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The Fortuin-Kasteleyn and heat-bath damage-spreading temperatures TFK(p) and TDS(p) are studied on
random-bond Ising models of dimensions 2–5 and as functions of the ferromagnetic interaction probability
p; the conjecture that TDS(p) ∼ TFK(p) is tested. It follows from a statement by Nishimori that in any such
system, exact coordinates can be given for the intersection point between the Fortuin-Kasteleyn TFK(p) transition
line and the Nishimori line [pNL,FK,TNL,FK]. There are no finite-size corrections for this intersection point. In
dimension 3, at the intersection concentration [pNL,FK], the damage spreading TDS(p) is found to be equal to
TFK(p) to within 0.1%. For the other dimensions, however, TDS(p) is observed to be systematically a few percent
lower than TFK(p).
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I. INTRODUCTION

The physics of Ising spin glasses (ISGs) in the ordered
regime below the freezing temperature Tg has been intensively
investigated for decades; the paramagnetic regime above
Tg has attracted less attention. However, in addition to the
standard ordering (or freezing) transitions, other significant
critical temperatures within the paramagnetic regime can be
defined operationally and estimated numerically with high
precision.

We have studied random-bond Ising models (RBIMs) in
dimensions 2–5 having ferromagnetic near-neighbor interac-
tions with probability p and antiferromagnetic interactions
with probability 1 − p over the whole range of p in the
paramagnetic regime. The Hamiltonian is H = ∑

ij −JijSiSj ,
where the sum is taken over all nearest-neighbor bonds ij .

For the discrete ±J interaction distribution the bond values
are thus chosen according to

P (Jij ) = pδ(Jij − J ) + (1 − p)δ(Jij + J ). (1)

We will set J = 1 and use when convenient inverse tempera-
tures β = 1/T . The pure Ising model is recovered for p = 1
and the pure antiferromagnetic model for p = 0, while the
standard strong-disorder bimodal spin glass case corresponds
to p = 1/2.

In addition to the standard ferromagnetic and spin glass
ordering transitions, on the RBIM phase diagram in the
paramagnetic regime other physically significant lines can be
operationally defined as functions of p. In addition to the
Griffiths line TGr(p) = Tc [1,2] and the Nishimori line [3]
there is the Fortuin-Kasteleyn (FK) transition line TFK(p) [4–9]
and the heat-bath damage-spreading transition line TDS(p)
[10–13]. Early large-scale relaxation measurements on the ISG
in dimension 3 were interpreted [14] in terms of a dynamic
transition at the Griffiths temperature [i.e., TG(p) = Tc], with a
qualitative change in relaxation behavior of the autocorrelation
function from nonexponential to exponential.

It can alternatively be considered that TFK or TDS defines a
dynamic transition. At TFK the FK cluster size diverges so the
standard cluster flipping algorithms [15,16] break down. At
TDS, the time scale for the coupling from the past equilibration
criterion D(t) → 0 diverges at large L [17,18], so this criterion

similarly breaks down. A priori it seems plausible that the two
dynamic breakdowns should occur at similar, if perhaps not
identical, temperatures, as has been conjectured by a number
of authors [7,19,20].

In the following discussion it is shown that there are
universal analytic relations for the intersection point between
TFK(p) and the Nishimori line [3]. With these exact values
in hand together with the present accurate numerical damage-
spreading data a critical test can be made of the conjectured rule
TDS(p) ∼ TFK(p). This is shown to be a good approximation,
almost exact in dimension 3 and accurate to a few percent
in dimensions 2, 4, and 5. However the equality between the
temperatures is not a general rule.

II. TRANSITION DEFINITIONS

Nishimori [3] has shown for the RBIM that, due to extra
symmetries of the problem, a number of quantities may be
computed exactly when the equality

(1 − pNL)/pNL = exp(−2βNL) (2)

holds; this condition defines the Nishimori line (NL), a
line traversing the entire β(p) phase diagram including both
paramagnetic and ferromagnetic regimes. In particular on the
NL the internal energy of the system per bond (or edge) is

UNL = −[2pNL − 1] = − tanh(βNL). (3)

This energy per bond has exactly the value that independent
bonds would have at the same temperature. We will see below
that indeed on the NL the positions of the satisfied bonds are
uncorrelated [21,22] and that bond positions remain very close
to random over a wide strong-disorder regime around p = 1/2.
In other words, anywhere on the NL the satisfied bonds are
uncorrelated on average, so a fortiori the FK active bonds are
distributed at random.

