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Current-activity versus local-current fluctuations in a driven flow with exclusion
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We consider fluctuations of steady-state current activity, and of its dynamic counterpart, the local current,
for the one-dimensional totally asymmetric simple exclusion process. The cumulants of the integrated activity
behave similarly to those of the local current, except that they do not capture the anomalous scaling behavior
in the maximal-current phase and at its boundaries. This indicates that the systemwide sampling at equal times,
characteristic of the instantaneous activity, overshadows the subtler effects which come about from nonequal time
correlations, and are responsible for anomalous scaling. We show that apparently conflicting results concerning
asymmetry (skewness) of the corresponding distributions can in fact be reconciled, and that (apart from a few
well-understood exceptional cases) for both activity and local current one has positive skew deep within the
low-current phase, and negative skew everywhere else.
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I. INTRODUCTION

In this paper we consider fluctuations of the steady-state
current, and of its close relative, the current activity, in the
one-dimensional totally asymmetric simple exclusion process
(TASEP). This model is among the simplest in nonequilibrium
physics, while at the same time exhibiting many nontrivial
properties [1–6]. Some relevant developments in the study
of current fluctuations are as follows: Exact expressions for
the diffusion constant were found for systems with periodic
(PBC) [7] and open [8] boundary conditions (BC); the full
probability distribution function (PDF) of current fluctuations
was similarly considered for both PBC [9] and open [10] BC.
Very recently, a number of new results have been found for
current fluctuations in systems with open BC [11–14].

In a recent publication [15], exact and numerical results
were given for steady-state current-activity fluctuations in the
one-dimensional TASEP, for both periodic and open boundary
conditions. By making use of the known steady-state operator
algebra [3], exact expressions were derived for the three
lowest moments of the activity PDF, which fully display
their finite-size dependence. All these were confirmed to
excellent degree of accuracy by numerical simulations. The
results of Ref. [15] extend and complement earlier analytic
work on the joint distribution of current activity and density
for the TASEP [16,17]. We recall that the current activity
(henceforth denominated simply activity) is not identical to the
standard current, although the first moments of the respective
distributions coincide. As explained below, the former quantity
is static, in this sense akin to the instantaneous (local or global)
particle density, while the latter is a dynamic one.

Many exact results available for current fluctuations
pertain to the infinite-system limit [9,10,14], although the
diffusion constant has been calculated for finite systems [7,8].
Finite-size effects have been considered also, for example, in
Refs. [11–13].

Our main purpose here is to exploit the possible connections
between activity and current fluctuations. Given that the former
quantity has proved amenable to such detailed description, it
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is desirable to check whether its properties can help explain
any relevant aspects of the latter.

In the time evolution of the 1 + 1 dimensional TASEP, the
particle number n� at lattice site � can be 0 or 1, and the
forward hopping of particles is only to an empty adjacent site.
The stochastic character comes from random selection of site
occupation update [18,19]: if site � is chosen for update, the
instantaneous current across the bond from � to � + 1 is given
by J�,�+1 = n�(1 − n�+1).

With open boundary conditions, the case considered here,
the additional externally imposed parameters are as follows:
the injection (attempt) rate α at the left end, and the ejection
rate β at the right one. The phase diagram in α-β parameter
space, reproduced in Fig. 1 below, is known exactly, as well
as many other steady-state properties [1–5,16,17,20,21].

The total (instantaneous) activity A within the system is
defined as the number of bonds that can facilitate a transition
of a particle in the immediate future. Thus it equals the number
of pairs of neighboring sites that have a particle to the left
and a hole to the right [16,17]. For systems with open BC,
one usually includes also the injection and ejection bonds at
the system’s ends, though these have to be weighted by the
respective injection and ejection rates, α and β.

For an L-site system with open BC (L sites and L + 1
bonds, including the injection and ejection ones), one has

A = α (1 − n1) +
L−1∑
�=1

n� (1 − n�+1) + β nL (Open BC).

