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Energy transport in weakly nonlinear wave systems with narrow frequency band excitation
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A novel discrete model (D model) is presented describing nonlinear wave interactions in systems with small
and moderate nonlinearity under narrow frequency band excitation. It integrates in a single theoretical frame
two mechanisms of energy transport between modes, namely, intermittency and energy cascade, and gives the
conditions under which each regime will take place. Conditions for the formation of a cascade, cascade direction,
conditions for cascade termination, etc., are given and depend strongly on the choice of excitation parameters. The
energy spectra of a cascade may be computed, yielding discrete and continuous energy spectra. The model does
not require statistical assumptions, as all effects are derived from the interaction of distinct modes. In the example
given—surface water waves with dispersion function ω2 = gk and small nonlinearity—the D model predicts
asymmetrical growth of side-bands for Benjamin-Feir instability, while the transition from discrete to continuous
energy spectrum, excitation parameters properly chosen, yields the saturated Phillips’ power spectrum ∼g2ω−5.
The D model can be applied to the experimental and theoretical study of numerous wave systems appearing in
hydrodynamics, nonlinear optics, electrodynamics, plasma, convection theory, etc.
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I. INTRODUCTION

A central topic in the theory of weakly nonlinear wave
interactions is the mechanism of energy transport between
modes. Considering what we can describe in theory and
observe in experiment, there is good reason to believe that
in any weakly nonlinear dispersive wave system there are
two main types of energy transport: intermittency, which is a
periodic or chaotic exchange of energy among a small number
of modes; and energy cascade, which is a unidirectional flow
of energy through scales in Fourier space.

In systems with a distributed initial state, energy transport
is studied in the framework of kinetic wave turbulence theory
(WTT) by means of the wave kinetic equation [1,2]. In this
paper we explicitly study wave systems with narrow frequency
band excitation.

Intermittency is based on finite-size effects in a resonator.
The general properties of weakly nonlinear wave systems
showing intermittency were first characterized through the
solution of the kinematic resonance conditions [3], which
reflect the geometry of the resonator. The general dynamical
characteristics of this type of energy transport have been
studied in the frame of discrete WTT [4] for systems with
narrow frequency band excitation. The main mathematical
object of the discrete WTT is a set of dynamical systems for
the amplitudes of interacting waves; each dynamical system
corresponds to a resonance cluster composed of a small
number of resonant triads or quartets having joint modes [5].

Energy cascades in systems with narrow frequency band
excitation have recently been described in Ref. [6] using
the increment chain equation method (ICEM). An energy
cascade is represented as a chain of modes with nonlinear
frequencies triggered by modulation instability (MI) at each
cascade step. The energy spectra E(ω) obtained by the ICEM
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have exponential decay and can be written as

E(ω) ∼
i�2∑
i=1

Ciω
−γi , γi > 0, (1)

where for a given linear dispersion function ω ∼ kα , Ci

are known functions of excitation parameters and γi vary
for different magnitudes of nonlinearity. For comparison, in
systems with a distributed initial state, studied in the frame of
kinetic wave turbulence theory (WTT), energy spectra decay
according to a power law,

E(ω) ∼ ω−γ , γ > 0, (2)

with different γ for different wave systems [1,2].
In this paper we present, based on the resonance conditions,

a common mathematical model, called the D model (D
for discrete), incorporating both forms of energy transport,
intermittency and cascades, and give the criteria regarding
under what conditions to expect which behavior. In the D
model, intermittency occurs for very small nonlinearity, 0 <

ε < 0.1, provided that the geometrical form of the resonator
permits resonance. An energy cascade occurs at larger levels of
nonlinearity, ε ∼ 0.1–0.4, and its spectrum does not depend on
the shape or finiteness of the interaction domain. The outcome
of the model strongly depends on the excitation parameters.

The D model can explain the following phenomena ob-
served in systems with narrow frequency band excitation.

(i) There is no cascade but recurrent wave patterns are
observed (e.g., surface water waves) [7].

(ii) There is a cascade consisting of two distinct parts—
discrete and continuous; the form of spectra does not follow a
power law (e.g., a thin elastic steel plate [8] or gravity capillary
waves in mercury [9]).

(iii) A discrete energy cascade develops a strongly nonlinear
regime yielding breaking; a continuous part of the spectrum is
not observed (e.g., surface water waves) [10].

(iv) The form of energy spectra depends on the parameters
of excitation (e.g., gravity surface waves [11] and capillary
water waves [12]).
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(v) Amplitudes of direct and inverse cascades are not
symmetric (e.g., [13–17]).

(vi) Interactions of waves occur over several orders of
magnitude (e.g., capillary waves in helium) [18].

