plane of one of the Cartesian components
of �k. Then, near this saddle point, the corresponding correlation
and modulation lengths scale as

|LD − LD0| ∝ |T − T0|νL, |ξ − ξ0| ∝ |T − T0|νc , (A27)

where νL = νc = 1/2 in most cases (when the second deriva-
tive is not zero).

APPENDIX B: EULER-LAGRANGE EQUATIONS
FOR SCALAR SPIN SYSTEMS

We elaborate on the Euler-Lagrange equations associated
with the free energy of Eq. (55) in Sec. IX. These assume the
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form∫
ddy Ṽ (�x − �y)S(�y) + μS(�x) + u[S2(�x) − 1]S(�x) = 0,

(B1)

where Ṽ (�x) = [V (�x) + V (−�x)]/2. For example, if we con-
sider the finite ranged system for which∫

ddy Ṽ (�x − �y)S(�y) = a∇2S(�x) + b∇4S(�x) + · · · , (B2)

then we will have

a∇2S(�x) + b∇4S(�x) + · · · + μS(�x)

+u[S2(�x) − 1]S(�x) = 0. (B3)

For lattice systems, the Euler Lagrange equation (B1) reads
as∑

�y
Ṽ (�x − �y)S(�y) + μS(�x)+ u[S2(�x) − 1]S(�x) = 0. (B4)

In general, it may be convenient to express the linear terms
in the above equation in terms of the lattice Laplacian �. We

write

D(�)S(�x) ≡
∑

�y
Ṽ (�x − �y)S(�y) + μS(�x), (B5)

D being some operator which is a function of the lattice
Laplacian �. The real space lattice Laplacian �, given by
the Fourier transform of Eq. (7), acts on a general field f as

�f (�x) ≡ −
d∑

i=1

[f (�x + êi) + f (�x − êi) − 2f (�x)]. (B6)

Here, {êi} denote unit vectors along the Cartesian directions.
(In the continuum limit, � can be replaced by −∇2.) The
Euler-Lagrange equation then takes the form

D(�)S(�x) + u[S2(�x) − 1]S(�x) = 0. (B7)

Equation (B2) corresponds, on the lattice, to∑
�y

Ṽ (�x − �y)S(�y) = −a�S(�x) + b�2S(�x) + · · · . (B8)

The Euler Lagrange equation for this finite ranged system
reads

−a�S(�x) + b�2S(�x) + · · · + μS(�x)

+u[S2(�x) − 1]S(�x) = 0. (B9)
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[84] G. Grüner, Rev. Mod. Phys. 60, 1129 (1988).
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