The rule for the FK transition line [4–9], corresponding
initially to the pure ferromagnets, is to first select for some
particular equilibrium configuration the entire set of satisfied
bonds ij where JijSiSj is positive. These bonds are then
decimated at random, leaving a fraction [1 − exp(−2/T )] of
active satisfied bonds. The FK stochastic transition at TFK

occurs when the set of active bonds percolates through the
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lattice. From the way in which the bonds are laid down,
in the general case this is correlated bond percolation, as
opposed to the standard uncorrelated bond percolation with
random-bond occupation. Remarkably, for pure ferromagnets
it can be proved that the FK transition βFK(p = 1) coin-
cides exactly with the Curie temperature βc(p = 1) [4]. The
Swendsen-Wang and Wolff cluster algorithms [15,16] speed
up equilibration dramatically as long as the FK clusters remain
of finite size.

The same operational definition can also be used else-
where in the phase diagram; in particular TFK(p = 1/2)
was estimated numerically for strong-disorder RBIM on
square, cubic, and triangular lattices [6–9]. It turned out
that TFK(p = 1/2) was in each case much higher than the
standard spin glass ordering temperature Tg(p = 1/2). Even
in the two-dimensional case where the glass temperature is
zero, TFK(p = 1/2) is similar to but lower than the Griffiths
temperature TGr = Tc(p = 1) [8,9]. The physical basis for the
percolation transition temperature was explained in terms of
FK droplets for the case of the fully frustrated lattice and
general Potts q in Refs. [23,24]. Imaoka et al. [25] estimated
TFK(p) numerically over the entire range of p for the square
and triangular RBIM lattices.

Below we will introduce a further temperature TFKr (p)
closely related to TFK(p). By construction the fraction of
satisfied bonds ns(p,T ) in equilibrium is related to the equi-
librium internal energy per bond U (p,T ) through U (p,T ) =
1 − 2ns(p,T ), so the fraction of all bonds that are FK active
bonds is just [19]

Pa(p,T ) = [1 − U (p,T )][1 − exp(−2/T )]/2. (4)

The U (p,T ) and hence Pa(p,T ) can be readily measured
numerically to high precision. It was noted [19] that if
the satisfied bond positions are assumed to be uncorrelated,
the FK transition would occur at a temperature such that
Pa(p,TFK) ≡ Pc, where Pc is the standard random-bond
percolation concentration for the lattice.

We will refer to the temperature where the condition

Pa(p,TFKr ) = Pc (5)

is satisfied as TFKr (p) (r standing for random). This conjecture
led to estimates for TFKr (p = 1/2) on square and cubic lattices
in higher dimensions [19] that were in good agreement with
the numerical estimates for TFK(p = 1/2) available at the time.

It can be noticed that for the pure Ising square lattice ferro-
magnet at criticality U (βc) = −1/21/2 = −0.7071 . . ., while
− tanh(βc) = −0.4121 . . ., which is very different because
the positions of the satisfied bonds are strongly correlated.
However, the critical FK concentration of active bonds is
Pa(p = 1,Tc) = 1/2, which is unintentionally equal to Pc =
1/2 for this lattice. For the pure Ising ferromagnet on the
triangular lattice at criticality, in contrast, Pa(p = 1,Tc) =
0.352 208 . . ., which is not quite equal to Pc = 0.347 296 . . .

for this lattice.
Finally, a heat-bath damage-spreading transition TDS(p) can

be defined [10–13]. Heat-bath update rules are applied at fixed
temperature to two initially nonidentical spin configurations
A(0) and B(0) (which are not necessarily equilibrated) of a
given sample (meaning A and B have exactly the same sets of
interactions Jij ); the random number used in each subsequent

single spin update step is the same for both configurations. At
high enough temperatures, on annealing under this procedure
for sufficient time t , A(t) and B(t) will become identical; below
the damage temperature TDS the damage [D(t) is the Hamming
distance between A(t) and B(t) divided by Ld ] will stabilize
for long times at a temperature-dependent nonzero value. For
the pure ferromagnetic case TDS(p = 1) is equal to the Curie
temperature Tc(p = 1) [10,11]. For the strong-disorder spin
glass, just as TFK(p = 1/2) is much higher than the glass
temperature Tg(p = 1/2), TDS(p = 1/2) is also much higher
than Tg(p = 1/2) [10–13]. The damage-spreading transition
for a given coupling algorithm, in particular the heat bath (HB),
can be described as a regular to chaotic dynamic transition
from the viewpoint of the coupling from the past approach.
When the damage falls to zero after a sufficient anneal time
it is a guarantee that the system has been strictly equilibrated
[18,26,27]. In systems with frustration this guarantee breaks
down when T < TDS(p), so perfect equilibration in this sense
for the regime near the critical temperature cannot be achieved.