(1)
The activity is a snapshot of the system at a given moment

in its evolution; in this sense, it is as much of a static quantity
as, for example, the instantaneous global density. By contrast,
the current is a dynamic object, as it reflects the stochastically
determined particle displacements which actually take place
during a unit time interval. The investigation of current
fluctuations is usually carried out by examining the total charge
(i.e., number of particles) crossing a given bond, during a long
time interval in the steady-state regime [8–14].

The (properly normalized) first moments of activity and
current PDFs coincide. For A as defined in Eq. (1) one has

J = 1

L + 1
〈A〉 (Open BC), (2)
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FIG. 1. (Color online) Phase diagram of TASEP with open BC.
Values of steady-state current J and density 〈ρ〉 correspond to L →
∞. The low-current (LC), low-density (LD) phase is separated from
the LC, high-density (HD) phase by a first-order transition along the
coexistence line CL (long-dashed, blue). The maximal-current (MC)
phase is separated from the LC phases by second-order transition
lines (solid red lines).

where J is the average steady-state current through any bond in
the system, and brackets 〈· · ·〉 denote ensemble averages. The
above equality can be understood by recalling that successive
steady-state snapshots (activity configurations) are generated
via the intervening particle hoppings, which constitute realiza-
tions of the system’s current. In our simulations of Ref. [15] we
verified that this property holds, to within numerical accuracy,
in all cases investigated there. However, the connection at this
level is not sufficient to warrant equality of higher moments of
the PDFs.

Here we restrict ourselves to the second and third cumulants
of current and activity PDFs. These already provide significant
illustrations of the diversity of behavior which it is our purpose
to investigate. While more precise definitions are deferred
to Sec. II below, Tables I and II and Fig. 2 give a broad
perspective of properties, such as system-size dependence or
L → ∞ limiting values, of these cumulants, or quantities
associated with them (respectively, variance and skewness
[15,22] for activity; diffusion constant [8] and skew [13,14]
for current). All quoted results for activity statistics were
previously published in Ref. [15], having been obtained
analytically, and supported by numerical simulations; those
for current statistics are exact predictions found by assorted
analytic techniques [8,13,14].

So, all quantities associated with activity statistics vanish
as L → ∞ (except for the skewness at α = β = 1/2 which
vanishes identically [15]; see caption to Fig. 2), while those
related to the standard current usually approach finite limits

TABLE I. For systems with L sites, α, β as specified, and γ ≡
min(α,β), system-size dependence of (i) variance for (normalized)
activity PDF [see Eq. (2)], and (ii) diffusion constant [8] for current
(in the latter, values quoted for LC phase correspond to L → ∞).

Variance and diffusion constant
Region Activity [15] Current

LC [ γ < 1/2 ] L−1 γ (1 − γ )(1 − 2γ ) [8,13,14]
MC [ (α,β) > 1/2 ] L−1 L−1/2 [8,13]

TABLE II. For systems with α, β as specified, and γ ≡ min(α,β),
predicted L → ∞ properties of skew (third cumulant) of current PDF.

Skew
Region and point Analytic prediction

LC [ γ < 1/2 ] γ (1 − γ )(1 − 6γ + 6γ 2) [13,14]
MC [ (α,β) > 1/2 ] < 0 [13]
(α,β) = 1 −0.009 0978 . . . [13]

[except for the diffusion constant in the MC phase (see Table I)
and the skew on the lines min(α,β) ≡ γ0 = 1

2 −
√

5
10 deep

inside the LC phase (see Table II)].
Here we wish to pin down the causes for such variety of

behavior in apparently similar fluctuation-related quantities.
As shown in the following, a fruitful line of inquiry is to probe
the relative importance of different types of correlations which
occur in this context: local versus global (i.e., systemwide), as
well as equal versus nonequal time (see Sec. II for precise
definitions).

Section II below recalls selected existing results, and gives
a theoretical background to the concepts used in this work.
In Sec. III, our numerical simulations are described, and their
corresponding results are exhibited. In Sec. IV we provide a
global analysis of the numerical results; finally, concluding
remarks are made.

