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Multiscale community geometry in a network and its application
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We introduce a between-ness-based distance metric to extract local and global information for each pair of nodes
(or “vertices” used interchangeably) located in a binary network. Since this distance then superimposes a weighted
graph upon such a binary network, a multiscale clustering mechanism, called data cloud geometry, is applicable
to discover hierarchical communities within a binary network. This approach resolves many shortcomings of
community finding approaches, which are primarily based on modularity optimization. Using several contrived
and real binary networks, our community hierarchies compare favorably with results derived from a recently
proposed approach based on time-scale differences of random walks and has already demonstrated significant
improvements over module-based approaches, especially on the multiscale and the determination of the number
of communities.
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I. INTRODUCTION

In modern research, networks are collected and are studied
in nearly all disciplines of sciences, and many previously
unthinkable domains in the real world [1,2], including social
dynamic relational networks [3], genetic pathway networks
[4–6], ecological food-web and competition networks [7,8],
financial payment and banking networks [9–11], and many
others. These networks attempt to manifest relationships
ranging from macroscopic to microscopic levels. Although
they are diverse in format, these networks often successfully
reveal intriguing structures of the system under study. The
most intriguing structures, when a network is viewed as an
approximation of a complex system, are primarily brought
out through identifying communities [12]. This is why the
investigation of community structures in networks has been
a very intensive research area. Well-studied examples include
Zachary’s karate club [13], the scientific coauthorship network
[14], the bottlenose dolphin network [15], and the protein-
protein interaction network [16]. So far, the key idea under-
lying most approaches is the minimum-cut-maximum flow
from graph theory. One of the most well-known approaches
is the modularity optimization [17], which is popularized in
a series approach along with many of its variants. These
methods work well in partitioning the whole network into
several separate communities with high intraconnectivity but
with low interconnectivity [18]. Many of these identified
communities are indeed capable of extracting meaningful
structural information hidden in the underlying complex
system.

However, as advances in data acquisition techniques have
been revolutionized on a surprisingly rapid pace, much
research in this area has raised a common issue that com-
putational approaches for identifying communities need to be
revised for adapting more conceptual and realistic features
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relevant to the complex system under study, such as hi-
erarchical, multiscale, and overlapping structures [19–21].
In this paper, we particularly focus on the issue of the
multiscale structure, which is significantly related to the
hierarchical issue. From our point of view, the overlapping
issue also heavily involves the multiscale one from the aspect
of similarities among links or edges.

The resolution limit of communities—identified via modu-
larity optimization and its variants—has been pointed out as a
significant drawback by Fortunato and Barthelemy [22]. The
importance of multiscale community detection has become
better recognized, and resolving attempts are proposed [23–26]
in order to completely depict the multilevel community struc-
ture in networks. Among these approaches, the one proposed
by Delvenne et al. [27] is a step toward the direction of trying
to unify the modularity optimization and the clustering idea
via intrinsic time scale differences as random walk traveling
within large and small communities.

In this paper, we will study the geometric sense of the
multiscale structure among network communities. In addition
to extracting information regarding whether a community,
indeed, contains many denser but smaller communities, we
also compute the information about the proximity between the
communities. Basically, a pertinent geometry is constructed as
the network community structure.

Two pieces of information are essential for any multiscale
structure: (1) what and how many scales are relevant; and
(2) given a relevant focal scale, how can we extract the right
structural configuration. The two pieces of information will
be rigorously extracted in this paper. The approach begins
with defining a distance measure between any pair of nodes
based on their global and local positions in the network. After
identifying the outliers, data cloud geometry is applied as a
nonparametric clustering algorithm to explicitly derive the two
pieces of essential information mentioned [28].

Here, we link the community detection with the classic
clustering mechanism. This approach is in even sharper
contrast to existing optimization approaches than that proposed
in Delvenne et al. [27]. A brief view of our approach is as
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follows. We start with offering a new “distance” perspective for
all possible pairs of nodes given its empirical edge connectivity
in the network. This distance is calculated based on the
concept of edge between-ness and defined along a shortest path
between two nodes. The underlying idea is that, if a shortest
path contains one or several large edge between-nesses, then
these two nodes are likely to be apart. With such a distance, a
distance matrix can be derived as an empirical one measured
in a classic clustering setting.