It should be noted that TDS depends on the updating
protocol, with, for instance, Glauber updating giving very
different results from HB updating. It turns out that even within
the HB protocol the precise value obtained for TDS changes
slightly depending on whether sequential or random updating
is used. The results reported here are for random updating.
With sequential updating the observed damage-spreading
temperature is of the order of 1% lower.

Early comparisons of numerical data from different groups
indicated that TDS(p = 1/2) ∼ TFK(p = 1/2) for dimensions
2 and 3 [7,19] and on this basis it has been conjectured by a
number of authors [7,19,20] that TDS(p) ∼ TFK(p) is a general
rule defining a joint dynamic transition temperature above
which relaxation is exponential in the long-time limit and
below which relaxation is chaotic. It should be noted that
in practice it is very hard to identify such a transition directly
from autocorrelation function decay q(t) data.

Recently Yamaguchi [20] focused attention on the behavior
on the NL. He provided conjectures suggesting that the
intersection of the TFK(p) line and the NL would occur when

pNL,FK = (1 + Pc)/2 (6)

and

βNL,FK = ln[(1 + Pc)/(1 − Pc)]/2, (7)

where again Pc is the random percolation concentration for the
lattice. It turns out that because of the analytic value for the
energy UNL(p) on the NL [Eq. (3)], the Yamaguchi condition
is strictly equivalent to the equality TNL,FK = TNL,FKr , meaning
that this condition holds if the FK active bonds are distributed
at random. The random-bond conjecture for βFK [Eq. (4) of
Ref. [19]] is identical to Eq. (3.3) of Ref. [20].

In fact, Nishimori [21] years earlier had made the following
strict statement: “We have also proved independence of the
local internal energy of different bonds, which indicates that
the system effectively splits into uncorrelated sets of bonds
on the [NL] in the phase diagram.” In other words, anywhere
on the NL the satisfied bonds are uncorrelated on average,
so a fortiori the FK active bonds are distributed at random.
Hence, at the NL-FK intersection concentration pNL,FK, we
have TFK ≡ TFKr (p), meaning that the conditions for this
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intersection conjectured by Yamaguchi [Eqs. (6) and (7)] hold
exactly for any RBIM lattice if the FK transition is a random
active-bond percolation transition. Remarkably, a further
consequence of Nishimori’s statement is that this equality
should hold for the mean over many samples independently of
the sample size L.

The numerical results below show that for dimension 2,
and presumably in other dimensions also, in addition to this
identity at pNL,FK, for a wide range of p around p = 1/2,
TFK(p) ∼ TFKr (p) remains a very good approximation, as was
conjectured for p = 1/2 in Ref. [19]. The active bonds are thus
essentially uncorrelated at βFK(p) in this wide high-disorder
regime. It should be noted, however, that as a general rule, the
positions of active bonds are correlated so TFK(p) is not equal
to TFKr (p).

Yamaguchi [20], following Refs. [7,19] for the case of
p = 1/2, also conjectured that TDS(NL) = TNL,FK at the in-
tersection. The present measurements show that in dimension
2, TDS(p) is in fact systematically lower than TFK(p) by a
few percent over the entire range of p, except at and near the
pure ferromagnet limit p = 1. At pNL,FK for cubic models in
dimensions 3–5 the conjecture holds to within about 0.1% in
dimension 3, to 2% in dimension 4, and to 4% in dimension
5. The general relation TDS(p) ∼ TFK(p) is therefore simply a
reasonably good approximation. In dimensions 2–4 the present
data show that the damage-spreading transition temperature,
like the FK transition temperature, is very insensitive to p for
a wide range of p around p = 1/2.

III. FORTUIN-KASTELEYN NUMERICAL RESULTS
IN DIMENSION 2

The two-dimensional lattices studied were the square
lattice and the triangular lattice. On both lattices the standard
phase diagrams as functions of p are well established. The
pure ferromagnetic Curie temperatures Tc(p = 1) are ex-
actly Tc(sq) = −2/ ln[21/2 − 1] = 2.269 18 . . . and Tc(tri) =
4/ ln 3 = 3.640 96 . . ., respectively. When p is lowered from
p = 1, the Curie temperature Tc(p) drops gradually until a
critical point is reached at pr on the Nishimori line, where
the Curie temperature tends suddenly to zero with weak
re-entrant behavior [3,28–32]. Between the re-entrant regime
and p = 1/2 the system can be considered a spin glass, but
with no finite-temperature ordering transition. The square
lattice phase diagram for p < 1/2 is the exact mirror image
of the phase diagram for p > 1/2, with antiferromagnetic
order taking the place of ferromagnetic order as the lattice
is bipartite. For the triangular lattice, in contrast, there is no
finite-temperature order below p = 1/2 as the fully frustrated
antiferromagnetic limit at p = 0 is approached.