II. THEORY

In studies of current fluctuations for the TASEP, one
considers the steady-state current through a specified bond
connecting sites � and � + 1, henceforth denoted by J�, and
the associated integrated charge Q̃�(t) ≡ ∫ t

0 J�(t ′) dt ′. With

FIG. 2. (Color online) The sign of skewness S [15,22] of the
activity PDF in the various regions of the α-β phase diagram is
shown. The large-L dependence, |S| ∝ L−x , is x = 1/2 in the LC
phases [min (α,β) < 1/2] except for the long-dashed (blue) lines
at min (α,β) = 1

2 −
√

5
10 = 0.27639 . . . [ x = 3/2 ]. In the MC phase

α,β > 1/2, and on the solid (red) lines separating MC and LC phases,
x = 3/2. Solid squares, x = 5/2. On the α = 1 and β = 1 lines, S

has the same sign and L dependence as in the respective adjacent
regions, except for the points marked by solid squares. The circle
marks (α,β) = (1/2,1/2) where S ≡ 0. The short-dashed line is the
coexistence line between HD and LD phases. Because of particle-hole
duality, S is the same for pairs of points symmetric with respect to
the α = β line. (Adapted from Fig. 8 of Ref. [15]).
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open BC, the leftmost (injection) bond � = 0 is usually singled
out for examination, although the results for the PDF of
steady-state current fluctuations would be the same for any
choice of � [8]. Thus, here we frequently omit bond labels
wherever this does not give rise to ambiguity. In addition, it
is usual to remove the linear term from the integrated charge,
and to consider instead,

Q(t) ≡ Q̃(t) − J t, (3)

so 〈Q(t)〉 ≡ 0. Closed-form expressions are available for J as
a function of α, β, and number of sites L [3]; see, for example,
Eqs. (29) and (32)–(34) of Ref. [15].

For t → ∞, exact expressions for the lowest-order cumu-
lants, 〈〈Qn〉〉, of the integrated current have been proposed:
for n = 2 and any L, everywhere on the phase diagram
[8]; for n = 1 − 3 and L → ∞, anywhere except for the
maximal-current phase α, β � 1/2 [14]; and (via a parametric
representation) for any α, β, and L, essentially for all n

[13]. In the latter, explicit expressions are forthcoming only
for L → ∞ away from the maximal-current phase, and for
n � 3, any L, at (α,β) = (1,1). The above results agree with
each other, wherever comparison is possible. Furthermore, on
the basis of general properties of the associated generating
function (see, e.g., Ref. [13]), the assumption is made that all
cumulants scale linearly with time, so the quantities of interest
are the En ≡ 〈〈Qn〉〉/t , which are frequently referred to as
cumulants of the local current [14]. So, E2 is the diffusion
constant, and E3 the skew, both mentioned in connection with
Tables I and II.

A direct elementary illustration of such linear depen-
dence can be given by considering the variance 〈〈Q2(t)〉〉.
With δJ�(t) ≡ J�(t) − J , assuming an exponential decay of
the current-current correlation function, 〈δJ�(t ′) δJ�(t ′′)〉 ∼
e−|t ′−t ′′ |/τ , and using steady-state properties, one has

〈〈Q2(t)〉〉 =
∫ t

0
dt ′

∫ t

0
dt ′′〈δJ�(t ′) δJ�(t ′′)〉

= (for t � τ ) = t

∫ t

0
ds 〈δJ�(0) δJ�(s)〉 = tτ. (4)

An interesting exception to the above has been pointed out
in Ref. [11], where theoretical and numerical arguments are
presented to show that 〈〈Qn〉〉 ∼ t n/3 for n > 1 at the second-
order phase boundary between low- and maximal-current
phases. We shall return to this later.