How far apart two nodes are globally is not only decided
by the distance between them, but is also critically determined
by the focal scale used. To introduce the concept of scale, a
sequence of different temperatures, taking values from very
small to extremely large, is employed to transform the empir-
ical distance matrix to a sequence of scale-sensitive similarity
matrices, which are, therefore, manipulated into a Laplacian
or Markovian transition matrix. A regulated random walk is
then devised to effectively and exhaustively explore the whole
collection of nodes to simultaneously reveal the clustering
structure. In an ensemble fashion, such a piece of information
is summarized into a clustering sharing probability matrix per-
taining to the focal scale. The eigenvalue plot of such a matrix
reveals the number of clusters involved, whereas, the properly
constructed hierarchical clustering tree reveals the clustering
memberships. Finally, phase transitions are searched along the
evolution of the sequence of eigenvalue plots corresponding
to the sequence of employed scales to determine the set of
relevant scales. The geometry sense among communities is
seen through a community merging process. Two communities
being closer to each other merge earlier than two communities
being far apart in the process of relevant scale changing from
small to large. As a network is taken as an approximation of
a complex system of interest, it is believed that this geometric
perspective of multiscale network structure can offer a new
hierarchical insight into the system under study. An equally
important implication is that such structural information is
potentially useful for comparing among different networks
and, likewise, for comparing among different complex
systems.

II. ESTABLISHING DISTANCES IN BINARY NETWORKS

We start with the description of a binary network G =
{N ,E} with node collection N = {N1,N2, . . . ,NK} and edge
collection E = {ek,k′ : 1 � k,k′ � K}. Here, ek,k′ = 1 when an
edge exists between two nodes Nk and Nk′ , otherwise 0. The
edge between-ness of an existing edge ek,k′ is denoted as bk,k′ ,
and its number of common nearest neighbors of both ending
nodes Nk and Nk′ is denoted as ck,k′ .

A monotonically increasing kernel function H (·) is applied
to derive the distance. It can be simply H (b) = b or H (b) =
eb. Another proper choice of H (·) is data driven, which can
be derived as the reciprocal of the fitted smooth right tail of
an edge between-ness histogram. The data-driven version is
recommended when the number of node K is not small. The
bottom line is that the kernel function keeps the order of the
connections according to the between-ness. For convenience,
we always normalize H (b) by the maximal fitted value so that
the kernel function eventually takes values between 0 and 1.

For an arbitrary pair of nodes (NA,NB ), the corresponding
path length lAB is computed as the length of the shortest
paths, and its full collection of shortest paths is computed
as P(NA,NB). Any one of the shortest paths between
NA and NB , say (N0,N1, . . . ,NlAB

), with N0 = NA and
NlAB

= NB , corresponds to a vector of edge between-ness
(b0,1,b1,2, . . . ,blAB−1,lAB

).
With all ingredients for a pair of nodes (NA,NB), we define

the distance as follows:

d(NA,NB) = min
P(NA,NB )

lAB∑
i=1

H (bi−1,i).

The distance aggregates the kernel function over all the
segments in which intercommunity edges contribute much
more than intracommunity edges.

In some cases, the component H (bi−1,i) is replaced by the
power transform H (bi−1,i)1/(1+ci−1,i ), which is a device that we
use to couple the global information of edge between-ness
with the local information of the number of sharing nearest
neighbors ci−1,i . The piece of local information, as illustrated
in the following example, is not necessarily included in the
distance when the size of the network is large. However,
the piece of local information does help us obtain a more
reasonable community structure.

As we briefly examine this distance, it becomes clear that
it yields a relatively small-scale distance for a pair of nodes
within the same community and a relatively large distance for
two nodes falling into two different communities. This fact
effectively realizes the classic idea in clustering.

III. DATA CLOUD GEOMETRY AND
COMMUNITY DETECTION

Once the distance matrix is obtained, an algorithm named
data cloud geometry is applied to detect the multiscale
community structure over the binary network. The algorithm
proposed in Ref. [28] is to display the multiscale clustering
structure in a given dataset. With an appropriate distance
matrix defined, the topology of the data is shown on a series
of scales, represented by the temperature T . Here, we briefly
introduce the procedure of the algorithm at one temperature T :

(1) Identify the potential outliers, which are the nodes far
from the others in the distance defined. The distance to the
nearest node is chosen to be the proxy of the distance from
each node. By calculating the interquartile range of the short
distance distribution, we mark the nodes outside the upper
fence as potential outliers to guarantee that no isolated nodes
would be identified as communities.