The internal energy per bond U (p,T ,L) at equilibrium
was estimated numerically. For small triangular lattices 3 �
L � 11, the energy as a function of temperature for each
specific sample was calculated exactly (up to numerical
precision) using transfer matrices. Once a sample is picked
we split the lattice into L parts, each part corresponding
to a transfer matrix Ai . After choosing a numerical value
of T we evaluate the matrices and compute the trace of
their product to obtain Z(p,T ,L) = tr(A1 A2 · · ·AL). This
standard approach is described in great detail for the Ising

FIG. 1. (Color online) Square lattice transitions. Temperatures T

are shown as functions of the ferromagnetic interaction concentra-
tions p. The pink dashed line on the right indicates the ferromagnetic
Curie temperatures; the data are taken from Ref. [32]. The green
solid traversal line is the exact Nishimori line. Red circles denote
the FK transitions TFK, from Ref. [25]. Blue squares denote the
random active-bond percolation line TFKr . Black diamonds denote
the heat-bath damage-spreading transition TDS. The errors on TFK and
TDS are the size of the points. The large black square is the exact
intersection point TNL,FK.

case in Sec 3 of Ref. [33] and is of course easily adapted
to the spin glass case. We thus computed 〈ln Z(p,T ,L)〉 for
p = 0,0.02,0.04, . . . ,0.50 and p = 0.51, . . . ,0.98,0.99,1 and
some 70–80 values of T . The number of samples ranged
between 16 384 for L = 3,4,5 and then down to only 1024 for
L = 11. Taking the average ∂ ln Z/∂β then provides us with
〈U (p,T ,L)〉. Values at (p,T ) outside the computed data grid
were obtained through third-order interpolation.

For larger L (for the square and triangular lattices) the
Monte Carlo data were collected after equilibration using
standard Metropolis updating. At each (p,T ), and for each
sample, we collected at least a few 106 measurements of
U and of course even more for moderate L. For the square
lattices we used L = 16,32,64 on 64 different samples with
0.5 � p < 1 in steps of 0.025. For the triangular lattice we
used L = 16,32 on 32 different samples but with 0 < p < 1
in steps of 0.025 (slightly denser at high and low p). Some 50
values of T were used for both lattices. Again, intermediate
values of 〈U 〉 were obtained by interpolating the values at the
(p,T ) grid points. By interpolation of points derived from Eq.
(4) and the consistency condition (5) the temperature TFKr (p)
where the fraction of FK active bonds Pa(p,T ) is equal to
Pc can be estimated to high precision. In Figs. 1 and 2 the
TFKr (p) values are compared to the directly measured TFK(p)
values [8,25] for the square and triangular lattices, respectively.
The damage-spreading temperatures to be discussed later are
also shown.

The error in the TFKr estimates is found by first solving
Eq. (4) for each individual sample (using the interpolation we
mentioned above), which gives us a sample-to-sample standard
deviation from which we obtain the standard error of the
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FIG. 2. (Color online) Triangular lattice transitions. Tempera-
tures T are shown as functions of the ferromagnetic interaction
concentrations p. The pink dashed line on the right indicates the
ferromagnetic Curie temperatures. The green solid traversal line is
the exact Nishimori line. The red dashed vertical line in the center
indicates p = 0.5. Red circles denote the FK transitions TFK, from
Ref. [25]. Blue squares denote the random active-bond percolation
line TFKr . Black diamonds denote the heat-bath damage-spreading
transition TDS. The errors on TFK and TDS are the size of the points.
The large black square is the exact intersection point TNL,FK.

average sample TFKr . Once the standard error is established we
are free to plot a smoothed version (from fitting a polynomial
of high degree) of TFKr versus p. Needless to say, we have not
estimated the error in U , and hence TFKr , for each individual
sample, but we simply assume this error should be reflected in
the sample-to-sample variation.

In dimension 2, Pc = 1/2 for the square lattice and Pc =
2 sin(π/18) = 0.347 296 355 . . . for the triangular lattice. The
exact NL-FK intersection values from Eqs. (6) and (7) are
then pNL,FK = 3/4 and βNL,FK = ln(3)/2 = 0.549 306 3 . . .

for the square lattice and pNL,FK = 0.6736 . . . and βNL,FK =
0.362 371 . . . for the triangular lattice. The estimated TFK(p)
and TFKr (p) lines run directly through these exact NL-FK
intersection points as they should (Figs. 1 and 2).