As recalled in Eq. (4), the cumulants 〈〈Qn〉〉, n > 1, involve
unequal-time correlations [8], because the integrated charge
accumulates local-current fluctuations over time. In contrast
[see Eq. (1)], the nontrivial features of (instantaneous) activity
statistics arise because they add contributions from all sites
in the system, thus they depend on nonlocal, equal-time,
correlations [15]. In fact, it is because A(t) is the sum of
O(L) equal-time stochastic (albeit not independent) variables
that the variance and skewness (and, most likely, higher-order
moments) of its PDF always approach zero for large L [15].
The spatially local character of the 〈〈Qn〉〉, in turn, implies
less severe L-dependent effects on these quantities; thus the
En generally converge towards nonzero values for L → ∞
[8,13,14].

As stated in Sec. I, we wish to consider the relative
importance of local and nonlocal (equal and nonequal time)
correlations. We then define a hybrid quantity, the position-
averaged (instantaneous) current J (t):

J (t) = 1

L + 1

L∑
�=0

J�(t). (5)

The ensemble average of J (t) coincides with that of the
normalized activity [see Eqs. (1) and (2)], and of course
with the steady-state current J . The cumulants of its integral
over time, Q(t) ≡ ∫ t

0 J (t ′) dt ′ incorporate both equal- and
unequal-time (as well as local and nonlocal) correlations.
For consistency [see Eq. (3)], we also subtract the linear
contribution, J t , from Q(t).

In order to draw relevant distinctions and similarities
with Q(t), we also consider the integrated (normalized)
activity, A(t) ≡ (L + 1)−1

∫ t

0 A(t ′) dt ′ (again, with the linear
contribution J t subtracted).

In what follows, we show results of numerical simulations
of J (t) and associated quantities such as the cumulants of
Q(t), as well as those of A(t), in comparison with those
corresponding to the local current.

III. NUMERICAL RESULTS

A. Introduction

To make contact with previous work, we usually considered
lattices either with L = 600 sites, as done in local-current
simulations [11], or with L = 256, for which many results
on activity statistics are available [15]. It is important to take
L � 1 not only in order to minimize finite-size effects, but also
because some features such as the nonlinear scaling of current
cumulants with time, referred to above, occur only during time
“windows” whose width increases as L grows large [11].

In our simulations, a time step is defined as a set of L

sequential update attempts, each of these according to the
following rules: (1) select a site at random; (2a) if the chosen
site is the rightmost one and is occupied, then (3a) eject the
particle from it with probability β; alternatively, (2b) if the
site is the leftmost one and is empty, then (3b) inject a particle
onto it with probability α; finally, if neither (2a) nor (2b) is
true, (2c) if the site is occupied and its neighbor to the right is
empty, then (3c) move the particle.

Thus, in the course of one time step, some sites may be
selected more than once for examination, and some may not
be examined at all. This corresponds to the random-sequential
update procedure of Ref. [18]. Note that other types of updates
are possible (e.g., ordered sequential or parallel). Although
the resulting phase diagrams are similar in all cases (but not
identical—even the average current differs in either case; see
Table I in Ref. [18]), the updating algorithm which corresponds
to the operator algebra described in Ref. [3] (and thus to many
subsequent results either directly derived from that algebra
[15], or from Bethe-ansatz techniques which are based on
it [14]) is random-sequential [18].

For the various sets of α, β considered here (because of
particle-hole duality, we take only α � β), we found that for
L = 600 and starting from an initial random configuration
of occupied sites, one needs nin = 10 000 time steps for
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FIG. 3. (Color online) Double-logarithmic plot of variances
〈〈A2〉〉, for the integrated activity A(t), and 〈〈Q 2〉〉 for Q(t), both
defined below Eq. (5), against time. The dashed line is ∝t . System
size L = 600.

steady-state flow to be fully established, so that the 〈〈Qn〉〉
are free from startup effects (for α = β = 1 this remark needs
to be qualified; see Sec. III C). Hence we discarded the first nin

configurations when evaluating all quantities discussed in the
following. As seen below in Figs. 3, 4, and 8, the characteristic
decay times for the 〈〈Qn〉〉, 〈〈An〉〉 are about twice that, so
the respective curves still show some crossover towards pure
power-law behavior for the first ∼104 time steps depicted.