The model is briefly described in Sec. II. To demonstrate
how the D model works, we give an example determining
the cascade direction and scenarios of cascade termination for
surface water waves, depending on the excitation parameters,
in Sec. III.

In Sec. IV we compare assumptions and predictions of the D
model versus the kinetic WTT to give the experimentalist clues
as to which model to apply in a given experimental setup. A
short list of conclusions and open questions is given in Sec. V.

II. D MODEL

The time evolution of a wave field in a weakly nonlinear
wave system is described by a weakly nonlinear partial
differential equation of the form

L(ψ) = −εN (ψ), (3)

where N is a nonlinear operator, 0 < ε � 1, and L is an
arbitrary linear dispersive operator, i.e., L(ϕ) = 0 for Fourier
harmonics ϕ = A exp i[k · x − ω(k)t], with constant A. Here
A, k, ω = ω(k) denote the amplitude, wave vector, and dis-
persion function, respectively. The small parameter is usually
introduced as the wave steepness ε = Ak, k = |k|. If the non-
linearity is small enough, only resonant interactions have to be
taken into account. The resonance conditions read as follows.

For three waves:

{
ω(k1) + ω(k2) = ω(k3),

k1 + k2 = k3.
(4)

For four waves:

{
ω(k1) + ω(k2) = ω(k3) + ω(k4),

k1 + k2 = k3 + k4.
(5)

Dynamical systems describing the time evolution of slowly
changing amplitudes Aj of resonantly interacting modes can
be obtained from (3) and (4) or from (3) and (5) using, e.g.,
a multiscale method. In a three-wave system Aj = Aj (T ),
T = t/ε, and in a four-wave system Aj = Aj (T̃ ), T̃ = t/ε2.
The corresponding dynamical systems (in canonic variables)
are written as

iȦ1 = ZA∗
2A3, iȦ2 = ZA∗

1A3, iȦ3 = −ZA1A2; (6)

iȦ1 = V A∗
2A3A4 + (ω̃1 − ω1)A1,

iȦ2 = V A∗
1A3A4 + (ω̃2 − ω2)A2,

iȦ3 = V ∗A∗
4A1A2 + (ω̃3 − ω3)A3, (7)

iȦ4 = V ∗A∗
3A1A2 + (ω̃4 − ω4)A4,

ω̃j − ωj =
4∑

i=1

(Vij |Aj |2 − 1

2
Vjj |Ai |2),

where the interaction coefficients Vij = Vji ≡ V
ij

ij and
V = V 12

34 are responsible for the nonlinear shifts of frequency
and the energy exchange within a quartet, respectively, and
(ω̃j − ωj ) are Stokes-corrected frequencies. For very small
nonlinearity, dynamical system (7) can be regarded in a

simplified form, with ω̃j − ωj = 0, i.e., without nonlinear
correction of frequencies.

Three-wave interactions dominate in a weakly nonlinear
wave system if resonance conditions (4) have solutions and the
coupling coefficients Z �= 0. Otherwise, the leading nonlinear
processes are four-wave interactions.

The following results likewise hold for resonances and
quasiresonances with small enough frequency mismatch.

A. Intermittency, 0 < ε < 0.1

Excitation of a single mode in a three-wave system
generates energy exchange within a resonance cluster only if
this is the high-frequency mode ω(k3) from (4). In a four-wave
system, excitation of a single mode generates energy exchange
only if it is the high-frequency mode ω(k3) in a Phillips quartet,

ω(k1) + ω(k2) = 2ω(k3), k1 + k2 = 2k3, (8)

which is a special case of (5) [19]. Solutions of resonance
conditions (4) and (5) form a set of independent resonance
clusters. The form of a cluster uniquely defines its dynamical
system.

Solutions of dynamical systems (6) and (7) are known
[20,21]; they describe periodic energy exchange within a
resonant triad or quartet, respectively. Resonance clusters of
a more complicated structure may have a dynamical system
with periodic or chaotic evolution, [5].

In both three- and four-wave systems, resonant interactions
are not local in k space; furthermore, in a four-wave system
with dispersion function ω ∼ kα , modes with an arbitrary big
difference in wavelengths can interact directly. In this case a
parametric series of solutions of resonance conditions can be
easily written as

kα
1 + kα

2 = kα
3 + kα

4 , k1 + k2 = k3 + k4,

⇒ k1 = (kx,ky), k2 = (s, − ky), (9)

k3 = (kx, − ky), k4 = (s,ky),

where s is an arbitrary real parameter (see Fig. 1).
In any given three-wave system, most of the modes are

nonresonant. A nonresonant mode, being excited, does not
change its energy at the slow time scale T . In the majority
of four-wave systems, each mode satisfies (5). However, the
excitation of a single mode does not generate resonance in the
general case: the excited mode has to be the high-frequency
mode in a Phillips quartet.