The measured equilibrium energy per bond is slightly
higher than the random-bond energy − tanh(β) for β > βFKr

and slightly lower for β < βFKr . To within the high numerical
precision the estimated βFKr (pNL,FK,L) at the NL-FK inter-
section point is independent of L down to L = 3 (Figs. 3 and
4). The observed absence of finite scaling corrections at the
NL also follows from Nishimori’s general statement quoted
above [21]. For p values to the left and right of pNL,FK there are
weak finite-size effects of opposite signs. This absence of mean
finite-size scaling deviations arises because TFKr depends only
on the energy. Other parameters can still show finite-size
scaling deviations [34]. The large-size limits for TFK(p) and
TFKr (p) remain equal to each other to within the numerical
precision of the TFK(p) points [25] over the strong-disorder
range of p extending from p = 1/2 to pNL,FK in the square
lattice and from p ∼ 0.3 to pNL,FK in the triangular lattice.
Over these ranges of p the satisfied bonds at TFK are very

FIG. 3. (Color online) Size effect on triangular lattice temper-
atures TFKr at which the fraction of FK sites is equal to the
random site percolation concentration for the lattice Pc [Eq. (5)].
Temperatures TFKr are shown as functions of the ferromagnetic
interaction concentrations p for lattice sizes L from 3 to 11:
L = 3, 4, 5, and 11 are indicated by black, red, green, and blue,
respectively, from top to bottom on the right-hand side and from
bottom to top on the left-hand side. The black square is the exact
TNL,FK intersection [Eqs. (6) and (7)].

close to being uncorrelated; for instance, at p = 1/2 on
the square lattice −U (p,βFKr )/ tanh(βFKr ) = 0.9709, which
remains close to the uncorrelated value of 1. The further

FIG. 4. (Color online) Same as for Fig. 3: a closeup of the
region around the TNL,FK intersection (large black square). Here
L = 3, 4, 5, and 11 are shown as black squares, red circles, green
triangles, and blue diamonds, respectively, from top to bottom on the
right-hand side and from bottom to top on the left-hand side). The
error bars are the standard error when measuring TFKr after solving
Eqs. (4) and (5) and correspond to 16 384 samples for L = 3,4,5 and
1024 samples for L = 11. The curves are tenth-degree polynomials
fitted to the whole range from p = 0 to 1.
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randomness introduced by the FK decimation is sufficient
to render the active-bond positions essentially uncorrelated.
The TFK(p) [25] [or TFKr (p), which has been measured here
with higher precision] is rather insensitive to p within this
range, so the measured TFK(1/2) is similar to the exact
TNL,FK on both lattices. For both lattices in the more strongly
ferromagnetic ranges p > pNL,FK and in the range p < 0.3
close to the fully frustrated p = 0 limit in the triangular lattice,
TFK(p) > TFKr (p). At these concentrations the satisfied bonds
are significantly correlated at TFK(p) and the FK decimation
does not sufficiently compensate for the correlations so as to
produce randomness among the active bonds.

IV. DAMAGE-SPREADING NUMERICAL RESULTS IN
DIMENSION 2

For dimension 2 the critical temperatures TDS(p) below
which the long-time large-L heat-bath damage spreading
D(p,T ,t) tends to a nonzero value are also shown in Figs. 1
and 2. The values given are obtained from extrapolating data at
increasing sizes (Figs. 5 and 6) to infinite size. On the basis of
data for square and cubic lattices at p = 1/2 it was conjectured
earlier that TFK(p) ∼ TDS(p) [7,19,20], as is the case in the
pure ferromagnetic p = 1 limit. However, the present data
demonstrate that while the curves for TDS(p) and TFK(p) lie
close together and are of very similar shape, in particular both
being almost independent of p for the range near p = 1/2, it
is clear that TDS(p) < TFK(p) except when p tends to the fer-
romagnetic limit p = 1. Thus, unfortunately, it is not possible
to define a unique joint dynamic transition temperature. We
will see that this is true also in higher dimensions.

The present accurate critical value for the strong-disorder
square lattice TDS(1/2) = 1.69(2) is in good agreement with

FIG. 5. (Color online) Damage spreading D(β,L) for the
triangular lattice at p = 0.6736. The lattice sizes are L =
48, 64, 96, 128, 256, 384, 512, and 1024 are shown as black
squares, red circles, green triangles, blue inverted triangles, cyan di-
amonds, yellow left-pointing triangles, pink right-pointing triangles,
and brown stars, respectively, from right to left in the region where
the curves separate. Shown error bars are the standard error. The
exact FK transition inverse temperature is β = 0.362 371 . . ., which
is distinct from the limiting damage-spreading inverse temperature.