B. α + β = 1

It is known [3] that, for α + β = 1 the correlations between
the operators representing particle and vacancy vanish, and
they can be represented by c numbers. One consequence of
this is that the average current does not exhibit finite-size
effects: J = αβ for any system size. Further simplifications
occur, so that simple expressions can also be found for
higher-order moments of the activity distribution [15] [which is
not generally true for points elsewhere on the phase diagram,
with the notable exception of (α,β) = (1,1) deep inside the
MC phase; see Sec. III C]. Along α + β = 1 we take one
point, (0.3,0.7), representative of behavior deep inside the LC
phase, and another, (0.5,0.5) on the second-order transition
line between LC and MC phases.

FIG. 4. (Color online) Double-logarithmic plot of variances
〈〈Q2〉〉, for Q(t) defined in Eq. (3), and 〈〈Q 2〉〉 for Q(t) defined
below Eq. (5), against time. The solid line is ∝t2/3; the dashed line is
∝t . System size L = 600.

In Fig. 3 we present the evolution of 〈〈A2〉〉 and 〈〈Q2〉〉
against time, for (α,β) = (0.3,0.7) and (0.5,0.5). In both cases
the variance initially increases faster than linearly with time,
but eventually settles to a linear increase. In addition, both
quantities behave identically for α = 0.3, β = 0.7, while for
the special case α = β = 0.5 they follow very close trends, the
ratio 〈〈A2〉〉/〈〈Q2〉〉 starting at around 0.85 and approaching
unity as t grows (near the upper limit in the figure, it has
reached 0.95).

One sees that the dominant features of the second-order
cumulants of Q essentially coincide with those ofA. As shown
below, the quantitative description of n = 3 cumulants, and
of their associate skewness properties, always points to their
absolute value being rather small; at the level of accuracy
pursued here the main issue therefore concerns their sign,
which generally proves to be a robust feature (i.e., independent
of whether Q or A is the quantity under consideration). Thus,
in the following, we usually display only results for the 〈〈Q n〉〉,
for comparison with the conventional 〈〈Qn〉〉.

In Fig. 4 we show the cumulants 〈〈Q2〉〉 and 〈〈Q 2〉〉 against
t , for α = 0.3, β = 0.7, and for α = β = 0.5.

Regarding data for 〈〈Q2〉〉 in Fig. 4, for α = 0.3, β = 0.7
the expected linear behavior against t is present for the whole
time interval shown. On the other hand, for α = β = 0.5 one
sees the anomalous scaling with t 2/3, referred to above, over a
wide time window up to t ≈ 3 × 104. Both types of power-law
behavior have been reported in Ref. [11], for the same two sets
of values of (α,β). For the α = β = 0.5 data, at longer times
there is a crossover back towards linear scaling.

Anomalous scaling at α = β = 0.5 has been explained in
detail in Ref. [11]. It can be understood by recalling that
this point is on the second-order phase boundary separating
low- and maximal-current phases (see Fig. 1). The associated
diverging correlation length ξ brings about a diverging relax-
ation time τ ∼ ξz (where z = 3/2 is the Kardar-Parisi-Zhang
exponent known to describe TASEP dynamics [1,2,4]) which,
in turn, governs the current-current correlation fluctuations
and related quantities. For systems of finite size L, this regime
holds only for t � Lz (i.e., the “windows” referred to earlier).
In connection with Eq. (4), it can be seen that in this case,
the assumption of t � τ fails over the window of anomalous
scaling, but is then restored at longer times; hence, the observed
crossover towards linear behavior.

Going now to data for 〈〈Q2〉〉, one sees that they eventually
merge with the respective 〈〈Q2〉〉 curves. For α = β = 0.5
such merging happens, of course, at later times than the
window of anomalous scaling. It was shown in Ref. [15]
that the activity PDF is a pure Gaussian at this point; here,
as already mentioned in connection with Fig. 3, we see that
〈〈Q2〉〉 does not capture the anomalous scaling behavior there,
either.