FIG. 1. (Color online) Nonlocal interactions in a four-wave
system, ω ∼ kα . Each pair of dot-dashed (red) lines of equal length
corresponds to a specific choice of the parameter s.
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B. D cascade, ε ∼ 0.1–0.4

A D cascade is a cascade computed in the D model
by the ICEM method first presented in [6]. In both
three- and four-wave systems, D cascades are generated
by MI. Accordingly, the ICEM method can be applied
for all partial differential equations in which MI has been
established: the focusing weakly nonlinear Schrödinger (NLS)
equation [17], modified NLS [22,23], modified Korteweg–de
Vries equation, [24,25], and Gardner equation [26].

In both three- and four-wave systems, D cascades are
generated by MI which is described as a particular case of
the Phillips quartet, (8), with ω1 = ω0 + �ω, ω2 = ω0 − �ω,
0 < �ω � 1:

ω1 + ω2 = 2ω0, k1 + k2 = 2k0. (10)

The mode with frequency ω0 is called the carrier mode. At
each step in a discrete cascade, conditions (10) are satisfied,
with a new carrier mode generated from the previous cascade
step.

Time evolution of the quartet, (10), is studied in the frame
of the NLS equation. The corresponding time scale τ = t/ε2

is called the Benjamin-Feir time scale and is shorter than the
time scale of resonant interactions. To understand this, one
has to take into account that the small parameter εres < 0.1
yielding resonance interactions is in fact substantially smaller
than the εMI ∼ 0.1–0.4 corresponding to MI: T̃ = t/ε2

res >

t/ε2
MI = τ . This fact is well established, e.g., in the theory of

wind-generated oceanic waves [28].
The conditions under which MI occurs may be given as

an instability interval for the initial real amplitude A and
frequency ω of the carrier wave. For the NLS equation with
dispersion relation ω2 = gk and small nonlinearity ε ∼ 0.1–
0.25, the instability interval is described by

0 < �ω/Akω �
√

2. (11)

The most unstable mode in this interval satisfies the so-called
maximum increment condition (in Benjamin-Feir form [17]):

�ω/ωAk = 1. (12)

For moderate nonlinearity, ε ∼ 0.25–0.4, the maximum incre-
ment condition reads (in Dysthe form [22])

�ω/
(
ωAk − 3

2ω2A2k2
) = 1. (13)

Equations (12) and (13) each generate two chain equations
(one for a direct D cascade and one for an inverse D cascade)
describing the connection between the amplitudes of two
neighboring modes in the D cascade, under the following
assumptions [6].

(i) The fraction p of energy transported from one cascading
mode to the next one depends only on the excitation parame-
ters, and not on the step number of the cascade; p is called the
cascade intensity.

(ii) Modes forming a D cascade have the maximum insta-
bility increment, i.e., a cascade is formed by the most unstable
modes within the corresponding intervals of instability. This
is a mathematical reformulation of the Phillips hypothesis that
the spectral density is saturated at a level determined by wave
breaking [27].

In particular, (12) generates chain equations connecting
mode n to mode n + 1,

ωn+1 = ωn + ωnA(ωn)kn, (14)

ωn+1 = ωn − ωnA(ωn)kn, (15)

for direct and inverse D cascades, respectively. This means that
the D cascades are formed by nonlinear frequencies depending
on the amplitudes. From the chain equations various properties
of D cascades can be derived, including the form of the discrete
and continuous energy spectra.

III. SURFACE WATER WAVES

To demonstrate the wide range of the predictions which
are given by our model, we have chosen a classical example:
surface water waves with dispersion function ω2 = gk and
small nonlinearity, ε ∼ 0.1–0.25.

Before proceeding with our study we need to make an
important remark on the terminology used below. Standard
vocabulary for discussing wave resonant interactions is” a
three-wave system” if (4) and (6) are satisfied and” a four-wave
system” if (5) and (7) are satisfied. Regarding resonance
conditions for a Phillips quartet, (8), one might formally
conclude that this is a system of three waves with frequencies
ω1, ω2, and 2ω3. However, comparing the dynamical system
for a three-wave system, (6), and the dynamical system for a
Phillips quartet obtained from (7) by taking A3 = A4, we can
see immediately that these systems are different. Accordingly,
a Phillips quartet may be referred to in the literature as a
four-wave system.

In the text below we call system (10) a four-wave system,
although in the original papers whose results are interpreted
using the D model, this system is often called a three-wave
system. Our terminology also allows us to avoid confusion
when discussing cascade termination due to intermittency in
Sec. III C3.