(2) We calculate the similarity between any pair (NA,NB)
at the temperature T by

sAB (T ) = exp

{
−d(NA,NB )

T

}
,

and, therefore, construct the similarity matrix under tempera-
ture T by

S(T ) = [sAB(T )]K×K.

As mentioned above, T is the scale parameter with which we
view the network. Under a high temperature, the differences
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between the distances are shrunk to be close, whereas, under
a low temperature, the gaps between the distances tend to be
magnified.

(3) A regulated random walk is established based on the
Markovian transition matrix,

L(T ) = D−1(T )S(T ),

where D is the diagonal matrix with

dii =
K∑

j=1

sij .

Compared to the traditional random walk, a modification
has been made in this regulated one. A node is removed
when it has been visited for a certain number of times. The
number is always preassigned, for example, five times. By
this modification, it is observed that the algorithm tends to
remove all the vertices in one community one by one, and the
random walk is forced to jump to another community after
all the vertices in the previous community are removed. This
pattern is more evident when the intracommunity distances
are much smaller than the intercommunity distances. The
successive time of each removal is recorded to make a
profile in which a “spike” signals that the algorithm enters
a new cluster. By detecting the spikes, we create a series of
removal segments and conclude that, if two vertices are in
the same removal segment, they are likely to be in the same
community.

(4) The regulated random walk is repeated a large number
of times. An ensemble connectivity matrix is then constructed
with each element being the proportion of times in which the
pair belongs to the same removal segments in the last step. It
is actually an empirical estimate of the probabilities that any
pair of nodes belongs to the same community. The ensemble
connectivity matrix is more informative and reliable than the
original similarity matrix or distance matrix.

(5) At a working temperature, a hierarchical clustering tree
is built from the ensemble matrix and is then cut into a set
of subtrees with a number of pieces determined from the
eigenvalue plot of the ensemble matrix. The choice of the
number of communities is empirical, usually to be selected
as the number of eigenvalues which are significantly larger
than zero [14,29]. In the following simulated and real network
examples, we checked the drops in eigenvalue plots. All the
eigenvalues larger than the last drop will be counted as nonzero
eigenvalues.

(6) To confirm the outliers, the communities are marked
to see whether the potential outliers connect between two
different communities. A potential outlier would not be
confirmed when it is actually linking two disconnected parts
of the same community.

(7) The community structure will be detected on a series
of temperature scales, which usually vary from very small
to large. Plotting the number of communities against the
temperature enables us to track the merging process and,
therefore, to easily identify the stable phases. Later, in the
simulation studies, the phase transition will be shown. It is
noted that the outlier is related to the data geometry of the
majority of data and is temperature dependent.

FIG. 1. (Color online) The fine level geometry with six com-
munities is given in (a). Another stable phase is the trivial single-
community structure. Both phases can be identified from the solid line
in (b), which plots the numbers of communities against temperature
scales. The dashed line is the the number of communities when the
visit times to burn a node is set as three.

IV. SIMULATION STUDIES

A. Scale-free hierarchical networks

A small hierarchical network is analyzed to illustrate how
the multiscale community structure is detected by the geometry
we proposed. The network, shown in Fig. 1(a), was first
raised in Ref. [30] as a deterministic network with a scale-free
characteristic. For simplicity, only the network with one level
of replicas is discussed here. By varying the temperature scale
in a large range, only two stable phases: six community and
a single community are detected through the merging process
shown in Fig. 1(b). This process is very distinct from the type
reported in Fig. 3 of Ref. [27] in which the stability function
r(t) smoothly goes through many phases: from 125 (total
number of nodes) to 1. This result indicates that our multiscale
community geometry is rather stable within each of its phases.
The stability implies the intrinsic structural information being
discovered in the network.

The label in Fig. 1(a) represents the community structure
on the fine scale. (The trivial structure on the coarse scale is
not shown.) Compared to the similar multiscale community
structure given in Ref. [27], an extra community, which
consists of the central node is given from our approach. The
detection of this central vertex shows that the established
geometry is even capable of perceiving a hierarchical structure,
which is missing in Ref. [27]. Another notable aspect is that
our multiscale community geometry does not reveal a phase in
which each single node is a community as seen in Ref. [27]. We
believe that this property should be avoided by any community
detection approach.