Further information can be extracted from the PDFs, or full
counting statistics, of the integrated currents. Data for Q(t) at
(α,β) = 0.5 are shown in Fig. 5 as a scaling plot. Although the
effective scaling power is 1/2, which is in line with the linear
dependence of 〈〈Q2〉〉 against t seen in Fig. 4, the scaled PDF
shows a slight negative skew. For comparison, Fig. 6 shows
the corresponding scaling plot for Q(t) within the anomalous
scaling window, where a negative skew is more clearly present;
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FIG. 5. (Color online) Scaling plot of PDF for the variable Q(t)
defined below Eq. (5), at (α,β) = (0.5,0.5). Nsam = 106 steady-state
samples were collected at the indicated times.

however, the scaling power is now 1/3, as already remarked
in Ref. [11].

For a proper analysis of the scaled data shown in Figs. 5
and 6, and comparison with theoretical predictions where
available, one must keep in mind that the former necessarily
pertain to finite t and L, while the latter either assume taking
the L,t → ∞ limit [13,14], or [8] L is kept fixed and t → ∞.

Denoting by k the scaling powers referred to, it turns
out from the scaled variables u ≡ Q/tk [Q/tk] and P (u) ≡
t k P (Q) [t k P (Q)] that the cumulants of the global [local]
current are given by En [En] = tnk−1 〈〈un〉〉.

So, for the global current (k = 1/2), one can have both
〈〈u2〉〉 and E2 finite for t → ∞, while 〈〈u3〉〉 must vanish in the
same limit, since E3 must not diverge. By separately analyzing
PDF data used in Fig. 5 for various times 4000 � t � 24000
we found that, as t increases, E2 = 〈〈u2〉〉 increases from
0.0077 to 0.0081, while 〈〈u3〉〉 goes from −2.7 × 10−4 to
−1.4 × 10−4. The “diffusion constant” E2 can be compared
with E2 ≈ (16πL)−1/2 = 0.0088 . . . for L = 256 [8]. Al-
though there appears to be no a priori reason to assume equality
of these quantities, the closeness of their values is remarkable.
As regards 〈〈u3〉〉, its evolution can be approximately matched
by a t−1/2 dependence, which would be compatible with a
nonzero limiting value for E3.

FIG. 6. (Color online) Scaling plot of PDF for the variable Q(t)
defined in Eq. (3), at (α,β) = (0.5,0.5). Nsam = 106 steady-state
samples were collected at the indicated times.

FIG. 7. (Color online) Scaling plot of PDFs for: (i) the variable
X = Q(t) defined in Eq. (3) (system size L = 600), and (ii) X =
Q(t), defined below Eq. (5) (L = 256), at (α,β) = (0.3,0.7). The
solid (red) line is a Gaussian fit to data. Nsam = 5 × 105 steady-state
samples were collected at the indicated times.

For the local current (k = 1/3), if 〈〈u2〉〉 = 0 then E2 =
〈〈Q2〉〉/t ∼ t−1/3 which is in line with existing results
[8,13,14], recalling that at (α,β) = (0.5,0.5): (i) E2(L) ∝
L−1/2 [8], and (ii) the appropriate finite-size scaling com-
bination is t/L3/2. In addition, E3 should approach a finite
value if 〈〈u3〉〉 is finite. From the full set of data in Fig. 5,
we find 〈〈u3〉〉 = −0.034(1). Separate analysis of subsets of
data for different times shows small fluctuations around the
average just quoted, with no apparent up- or downward trend
upon increasing t . Comparison of this estimate to the analytic
prediction for the thermodynamic limit, E3 = −1/8 [13,14]
shows that, though correct in sign, it is still only about 1/4 of
the expected value.