A. Discrete and continuous energy spectra

For determining D-cascade direction and scenarios of D-
cascade termination we first need to compute the form of the
discrete energy spectrum. Detailed computation of D spectra
for various wave systems is given in [6]. For the reader’s
convenience, below we outline this computation for surface
water waves with small nonlinearity.

All computations below are performed with chain equa-
tion (14) and yield energy spectra for direct cascade. Compu-
tations for inverse cascade should be conducted similarly but
with chain equation (15); they are omitted here.

Assumptions a and b (see Sec. II B) mean that En = pEn−1

at any cascade step n, En ∼ A2
n being the energy of the mode

with amplitude An. As the dispersion function in this case has
the form ω2 = gk, this allows us to rewrite (14) as

√
pA(ωn) = A

(
ωn + ω3

nAn/g
) =

∞∑
s=0

A(s)
n

s!

(
ω3

nAn/g
)s

(16)

[here the notation An = A(ωn) is used].
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Restricting ourselves to the first two terms in the Taylor
expansion for the left-hand side of (16), we can obtain an
ordinary differential equation and solve it analytically:

ω3
nA

′
nAn/g + (1 − √

p)An = 0 (17)

⇒ An = g
(1 − √

p)

2
ω−2

n + C, C = A0 − g
(1 − √

p)

2
ω−2

0 .

(18)

Accordingly, the discrete energy spectrum for the direct
cascade reads

En = E(ωn) ∼ A2
n = g2

[
(1 − √

p)

2
ω−2

n + C

]2

, (19)

where ω0 and A0 are the excitation parameters and p =
p(ω0,A0).

The corresponding continuous energy spectrum E(ω) is
computed as limn→∞ |En+1 − En|/|ωn+1 − ωn|, yielding

E(ω) ∼ 2g2 [(1 − √
p)ω−5 − Cω−3]. (20)

In particular, the special choice of excitation parameters C = 0
yields

E(ω) ∼ g2ω−5, (21)

which is the saturated Phillips’ spectrum, [27]; this is also
in accordance with the JONSWAP spectrum (an empirical
relationship based on experimental oceanic data). Kinetic
WTT predicts ∼ω−4 in this case [1,2].

B. Cascade direction

Combining the chain equation and expression for the am-
plitudes of the cascading modes we can study how the cascade
direction depends on the choice of excitation parameters. For
instance, for direct cascade ωn+1 − ωn > 0 with C �= 0, the
use of (14), (17), and (18) yields

0 < ωn+1 − ωn = ω3
nA(ωn)/g (22)

= ω3
n

[
g

(1 − √
p)

2
ω−2

n + C

]
/g (23)

= (1 − √
p)

2
ωn +

[
A0 − g

(1 − √
p)

2
ω−2

0

]
ω3

n/g (24)

= (1 − √
p)

2
+

[
A0 − g

(1 − √
p)

2
ω−2

0

]
ω2

n/g (25)

⇒ g(1 − √
p) + [

2A0 − g (1 − √
p)ω−2

0

]
ω2

n > 0. (26)

As (1 − √
p) > 0, the range of frequencies forming a direct

cascade depends only on the sign of the expression 2A0 −
g (1 − √

p)ω−2
0 .

An easy examination of (23) and (26) shows how to choose
excitation parameters A0 and ω0 in order to observe the direct
cascade.

If 2A0 � g (1 − √
p)ω−2

0 , (27)

the only restriction on the range of frequencies forming the
direct cascade is trivial, ωn > ω0, and accordingly, only direct

cascade will occur;

if 2A0 < g(1 − √
p)ω−2

0 , (28)

direct cascade will be observed for the range of frequencies
ω0 < ωn � ωnst , where

ωnst =
√

g(1 − √
p)

g(1 − √
p)ω−2

0 − 2A0
. (29)

To simplify further formulas we introduce here a small
parameter, ε0 = A0k0 = A0ω

2
0/g, and rewrite (29) as

ωnst = ω0

√
(1 − √

p)

(1 − √
p) − 2ε0

. (30)

The physical meaning of the frequency ωnst is explained in
Sec. III C.

Similar computations can be performed for an inverse cas-
cade, and also the case where both direct and inverse cascades
are possible can be studied in this way. In particular, for some
choice of excitation parameters both direct and inverse cascade
can be initiated simultaneously. This scenario is supported by
a wide range of experimental studies (e.g., [13–15]).

