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Effective-average-action-based approach to correlation functions at finite momenta
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We present a truncation scheme of the effective-average-action approach of the nonperturbative renormalization
group that allows for an accurate description of the critical regime as well as of correlation functions at finite
momenta. The truncation is a natural modification of the standard derivative expansion that includes both all
local correlations and two-point and four-point irreducible correlations to all orders in the derivatives. We discuss
schemes for both the symmetric and the symmetry broken phase of the O(N ) model and present results for
D = 3. All approximations are done directly in the effective average action rather than in the flow equations of
irreducible vertices. The approach is numerically relatively easy to implement and yields good results for all N

both for the critical exponents and for the momentum dependence of the two-point function.
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I. INTRODUCTION

The nonperturbative renormalization group technique is
based on an exact flow equation of the effective average
action (or generating functional of irreducible vertices) [1,2]
and has been applied to a large variety of systems (see, e.g.,
Refs. [3–6] for reviews). It proved especially useful when
applied to critical phenomena where often even relatively
simple truncation schemes yield an accurate description of
the critical region [3,4]. While the exact flow equation of the
effective average action can almost never be solved, it allows
for novel nonperturbative approximation techniques. One
successful approximation strategy is the derivative expansion,
where the effective average action is expanded consistently to
a given order in spatial derivatives, but no truncation is made
in the power of the fields. The derivative expansion has been
applied with success to O(N ) models [3,7,8].

The derivative expansion allows strict control over the
symmetries of the studied models since all approximations are
done in the effective action that is expanded in invariants of the
model. This approach automatically yields flow equations that
both are closed and further obey the symmetry of the original
model. In contrast, if a direct field expansion of the effective
action is employed and approximations are done at the level
of the flow equations of irreducible vertices, the invariance of
the action is not guaranteed. In general, approximations at the
level of flow equations of vertices are therefore more difficult
to control. However, the derivative expansion can only access
the asymptotic small momentum regime of the theory and it
cannot be applied to calculate correlation functions at finite
momenta.

Recently, several approximation schemes that allow one to
calculate correlation functions at finite momenta were devel-
oped [9–12]. The most sophisticated of these is the scheme
presented in Refs. [10,11] [the Blaizot-Méndez-Wschebor
(BMW) scheme], which is based on an approximate solution of
the exact flow equation of the two-point vertex in the presence
of a background field. All of these approaches, however,
rely on approximations at the level of flow equations for
irreducible vertices. Instead, here we want to develop a scheme
in which all approximations are done directly at the level of
the effective average action. This allows for a transparent
calculation of the momentum dependence where the full

symmetry of the model is always obeyed by the flow equations.
The scheme we discuss below is a natural modification of the
usual derivative expansion and is based on a local potential
that is supplemented by a momentum-dependent potential
that accounts for nonlocal correlations up to the four-point
vertex. Similar schemes were previously used to calculate the
one-particle spectral function of Bose condensates [13,14]
(see also Refs. [15,16]) and also the thermal fluctuations
of crystalline membranes such as graphene [17] (see also
Ref. [18]). Here we extend the scheme to include, besides
the nonlocal terms, the full local potential and test it on the
O(N ) model (see, e.g., Ref. [19] for a recent summary of
results on the O(N ) model). We develop two schemes, a
nonlocal potential approximation (NLPA) for the ordered state
and a NLPA for the symmetric state. Both schemes allow for
an investigation of the critical region. We first introduce in
Sec. II the NLPA approach for both the ordered state and the
symmetric state. We present results from a numerical solution
of the flow equations in Sec. III, with results for the critical
exponents presented in Sec. III A. In Sec. III B we assess the
quality of the approach in the finite momentum regime. We
conclude in Sec. IV.

II. NONLOCAL POTENTIAL APPROXIMATION

We begin with an approximation scheme for the ordered
state, where we explicitly incorporate a finite order parameter
into the invariant effective action.

A. The NLPA for the ordered state

The starting point of the NLPA approach is an effective
average action that consists of both a nonlocal potential term,
which is restricted to second order in the invariant densities
and is characterized by the coupling function u�(k), and a
local potential term U�(ρ − ρ0

�), which may be an arbitrary
function of ρ − ρ0

�, where ρ0
� is the (cutoff-dependent) order

parameter density and ρ = ϕ2/2, where ϕ is a field with N

components. To avoid double counting of correlations, we
define u�(k) to be completely nonlocal with u�(0) = 0. We
furthermore keep the full momentum dependence σ�(k) of
the quadratic term in the action, and thus approximate the
effective average action, after subtraction of the noninteracting
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contribution (1/2)
∫
k
G−1

0,�(k)ϕk · ϕ−k, as

��[ϕ] = 1

2

∫
k

[σ�(k)ϕk · ϕ−k + u�(k)�ρk�ρ−k]