At (α,β) = (0.3,0.7), as evinced in Fig. 4, the scaling
power is k = 1/2 for both Q and Q. Figure 7 shows that the
scaled PDFs for both quantities are nearly indistinguishable,
even when one plots L = 256 data for P (Q) together with
L = 600 data for P (Q). Thus, for this range of L, deep
inside the LC phase the statistics of Q and Q are essentially
identical, and free from finite-size effects. From fits of pure
Gaussians to the scaled PDFs, we get E2 ≈ E2 = 0.0841(5),
in very good agreement with the thermodynamic-limit predic-
tion [8,13,14] E2 = α(1 − α)(1 − 2α) = 0.084. Allowing for
nonzero skewness gives E2 ≈ 0.082, with E3 < 0, and |E3| �
1 × 10−3. However, the estimates for the latter quantity exhibit
uncertainties of order 60% or thereabouts, so they should be
considered with caution. The theoretical prediction for L →
∞ [13,14] is E3 = α(1 − α)(1 − 6α + 6α2) = −0.0546. As
in the case of (α,β) = (0.5,0.5), we get the right sign for E3

but a smaller absolute value than predicted.

C. α = β = 1

Within the maximal current phase α,β � 1/2, the behavior
is expected to be similar to that observed at (α,β) = (0.5,0.5),
and reported in Sec. III B. At α = β = 1 several simplifica-
tions occur [3,8,13,15], allowing for simple expressions to be
derived for the 〈〈Qn〉〉, so we ran simulations at that point.

Figure 8 shows the time evolution of the variance of
the several integrated quantities under investigation here.
Comparing with Figs. 3 and 4, which refer to the same

041127-5



S. L. A. DE QUEIROZ PHYSICAL REVIEW E 86, 041127 (2012)

FIG. 8. (Color online) At α = β = 1, double-logarithmic plot of
variances 〈〈Q2〉〉, for Q(t) defined in Eq. (3), 〈〈Q 2〉〉 for Q(t), and
〈〈A 2〉〉 for the integrated activity A(t), the latter two defined below
Eq. (5), against time. The solid line is ∝t0.61; the dashed line is ∝t .

system size and time interval, the main difference to the
behavior exhibited at (α,β) = (0.5,0.5) is in the anomalous
scaling of 〈〈Q 2〉〉. Our best fit to single-power behavior,
encompassing the same time “window” as used in that case
(i.e., 200 < t < 3 × 104) gives an exponent equal to 0.61(1),
close to but slightly below the expected value, 2/3. The
expected crossover to linear behavior, and merging with the
〈〈Q 2〉〉 curve, takes place in the same (narrow) time interval
as at (α,β) = (0.5,0.5).

The apparent discrepancy in the exponent value can be
solved by examining the scaling plot of the PDF for Q, shown
in Fig. 9, where the scaling power is set to 1/3. It can be
seen that data collapse is rather good, except for the t = 4000
data which visibly stray off, especially at the low end of the
curve. Indeed, fitting only data for 8 × 103 < t < 3 × 104 in
Fig. 8 gives an exponent 0.66(2). So it is the extent of the
t 2/3 scaling window which is shorter here than for (α,β) =
(0.5,0.5). Further analysis of the scaling plot depicted in Fig. 9
follows the same lines as that of Fig. 6: (i) again, E2(t) ∼ t−1/3,
with the same interpretation as above; and (ii) the value of
〈〈u3〉〉 = −0.012(1) compares reasonably well to the analytic
prediction, limL→∞ E3 = −0.009 . . . [13].

Figure 10 shows the scaling plot for the PDF of Q, using 1/2
as the scaling power. The quality of data collapse is not as good
as for points at the border, or outside, of the maximal-current

FIG. 9. (Color online) Scaling plot of PDF for the variable Q(t)
defined in Eq. (3), at (α,β) = (1,1). Nsam = 5 × 105 steady-state
samples were collected at the indicated times.

FIG. 10. (Color online) Scaling plot of PDF for the variable Q(t)
defined below Eq. (5), at (α,β) = (1,1). Nsam = 106 steady-state
samples were collected at the indicated times.

phase (see, respectively, Figs. 5 and 7). However, it is possible
to find a rather stable estimate for the “diffusion constant,”
E2 = 0.0045(1). Again, this compares favorably with E2 =
(3

√
2π/64) L−1/2 = 0.004797 . . . for L = 600 [13]. The third

cumulant is negative but very close to zero, E3 ≈ −1 × 10−4.