All formulas, (17), (18), and (30), are given in terms of
excitation parameters A0 and ω0 and cascade intensity p. This
means that we should also compute p as a function of A0, ω0,
and p = p(Ao,ω0). This tedious computation will be given
elsewhere. However, in the next section we give an example of
the computation for a particular form of the solution, (17). Note
that for studying predictions of the D model in experimental
data one can just measure

√
p as the ratio of amplitudes of

two consecutive cascading modes,
√

p = An+1/An, and apply
formulas afterwards.

C. Cascade termination

1. Breaking

It was first shown in [29] that the amplitude of the carrier
wave may become so high that its steepness locally exceeds
the maximum steepness of gravity waves, yielding the onset of
wave breaking. In order to demonstrate that this effect can be
reproduced in the D model, let us regard a particular solution
of (17) with C = 0:

An = g
(1 − √

p)

2
ω−2

n . (31)

As for this solution

A0 = g
(1 − √

p)

2
ω−2

0 (32)

⇒
{

p = (1 − 2ε0)2,

An = pn/2A0 = (1 − 2ε0)nA0,
(33)

any choice of ε0 and A0 uniquely defines a cascade intensity
p and the amplitude of the nth cascading mode.

It follows from (31) and (32) that in this case all cascading
modes have the same steepness εn = ε0,∀n:

εn = Ankn = Anω
2
n/g = (1 − √

p)

2
= ε0. (34)
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This allows us to compute the steepness ε of the total wave
packet at step n (before breaking) as

ε ≈
∑

n

εn ≈ (n + 1)ε0. (35)

Accordingly, though the amplitudes of the cascading modes
are decreasing, the steepness of the total packet is growing
with an increasing number of cascade steps.

For instance, direct computations demonstrate that if the
initial steepness ε0 = 0.1, then after three cascade steps
A0 × 100%/A3 ≈ 0.5%. However, the total steepness of the
wave packet is ε = 4 × 0.1 = 0.4, and according to the
Stokes criterion for the limiting steepness being about 0.44,
we conclude that mode A3 is about to break. A different
choice of the initial steepness, say ε0 = 0.05, yields the
same total steepness, ε = 8 × 0.05 = 0.4, at step n = 7 and
cascading mode A7 contains about 23% of the excitation
energy while A0 × 100%/A7 ≈ 48%. Thus, by varying the
excitation parameters one can predict the occurrence of
breaking at the different cascade steps.

Denoting the limiting steepness of the wave package before
breaking as εbr, we conclude that the cascade terminates due to
breaking if (nbr + 1)ε0 = εbr ≈ 0.44, i.e., at the finite step nbr,

nbr ≈ 0.44/ε0 − 1. (36)

At the end of this section we point out again that all results
given by (32)–(36) are obtained for a specific form of solution
of (17), namely, for C = 0. In the general case C �= 0 some
results might be qualitatively different: for instance, breaking
may occur at infinity rather than at some finite step. In this
section we did not aim to present all possible formulas in
their most general form but rather to demonstrate that growth
of nonlinearity followed by breaking—an experimentally
well-established phenomenon [10,13–15]—can be reproduced
by the D model.

2. Stabilization

If at some cascade step nst the mode with frequency ωnst is
stable, then condition (11) is not fulfilled, no additional mode
can be generated, and the D cascade stops due to stabilization
at some frequency ωnst .

From (11), (17), and (18) it may be concluded that

ωnst = ωnst+1 ⇒ 0 = ωnst − ωnst+1 (37)

= Anstωnstknst =
[
g

(1 − √
p)

2
ω−2

nst
+ C

]
ω3

nst

/
g (38)

⇒ 0 = (1 − √
p)

2
ωnst + Cω3

nst

/
g (39)

⇒ ω2
nst

= (1 − √
p)

2

/
C = g(1 − √

p)

g(1 − √
p)ω−2

0 − 2A0
,

(40)

and for direct cascade, stabilization occurs if

ωn > ωnst = ω0

√
(1 − √

p)

(1 − √
p) − 2ε0

, (41)

which is in accordance with (30).

It follows from (41) that
(i) direct cascade stabilizes at the finite step ω � ωnst < ∞

if 1 − √
p > 2ε0;

(ii) direct cascade stabilizes at infinity if 1 − √
p = 2ε0,

and then C = 0 in Eq. (18) and the corresponding continuous
energy spectrum is Phillips spectrum ∼ω−5 (see Sec. III C1);
and

(iii) stabilization does not occur if 1 − √
p < 2ε0 while the

expression on the right-hand side of (41) becomes complex
and has no physical meaning, i.e., stabilization conditions can
never be fulfilled.