This network also allows us to check the effect of changing
the visit time for removing a node in the algorithm. An
additional phase with five communities is detected when the
visit time is set as three. In this phase, the central node (in red)
is clustered with the four adjacent nodes (in yellow), which
actually conforms to the results reported in Ref. [27]. In this
case, the smaller visit time provides more stable phases, which
complete the multiscale structure. However, it is not always
the case in real network examples. For practitioners, selecting
a series of visit times is one of the best choices.
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B. Network with no hierarchical structure

In this simulation, a network with no hierarchical structure
is constructed and is analyzed to perform a comparison
between multiscale community geometries with the result
obtained via modularity optimization. The illustrative example
is a binary network as shown in Fig. 2(a), consisting of 21
motifs, and each of them is a fully connected network of
four nodes. This network with the symmetric structure has no
hierarchical structure since none of the motifs has a dominating
number of connections, such as the central vertex in the last
simulation study. Another significant distinction is that the one
we show here is not scale free.

By varying the temperature scale, we found that the
evolution of the community merging process has only passed
through three stable phases: 21, 4, and 1 communities as shown
in Fig. 2(b). Again, only short transition phases are present
between any two stable phases, which provide a clear geometry
structure on this simulated network.

To compare the multiscale community geometry with
the community detection from modularity optimization, very
briefly we review the modularity approach. The modularity
approach optimizes the following distancelike quantity [17]:

Q = 1

4m

∑
i,j

[
eij − didj

2m

]
sisj ,

where the edge eij and degrees di and dj are pieces of local
information and the total degree m = ∑

i di is the global
information and so are the prospective community indicators
si , which equal 1 if Ni is in the first community and 0 is in the
other community. By mixing the two pieces of information,

FIG. 2. (Color) The network, shown in (a), is simulated to
illustrate the procedure. A series of temperatures is set to determine
the number of communities shown in (b). The two stable phases, 21
community and 4 community, are provided in (c) and (d).

the optimization targets finding a partition of two on the node’s
index set (1, . . . ,K).

It is clear that the modularity optimization provides only a
single scale of the community structure and has been shown to
have the tendency to oversplit the network [22]. This tendency
is also observed in this illustrative network as shown in Fig. 3.
This result reveals an undesirable community structure.

In contrast, the multiscale community geometry is com-
puted at temperature T ranging from 0.01 to 1. Before converg-
ing into the single-community phase, along the evolution of the
community merging process, two apparent stable phases are
found: a 21-community phase in Fig. 2(c) and a 4-community
phase in Fig. 2(d). The former one is much more stable than
the latter. It is also interesting to note that the five-community
phase is even more transient than the four-community
phase.

V. MULTISCALE COMMUNITY GEOMETRIES
IN REAL WORLD NETWORKS

Three real world networks, from very small sizes to
large sizes, are analyzed in this section for their multiscale
community geometry. The karate club is a classic example,
whereas, net-science coauthorship is popularly studied in
recent network analysis literatures. The third example is one
of a series of networks constructed from Lewis Carroll’s
English word game called Doublets [31]. This network has the
unique feature of having many long dendrites. The presence of
dendrites is expected to cause some computational difficulties
in most existing community detection approaches.

A. Karate club

As a famous example in the community detection area,
the karate club network was first introduced by Zachary [13]

FIG. 3. (Color) The communities detected by the modularity
optimization approach.
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FIG. 4. (Color online) Two scales of geometry are detected on the
karate club network, which are (a) the three-community structure and
(b) the two-community structure. The node labeled 0 is an outlier.

and, to some extent, has been regarded as a benchmark
for evaluating the effectiveness of the community detection
algorithm. Our computed multiscale community geometry
provides an intrinsically different view on the how the club
could be split. Two levels of the geometric structure are
reported in Fig. 4 to display the differences from most other
community detection algorithms.