FIG. 6. (Color online) Cubic lattice equilibrium damage spread-
ing D(β,L) as a function of size and inverse temperature for
p = 0.6244. The sizes L = 12, 16, 24, 32, 48, and 64 are shown as
black squares, red circles, blue triangles, green inverted triangles, cyan
diamonds, and pink stars, respectively, from right to left in the region
where the curves separate. Shown error bars are the standard error. The
extrapolated intersection with the β axis gives the infinite-size critical
βDS. In this case βDS = 0.254 32(15) can hardly be distinguished from
the exact FK transition inverse temperature βFK = 0.254 14 . . . (red
arrow).

the earlier value TDS(1/2) = 1.70 [13] and is very close to the
regular to chaotic dynamic transition temperature estimated
for the same lattice in Ref. [18] from the divergence of the
coupling time with L2, where the data indicate a transition at
TDS(1/2) ∼ 1.72.

V. DIMENSIONS 3–5

It is numerically much more demanding to estimate TFK(p)
precisely through direct measurements (as in Ref. [25]), in
particular allowing for finite-size effects, than to estimate
TDS(p) to the same level of accuracy. For cubic lattices in
dimensions 3, 4, and 5 the random-bond critical concentrations
Pc, though not exact, have been estimated to very high
precision: Pc(3) = 0.248 812 6(5), Pc(4) = 0.160 131 0(10),
and Pc(5) = 0.118 117 18(3), respectively [35,36]. Using the
exact NL-FK intersection point expressions (6) and (7),
one thus has pNL,FK = 0.6244 and βNL,FK = 0.254 146 6 in
dimension 3, pNL,FK = 0.580 06 and βNL,FK = 0.161 521 in
dimension 4, and pNL,FK = 0.559 06 and βNL,FK = 0.118 671
in dimension 5. Hence, as pNL,FK and βFK(pNL,FK) can be
taken as known almost exactly, it is sufficient to estimate
βDS(pNL,FK) numerically (allowing carefully for finite-size
corrections) to obtain an accurate estimate of the ratio
TDS(pNL,FK)/TFK(pNL,FK) for each dimension.

The equilibrium damage D(L,β) was measured for given
L as a function of β and the results were extrapolated to obtain
an estimate of the βDS value at which D(∞,β) falls to zero
(Figs. 5 and 6). There is a clear envelope curve for all L in each
case, with the data points leaving the curve later and later as
L increases. There are various ways to extrapolate to infinite
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FIG. 7. Damage-spreading critical temperature TDS(p) for a
three-dimensional (3D) cubic lattice size L = 32. The error bars
correspond mainly to the residual uncertainty in the extrapolation
to the intersection with the β axis.

L. One efficient method is to fit the envelope points, assuming
that near βDS the behavior follows D(β) = A(β − βDS)B and
adjusting B to obtain a straight line. We have also used a simple
scaling formula βDS(L) = βDS + CL−λ to verify. Of course, a
certain statistical uncertainty will enter depending on which L

is included in the fitting process, which we take into account
in the final error estimate.

The infinite-L damage-spreading temperatures TDS(pNL,FK)
were estimated for the central values of pNL,FK in the 3 dimen-
sions: TDS(pNL,FK) = 3.932(2) in dimension 3, TDS(pNL,FK) =
6.057(10) in dimension 4, and TDS(pNL,FK) = 8.13(1) in
dimension 5. The observed ratios TFK(pNL,FK)/TDS(pNL,FK) are
equal to 1.0005(5),1.022(2), and 1.036(10), respectively. In di-
mension 3, TDS(pNL,FK) is indistinguishable from TFK(pNL,FK),
while in dimensions 4 and 5 the values appear tantalizingly
close, but not identical. We have no explanation for the striking
similarity between the two temperatures for the particular case
of dimension 3. Adding a little more detail for this particular
case, the individual βDS(L) were estimated to an accuracy of
±0.0001 for L = 48,64; ±0.000 25 for L = 32; ±0.0005 for
L = 16,20,24; and ±0.001 for L = 12. Using the exponent
λ = 2.05 gives a projected βDS that depends only to a very
small degree on which L are included in the fit (though we
always include L = 48,64). We receive a median value of
βDS = 0.254 32 and a standard deviation of 0.000 15, giving
us TDS = 3.932(2). Similar methods were used to estimate TDS

for the other dimensions.
As in dimension 2, the curve for TDS(p) is almost flat over

a wide range of p around p = 1/2 for dimensions 3 and 4
(Figs. 7 and 8) (the case of dimension 5 was not studied).
These data are for fixed L (L = 32 and 16, respectively),
so the TDS(p) values are not quite equivalent to the values
quoted for TDS at pNL,FK. Judging from the behavior observed
in dimension 2, it seems very plausible to assume that the ratio
TFK(p)/TDS(p) is always practically independent of p in the
strong-disorder regime 1/2 < p < pNL,FK.