Similar computations can be performed for inverse cascade.
Though formally the termination conditions may allow the
inverse cascade to be terminated at a negative frequency, this
is physically irrelevant. This means that in a real physical
system an inverse cascade terminates in somewhat the vicinity
of the zero frequency mode, which might yield a substantial
concentration of energy near the zero frequency mode, also
observed experimentally, e.g., in Ref. [12].

3. Fermi-Pasta-Ulam (FPU)-like recurrence

The fact that the long-time evolution of nonlinear wave
trains of surface water waves may evolve in a recurrent fashion
(FPU-like recurrence), where the wave form returns periodi-
cally to its previous form, has been discovered experimentally
and described in the pioneering paper of Lake et al. [16]. The
next milestone step in the study of this effect was performed
by Tulin and Waseda in Ref. [13], where the authors refined
the experimental technique so that not only the excitation
frequency but also the initial side bands and the amplitude
strength can be chosen. More experimental results can be found
in Refs. [14,15] and references therein.

In the D model, the formation of a recurrent phenomenon
(intermittency) is due to the formation of a cluster of
resonant quartets—in the simplest case, an isolated Phillips
quartet, (8). Its occurrence depends strongly on the form of
the experimental tank.

For some aspect ratio of the tank side lengths, intermittency
cannot occur, as kinematic resonance conditions cannot be
satisfied. If, for a given aspect ratio, solutions of (5) exist, the
interaction coefficient V �= 0, and initially excited resonant
mode(s) are modulationally stable, then a recurrence may be
observed.

Below we give a short list of experimental observations
with their respective explanations.

(i) No cascade is observed;rather, recurrent patterns on
the water surface are observed [7]. The initial steepness is too
small to initiate MI.

(ii) No intermittency is observed; rather, a discrete cascade
terminated by wave breaking [10]. The initial steepness is big
enough to cause MI and ωbr < ωst or stabilization is generally
not possible for the chosen excitation parameters.

(iii) No intermittency is observed in the nonbreaking regime
[30]. The initial steepness is big enough to cause MI, cascade
terminates due to stabilization, i.e., ωst < ωbr, and the mode
with frequency ωst is not a resonant mode in a resonant cluster
possible for the chosen experimental tank.

(iv) Intermittency is observed in the nonbreaking regime
[14,15]. The cascade stabilizes at the frequency ωst, and the
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ωst mode is a resonant mode and may excite a resonant cluster
with another cascading mode. In particular, if the ωst mode
and ω0 mode form a resonance, complete FPU-like recurrence
will be observed [13–15]. If the ωst mode forms a resonance
with a cascading mode with frequency ω̃ �= ω0, then partial
recurrence will occur, with the spectral peak being downshifted
to the frequency ω̃ [30].

(v) Intermittency is observed at the postbreaking stage
[13–15]. As the essential part of the energy is lost due
to breaking, the amplitudes of newly excited modes may
become modulationally stable and form a resonance with some
of the previously excited cascading modes. This is only a
qualitative explanation; quantified prediction is an important
separate topic which lies outside the scope of this paper. A
possible theoretical scenario of the energy redistribution at the
postbreaking stage is developed in [13].

In this section we have shown how to use the chain equation
to determine, depending on the excitation parameters, the
direction of the energy cascade and how the cascade will
terminate. It should be noted that also the asymmetry of direct
and inverse cascades as known from experiments (e.g. [13–16])
may be deduced from the chain equation [31].

IV. D MODEL VERSUS KINETIC WTT

For almost 50 years, kinetic WTT, which requires a
distributed initial state, was used to describe experiments using
narrow frequency band excitation. This was considered legal,
as the assumption was, and still is, that from the excitation
frequency as a starting point, a distributed state will quickly be
established. The discrete part of the spectrum which was well
observed in experiments was ignored in theoretical discussion,
focusing on the continuous part of the spectrum.

That this approach is not without problems was acknowl-
edged within the community. As Newell noted recently, seems
to agree with the theory but experiments [do] not” [32] (see
also the recent review in [33]). Indeed, a distributed initial state
as needed for applicability of kinetic WTT is easy to create in
numerical simulations but not in laboratory experiments.

Though the D model and kinetic WTT differ greatly in their
assumptions and consequent range of applicability, sometimes
the predicted form of the continuous energy spectrum is very
close. To gain more understanding of which approach to apply
in a given experimental setup, here we provide a comparison
of the assumptions and predictions of the D model and kinetic
WTT (a short list is given in Table I).