IV. DISCUSSION AND CONCLUSIONS

We have set out to compare the features exhibited by
fluctuations of activity with those of (local) current for the
TASEP with open BCs.

We define Cn ≡ 〈〈An〉〉, with the systemwide (instanta-
neous) activity A defined in Eq. (1), for compatibility with the
notation of Ref. [15]. So Cn ≡ Cn/(L + 1)n is its normalized
counterpart. As shown in Ref. [15], C2 vanishes with system
size as L−1 for any (α,β) (see Table I). The standard skewness
S, defined as S = C3/C

3/2
2 = C3/C3/2

2 [22], vanishes as L−x

(so C3 ∼ L−(x+3/2)), usually with x = 1/2 (x = 3/2) in the low
(high)-current phase, except for some special lines or points on
the phase diagram (see Fig. 2). As remarked in Sec. II, C2 and
C3 vanish with increasing L because they reflect fluctuations
of the equal-time, nonlocal correlations of O(L) stochastic
variables.

On the other hand, cumulants of the integrated activity A,
as well as those of the position-averaged current J , behave
similarly (albeit with different decay times on the approach to
steady state; see Figs. 4 and 8) to those of the local current,
except that they do not capture the anomalous scaling which
occurs for α,β � 1/2. This indicates that the systemwide
sampling at equal times overshadows the subtler effects
which come about from nonequal time correlations, within
the maximal-current phase and along its border. Anomalous
scaling can be unveiled only when the local current is
considered, in which case systemwide, equal-time sampling is
absent, and the system-size dependence is much less relevant
overall (although it still shows up in the width of the scaling
“window”; see Ref. [11] and Figs. 4 and 8 above).

Going back to the skewness of distributions, the sign of S is
positive for min(α,β) � 1

2 −
√

5
10 = 0.27639 . . ., and negative

otherwise, with the following exceptions: (α,β) = (0.5,0.5)
where S ≡ 0, and (α,β) = (1,1), (1,0.5), and (0.5,1) where
S > 0 [15]. At min(α,β) = 0.27639 . . ., S > 0 but depends on
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L−3/2, as opposed to the L−1/2 form which holds generally in
the low-current phase. All such exceptions are accidental [i.e.,
they occur because of symmetries or cancellations which are
valid only for those specific values of (α,β)] [15]. Furthermore,
it has been shown that S > 0 is to be expected on physical
grounds for α � 0.5 in the low-current, low-density phase
(see Fig. 3 of Ref. [15] and accompanying remarks).

Concerning local-current statistics, we recall the results
given in Table II: For the low-current phase Refs. [13,14]
predict that, with γ ≡ min (α,β), E3 = γ (1 − γ )(1 − 6γ +
6γ 2) which is thus zero for γ0 = 1

2 −
√

3
6 = 0.2113 . . ., and

positive (negative) for γ < γ0 (γ > γ0). Reference [13]
evaluates E3 < 0 at (α,β) = (1,1), as recalled in Sec. III C,
and gives arguments showing that the dominant behavior of
the cumulants should be the same as that at (α,β) = (1,1)
everywhere within the maximal-current phase.

In conclusion, once accidental exceptions are understood
as such, both S for activity and E3 for the local current
tell essentially the same story: Fluctuation distributions have

positive skew for low injection (or ejection) rates, and negative
skew otherwise. The borderline between the two types of
behavior lies deep within the low-current phase, and its
relationship to the actual (second-order) transition to the
maximal-current phase it at best that of a precursor.

As a final remark, we emphasize that accurate numerical
checks of the theoretical predictions for E3 would need much
longer simulations than those reported here, since evaluation
of this quantity strongly depends on a proper description of the
tails of the local-current PDF. However, at the level of accuracy
pursued here, the present results fulfill our goal of providing
a comparative analysis of the main features of activity- and
local-current fluctuations.
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