D
S

FIG. 8. Damage-spreading critical temperature TDS(p) for a 4D
cubic lattice size L = 16. The error bars correspond mainly to the
residual uncertainty in the extrapolation to the intersection with the
β axis.

It can be noted that numerical data for the time dependence
of the autocorrelation function q(t) at all temperatures in two-
dimensional fully frustrated systems have been interpreted in
terms of exponential relaxation with logarithmic corrections
due to vortex-vortex interactions [37]. The results indicate that
in these systems (which have well established FK and damage
transitions) there is no dynamic critical temperature in the
Ogielski sense [14].

VI. DAMAGE CLUSTERS

It is of interest to examine in some detail the damage
clusters in dimension 2, where they can be readily visualized.
Keeping β > βDS and letting t → ∞ (or at least allowing for
equilibration), how does the damage actually spread? Note
that we define a cluster as a connected component in the
lattice induced by the damaged sites, i.e., a maximal set of
damaged sites such that there is a lattice path (made up of
horizontal and vertical steps) between each pair of sites. The
sum of the individual cluster sizes is thus the damage without
normalization, i.e., LdD(β). We have collected data on cluster
sizes for d = 2,3,4,5. For d = 2 we have used only the square
lattice, not the triangular lattice.

What we see in a square lattice snapshot at β near βDS and
at any arbitrary fixed time is not, as in the case for percolation
(including FK percolation) or random graphs near pc, the
formation of a giant cluster, but rather a large number of very
small clusters. At subsequent times the clusters evolve and
flutter through the lattice. An example is shown in Fig. 9.

The measurements take place as above for the damage
spreading; starting from random (infinite-temperature) spin
configurations, at each time step we update Ld randomly
selected sites and then search for all clusters and their sizes.
On a measurement we collect the number of clusters, the
average cluster size, the size of the largest cluster, and the
size of a randomly selected cluster. As before, we collect
106 measurements from each sample after discarding between
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FIG. 9. Illustrative snapshot of an instantaneous damage site con-
figuration for an L = 128 square lattice at p = 0.75 and temperature
T = 1.61, just below the damage-spreading transition.

50 000 and 250 000 time steps (depending on L) to allow for
equilibration of the damage spreading. We then average over
the time steps to get the average for a particular sample. The
data are then averaged over the samples; we have used only
eight samples in each case for the cluster measurements (for
the damage spreading we used between 8 and 128 samples,
depending on lattice size). In all cases we have set p = pNL,FK.

First we discuss the expected number of clusters, which
we denote nc(β,L). In Fig. 10 we plot nc(β,L)/L3 versus

FIG. 10. (Color online) Number of clusters nc(β,L) on the
3D cubic lattice normalized by L3 at p = pNL,FK. The sizes L =
12, 16, 24, 32, and 48 are shown as black squares, red circles, blue
triangles, green inverted triangles, and pink left-pointing triangles,
respectively. The errors are smaller than the size of the points.

FIG. 11. (Color online) Mean cluster size s(β,L) on the 3D
cubic lattice at p = pNL,FK. The sizes L = 12, 16, 24, 32, and 48
are shown as black squares, red circles, blue triangles, green inverted
triangles, and pink left-pointing triangles, respectively. The errors are
smaller than the size of the points.

β for the simple cubic lattice. Equivalent behavior is found
also for d = 2,4,5. Note that for the square lattice all lattice
sizes agree on a global maximum probability located at βmax =
0.656(1), where nc(βmax,L) ∼ 0.0130(1) L2. For d = 3 we ob-
tain βmax = 0.313(1) and nc(βmax,L) ∼ 0.0227(1) L3, for d =
4 we get βmax = 0.211(1) and nc(βmax,L) ∼ 0.0200(1) L4,
and for d = 5 we get βmax = 0.177(1) and nc(βmax,L) ∼
0.0308(1) L5. Thus the damage is always distributed over
O(Ld ) clusters.