The crucial difference in descriptions of energy cascades
between the D model and kinetic WTT is the physical mech-
anism generating a cascade: MI in an arbitrary s-wave system
versus s-wave interactions, s = 3, 4, . . . . This means, in
particular, that a D cascade is generated by a mechanism which
provides locality of interactions automatically. In kinetic WTT
the locality has to be assumed, and no mechanism is suggested,
which allows us to choose local interactions in wave systems
where nonlocal interactions are also possible, as shown in
Sec. II A and Eqs. (9) and also observed experimentally [18].
The assumption of locality—only interactions among waves
with close wavelengths are allowed—is basic in kinetic WTT;
without locality energy exchange among different scales k is

possible and the energy spectrum cannot be regarded as a
function of only k.

Another important point is that the influence of the
excitation parameters on the form of the continuous energy
spectrum observed experimentally (e.g., in [12] and [34–36])
generally cannot be included in kinetic WTT but is reproduced
in the D model. One more considerable difference between the
D model and kinetic WTT is the origin of cascade termination.
In kinetic WTT this is always dissipation, while in the D
model various scenarios can be reproduced, depending on the
excitation parameters and direction of the cascade. D cascades
can terminate, e.g., due to breaking, stabilization, or formation
of the FPU-like recurrent phenomenon; all these effects are
observed experimentally [13–15].

Assumption a of the D model (see Sec. II B), i.e., a constant
cascade intensity, p = const, is absent in kinetic WTT. This
assumption is not substantial for the D model and can easily
be removed. Indeed, if the cascade intensity at step n is
pn �= const, chain equations (14) and (15) do not change,
while the ordinary differential equation, (17), and its solutions
can be trivially rewritten by changing p to pn. The only
nontrivial change would be the construction of the transition
from discrete to continuous energy spectra. Of course, the
estimates for determining cascade direction, termination, etc.,
should be recalculated and might get a more complicated form,
though not necessarily. For instance, all estimates made for
the particular solution of (17) with C = 0 remain valid, while
for so chosen excitation parameters A0 and ω0 the cascade
intensity is a constant defined by A0 and ω0:

C = 0 ⇒ A0 − g
(1 − √

pn)

2
ω−2

0 = 0 (42)

⇒ pn =
√

1 − 2A0ω
2
0/g ≡ const . (43)

Accordingly, the transition from a discrete to a continuous
spectrum can be performed as above, producing a saturated
Phillips spectrum.

A wide range of experimental data shows that p = const
in various wave systems and accordingly the discrete energy
spectrum has an exponential form (e.g., [37] and references
therein); this was our motivation for choosing a constant
cascade intensity in this presentation.

Last but not least. It was shown in a recent experimental
study of capillary waves that “from the measured wavenumber-
frequency spectrum it appears that the [linear] dispersion
relation is only satisfied approximately.... This disagrees with
weak WTT where exact satisfaction of the dispersion relation
is pivotal. We find approximate algebraic frequency and
wavenumber spectra but with exponents that are different from
those predicted by weak wave turbulence theory” [38].

On the other hand, D cascades are formed by modes with
nonlinear frequencies, and not by modes with linear frequen-
cies, as assumed in kinetic WTT. This is a manifestation of the
very important difference between the D-model and kinetic
WTT. Cascades in kinetic WTT are due to resonant interactions
and therefore are possible at the time scale T or T̃ with a
very small nonlinearity 0 < ε < 0.1. In the D model, only
intermittency is formed at these time scales, while a D cascade
occurs at the faster time scale τ and for the larger nonlinearity
ε ∼ 0.1–0.4.
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TABLE I. Assumptions and predictions used in the D model and kinetic WTT.

Property D model Kinetic WTT

Assumption
1 Cascade origin

in an S-wave system Modulation instability, S-wave kinetic equation,
no dependence on S depends on S

2 Initial state Narrow frequency band Distributed state
3 Locality of interactions No assumptions Necessary
4 Existence of

inertial interval No assumptions Necessary
5 Origin of

cascade termination No assumptions Dissipation
6 Range of wave

steepness 0 < ε ∼ 0.1–0.4 0 < ε < 0.1
7 Cascade intensity Is constant No assumptions
8 Energy flux No assumptions Is constant
Prediction
1 Cascade is formed by Nonlinear frequencies Linear frequencies
2 Spectrum form:

(a) Discrete and continuous Continuous
(b) Depends on Does not depend

the excitation on the excitation
3 Transition from

discrete to
continuous spectrum Included Not included

4 Direction of cascade Included Included
5 Intermittency Included Not included
6 Origin of

cascade termination Various scenarios: (See assumptions)
stabilization, breaking,
FPU-like recurrence

V. CONCLUSIONS AND OPEN QUESTIONS

In this paper we have presented a D model which de-
scribes nonlinear wave systems with narrow frequency band
excitation. It allows us to reproduce in a single theoretical
frame various nonlinear wave phenomena, in particular, finite-
size effects in resonators and formation of energy cascades.
The cascades do not depend on the shape or finiteness of
the interaction domain, as they are triggered by the local
mechanism of MI.