At the comparatively lower temperature T = 0.02, three
communities are detected as shown in Fig. 4(a), whereas, two
communities are presented in Fig. 4(b) at temperature T =
0.05. Only one outlier node is identified and is labeled 0.
Without this outlier, the merging process shown in the figures
gives rise to the third community (labeled 2) that has never been
studied. As we can see, instead of merging communities 1 and
2 in Fig. 4(a) as in much literature, our approach leaves the
second community alone and combines the others. It indicates

FIG. 5. (Color) Three scales of community geometry are detected
on the coauthorship network, which are (a) the ten-community
structure, (b) the seven-community structure, and (c) the five-
community structure.

that these members in community 2 are even further away from
the other members in the distance we have defined.

B. Net-science coauthorship

In this example, the network of collaboration in the net-
science field is examined. It consists of 379 authors with
the edges representing if the two authors have ever shared
a publication in the net-science area. A community structure
may depict the common research interest these authors share.
Here, we report three levels of the multiscale community
geometry in Fig. 5 with ten, seven, and five communities.
The composition of the communities in Fig. 5(a) represents
a fine partition over the network in which each community
nearly represents a specific research topic. In Fig. 5(b), the
communities of closer research topics are merged, whereas,
the communities that are distant from the others remain
unchanged.

In comparison, the multiscale community structure of this
network, which was computed and was reported in Ref. [27],
showed three stable levels with 21, 5, and 2 communities,
respectively. The community structures at the five-community
scale, which is the most stable one in both analyses, are
coherent. The Rand index (with no potential outliers) is
calculated as 0.874, which indicates the coherence between
them.

We have to note that, in Fig. 5(c), only one of the potential
outliers is confirmed at this temperature. The bottom right
one connects the disjoint parts from community 1, which
suggests that it is embraced into this community at this working
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FIG. 6. (Color online) Two scales of geometry are detected on
the eight-letter Doublets network, which are (a) the four-community
structure and (b) the two-community structure.

temperature. Under the other two structures shown in Figs. 5(a)
and 5(b), both potential outliers are confirmed.

C. Eight-letter Doublets

The Doublets network has recently been derived and has
been constructed based on the word game Doublets, which
was first created by Lewis Carroll and was studied in Ref. [31].
With all English words as the whole collection of nodes, a link
is wired between two English words if they share the same
alphabetic letters except one (obviously they are of the same

length). In this example, only the largest connected clique
of eight-letter words in which each word has eight letters is
studied. The eight-letter Doublets network, shown in Fig. 6,
consists of 291 vertices. Its multiscale structure is illustrated
in the two panels of Fig. 6, corresponding to two temperature
scales. The upper panel consists of four communities, whereas,
the bottom one, under a higher temperature, has only two
clusters. The composition of the detected communities usually
reveals distinct English word structures with regard to linguis-
tic constraints and phonological rules or even redundancy, see
details in Ref. [31].

It is interesting to see that seven potential outliers are
detected in which most of them are the nodes lying between the
clusters illustrated in the upper panel. When the temperature
is raised, shown in the bottom panel, many of the potential
outliers should be merged into identified communities since
they are merely intracommunity nodes.

VI. CONCLUSION AND DISCUSSION

In this article, we proposed a computational approach
to derive the process of community evolution through the
computed multiscale community geometry. Not only the
formation of any conglomerate community, but also a distance
metric among communities is recorded. This new in-depth
perspective of a binary network is likely to offer a potential
insight and a better understanding of the complex system to
which a binary network attempts to approximate. At the same
time, we unify the computations for community geometry
with the classic clustering mechanism. This unification would
broaden network analysis and, more importantly, would place
it upon the same solid and rich mathematical foundations on
which clustering mechanisms are based [28].

One of the most attractive advantages of this approach,
compared to the optimization approaches and modeling
methods, is its computational efficiency. The algorithm avoids
nondeterministic-polynomial-time-hard computation by tak-
ing only the O(K) computation time, which makes it capable
to be applied to the community detection on large networks.

Another significant feature in this approach is that the
number of communities could be naturally determined at
each temperature scale. By introducing the distance into
the network analysis, we provide a way to compute the
geometry of the underlying complex system and, therefore,
the number of communities. In contrast, a preassigned number
of communities has been a persistent flaw suffered by many
model-based approaches.

Although the distance among the nodes provides significant
improvement in understanding the system, its definition could
be quite empirical. Some suggestions have been given and
have been illustrated in this article. However, a more subject-
knowledge-based definition should be expected to be more
effective in most of the real world studies.
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