With so many clusters the average cluster at each time step
must be rather small. We measure the number of damaged
sites DLd and the number of clusters nc, giving us the mean
cluster size at each time step. The normalized time average
(and then the sample average, though the sample variation is
very small) is then s(β,L) = 〈DLd/nc〉. In Fig. 11 we plot
s(β,L) versus β, again for d = 3. The curve clearly suggests
a positive right limit at βDS. To estimate this limit we fit a
simple expression a0 + a1exp(a2 β) to the points, resulting
in s(βDS) = limβ→β+

DS
limL→∞ s(β,L) = 3.46(1). We estimate

the right limits corresponding to d = 2, 3, 4, and 5 to be,
respectively, 9.00(2), 3.46(1), 2.76(1), and 1.95(1) sites at βDS.
One could alternatively define s as the average damage divided
by the average number of clusters. This is not strictly the
same as our present definition (mean ratio versus ratio of the
means), but the difference is of course vanishingly small here.
For example, the maximum in Fig. 10 at βmax = 0.313 gives
nc ∼ 0.0227L3 and the number of damaged sites (see Fig. 6)
is 0.139(1)L3. Hence the average cluster size is roughly 6.1,
which matches Fig. 11.

We end this section with a final remark concerning the
distribution of cluster sizes. At each time step we pick here one
cluster uniformly at random and measure its size. In Fig. 12 we
show a set of size distributions (or density functions) as ln Pr
vs lns for a range of β for d = 3 and L = 12. They all have a
high value at size 1 (many isolated sites) and then drop quickly.
They can be expected to behave like this since the mean size
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FIG. 12. (Color online) Distribution of cluster sizes on the
3D cubic lattice for L = 12 at inverse temperatures β =
0.295, 0.335, 0.370, and 0.500, shown as black squares, red circles,
green triangles, and blue inverted triangles, respectively. The errors
are the size of the points, except for very small p, where they can be
judged by the scatter (note the logarithmic scales).

is between 4 and 70 in this temperature range. However, for
β > βmax (or thereabout) the distributions show a second, and
rather wide, maximum located in the neighborhood of the total
damage D(β,L). This can be understood as follows. Suppose
for the sake of argument that the damaged sites are distributed
at random in space. (This is only approximate as correlations
between damage sites should be allowed for.) Then when D(β)
exceeds the site percolation concentration there will exist
a single giant percolating cluster of damaged sites together
with residual small clusters. As D(β) increases further the
percolating cluster will contain almost all the damaged sites.
By this criterion the peak should appear in the distribution at
D(β) ∼ 0.59, 0.31, 0.20, and 0.14 in dimensions 2, 3, 4, and
5, respectively, which gives an indication in rough agreement
with the data. Indeed, in the case of the square the peak never
appears, which is consistent with the fact that D(β) never
approaches 0.59. For the dimensions where the peak does
appear the global parameters, in particular D(β), increase

smoothly with β and show no sign of any critical behavior
as the giant cluster forms.

VII. CONCLUSION

The exact values of the coordinates of the intersection
point where the Fortuin-Kasteleyn transition line crosses the
Nishimori line can be derived for an RBIM from the analytic
condition that satisfied bonds are uncorrelated on the NL [21].
On any lattice this leads to the exact expressions pNL,FK = (1 +
Pc)/2 and TNL,FK = 2/ ln[(1 + Pc)/(1 − Pc)] [19,20], where
Pc is the standard random-bond percolation concentration
for the particular lattice. For lattices in dimension 2 (and
probably in higher dimensions also) the uncorrelated bond
condition remains a very good approximation at the FK
transition temperature over a wide strong-disorder region
spanning p = 1/2.

In pure ferromagnets TFK(p = 1) = TDS(p = 1) = Tc(p =
1). The conjectured equivalence for the RBIM between the
FK transition temperature and the heat-bath damage-spreading
temperature, TFK(p) ∼ TDS(p) [7,19,20], separating an expo-
nential from a chaotic dynamic regime has been tested at
p = pNL,FK on simple cubic lattices in dimensions 2–5. It holds
to within 0.1% in dimension 3, to within 2% in dimension 4,
and to 3% in dimension 5. The equivalence appears always to
be a good approximation. We have no explanation to propose
for the quasiequality in the case of dimension 3. For the square
and triangle lattices the difference is larger: 5% and 16%,
respectively.

The FK transition in the strong-disorder regime close to
p = 1/2 can thus be said to be well understood. However, the
basic physical condition determining the damage-spreading
transition temperature, which plays an important role in
limiting perfect equilibration in RBIMs, and its proximity to
the FK transition remains unclear.
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