The main predictions of the D model can be stated as
follows.

(i) Intermittency is formed by a set of distinct modes with
linear frequencies; intermittency may occur in systems with
very small nonlinearity, 0 < ε < 0.1, at the slow time scale T

or T̃ ; and the underlying physical mechanism is resonant wave
interaction.

(ii) An energy cascade is formed by a chain of distinct
modes with nonlinear frequencies; a cascade may occur in
systems with small to moderate nonlinearity, ε ∼ 0.1–0.4, at
the Benjamin-Feir time scale τ ; and the underlying physical
mechanism is MI.

(iii) The discrete and continuous energy spectra of a cascade
can be computed by the ICEM [6]; the form of spectra, cascade
direction, and scenario of cascade termination depend on the
excitation parameters.

(iv) Various scenarios of energy cascade termination, known
from laboratory experiments—stabilization, breaking, and the
appearance of FPU-like recurrence—can be reproduced in the
D model.

As discussed in Sec. IV, all these predictions are quite
different from those of kinetic WTT developed for wave
systems with a distributed initial state. In the latter case an
energy cascade occurs at the slow time scale of resonant
interactions, is formed by linear frequencies, terminates (by
assumption) always due to dissipation, etc.

The D model explains known physical phenomena, as well
as the results of individual laboratory experiments. In addition,
the D model makes predictions which may be easily verified
in experiments, e.g., increasing the amplitude of excitation
increases the distance between cascading modes in k space (a
direct consequence of the chain equation).

It should be mentioned that within the wide range of
excitation-dependent spectra predicted by the D model, the
saturated Phillips spectrum ω−5 has two special properties.
First, as shown in Sec. III C2, of all the possible spectra, only
the Phillips spectrum does not stabilize after a finite number
of cascade steps but at infinity (in k space). Second, for the
Phillips spectrum it is easy to prove that the cascade intensity
is constant [see Eq. (43)]; for other spectra it is not known.
What this means physically is presently under study.
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The D model may be refined in many ways; two examples
are given here.

(i) In Eq. (17) just two terms of the Taylor expansion
are taken to compute the energy spectrum; instead, one
might regard the hierarchy of finite-order ordinary differential
equations obtained by cutting off the Taylor expansion at three
terms, four terms, and so on.

(ii) Dissipation (depending on the frequency) can be taken
into account in the following way: the cascade intensity p,
which describes the fraction of energy going from mode n to
mode n + 1, may be considered as a function increasing with
frequency, p = p(ω) �= const. So stabilization of the cascade
will occur earlier, and also the form of the energy spectrum
will change.

Many more problems can be studied in the framework of
the D model than have been mentioned in this paper. For
instance, (i) Is it possible to use the D model to describe real-
life phenomena where excitation parameters are not known
a priori? Most naturally one might study the probability of
various initial states in a given situation and choose as input
for the model either the most probable state or an average
state—for instance, the known prevailing direction of the wind
blowing over the ocean during a season.

(ii) MI plays a central role in the formation of extreme waves
(e.g., [39–41]). Is it possible to use the D model to predict
freak waves in the ocean? The Benjamin-Feir index, which
is the ratio of the parameter of nonlinearity ε to the relative
spectral width, characterizes the evolution of a unidirectional
wave field with a narrow spectrum. As either the frequency
range or the directional spreading widens, the probability of the
appearance of extremely steep waves decreases [40,41]. Using
a chain equation, one may, e.g., compute an upper estimate for
the Benjamin-Feir index at each cascade step as a function of

the excitation parameters and study the characteristic behavior
of this function.

(iii) In the special case of surface water waves the Zakharov
equation is the model of choice. So it would be of great
interest to compare the predictions of the D model with the
predictions of the Zakharov equation. Some results are already
known, for instance, side-band asymmetry of Benjamin-Feir
instability has been established in numerical simulations with
the Zakharov equation [42]. Moreover, it was recently shown
by Onorato [43] that a D cascade has a direct correspondence
in the Zakharov equation: the frequencies of cascading modes
as determined in the D model form exact four-wave resonances
in the Zakharov equation with nonlinear Stokes corrected
frequencies.

The latter result is of the upmost importance, as it opens a
broad avenue for further studies of nonlinear wave systems
with a higher degree of nonlinearity. The question is, Is
it possible to compute energy cascades in nonlinear wave
systems with a distributed initial state using a new type of
wave kinetic equation based on resonances of nonlinear Stokes
corrected frequencies with greater nonlinearity than is possible
for the applicability of kinetic WTT?
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