+
∫

x

U�

(
ρ − ρ0

�

)
, (1)

where �ρk is the Fourier transform of ρ(x) − ρ0
�. We use the

notation
∫
k

= ∫
dDk/(2π )D and

∫
x

= ∫
dDx for integrals over

momenta and integrals over coordinate space, respectively.
Here U�(τ ) can, for finite cutoff �, be expanded in τ ,

U�(τ ) =
∑

n

1

n!
U

(n)
� τn, (2)

with τ = ρ − ρ0
� or, for the symmetric scheme discussed in

Sec. II B, τ = ρ. Note that the effective action (1) does not con-
tain all terms of a complete derivative approximation to order
q2, in which the derivative term of the action would also include
an expansion to all powers of ρ − ρ0

�. In the present scheme,
one could easily improve upon the action (1) by including,
for example, also additional terms that can be parametrized
by only one momentum. One obvious extension would be
to include a term

∫
x,y

[ρ(x) − ρ0
�]2[ρ( y) − ρ0

�]κ(x − y) with
some function κ(x), which would be a generalization of the
(∂μρ)2(ρ − ρ0

�) term encountered in a derivative expansion.
Such an extension is both straightforward and numerically
feasible.

At the same time, the present approach goes well beyond
the derivative expansion in that it includes the full momentum
dependence in the first two terms of Eq. (1). As in the derivative
expansion, the effective average action obeys the full O(N )
invariance throughout the entire flow. To determine the flow
of U�, we can use the standard technique [1] and evaluate the
flow of ��[ϕ̄] for a homogeneous (x-independent) field ϕ̄ such
that V −1��[ϕ̄] = U�(ρ̄ − ρ0

�) with ρ̄ = ϕ̄2/2 and where V

is the volume. We shall now assume that N � 2, so there is
at least one gapless transverse mode. The flow of the local
potential is then given by [1]

∂�U�

(
ρ̄ − ρ0

�

) = 1

2

∫
k

∂�R�(k){Ḡ�,‖(k,ρ̄)

+ (N − 1)Ḡ�,⊥(k,ρ̄)}, (3)

where

Ḡ−1
�,⊥(k,ρ̄) = σ�(k) + U ′

�

(
ρ̄ − ρ0

�

) + G−1
0,�(k), (4a)

Ḡ−1
�,‖(k,ρ̄) = σ�(k) + 2ρ̄

[
u�(k) + U ′′

�

(
ρ̄ − ρ0

�

)]
+U ′

�

(
ρ̄ − ρ0

�

) + G−1
0,�(k). (4b)

Here the cutoff regulated noninteracting Green’s function is

G−1
0,�(k) = k2 + R�(k) (5)

and R�(k) is a regulator for small momenta with k � �. The
only difference in Eq. (3) from the standard form used in a

derivative expansion of �� is the presence of the full functions
u�(k) and σ�(k) in Eqs. (4a) and (4b) rather than just their
leading terms of a k expansion. To determine the flows of
σ�(k) and u�(k) we invoke a field expansion of ��[ϕ] in
terms of �ϕa

k = ϕa
k − ϕ0

�δa1δk,0 with ρ0
� = (ϕ0

�)2/2. Here we
have assumed, without loss of generality, an order parameter
field ϕ0

� that is directed in the a = 1 direction of the internal
space. To determine the flows of σ� and u�, we need the
lowest-order irreducible vertices (up to the four-point vertex),
which have the form

�
(2)
�,ab(k, − k) = δabσ�(k) + 2δa1δb1ρ

0
�ũ�(k), (6a)

�
(3)
�,abc(k1,k2,k3) = ϕ0

�[δa1δbcũ�(k1) + δb1δacũ�(k2)

+ δc1δabũ�(k3)] + (
ϕ0

�

)3
U

(3)
� δa1δb1δc1,

(6b)

�
(4)
�,abcd (k1, . . . ,k4) = δabδcd ũ�(k12) + δacδbd ũ�(k13)

+ δadδbcũ�(k14) + 2ρ0
�U

(3)
�

× [δabδcd (δa1 + δc1) + δacδbd (δa1 + δb1)

+ δadδbc(δa1 + δb1)]

+ 4
(
ρ0

�

)2
U

(4)
� δa1δb1δc1δd1, (6c)

where we defined ũ�(k) = u�(k) + U
(2)
� and kij = |ki + kj |.

The flow of the order parameter follows from the requirement
that ∂��

(1)
� = 0. This yields [20]

∂�ρ0
� = −1

2ũ�(0)

∫
q

{[
ũ�(0) + 2ũ�(q) + 2ρ0

�U
(3)
�

]
Ġ�,‖(q)

+ (N − 1)ũ�(0)Ġ�,⊥(q)
}
, (7)

where G�,α(k) = Ḡ�,α(k,ρ0
�) for α =⊥ , ‖ and Ġ�,α(k) =

−G2
�,α(k)∂�R�(k). The flow of σ�(k) follows from the

flow of �
(2)
�,⊥(k) = �

(2)
�,aa(k, − k), where a �= 1 is a direction

transverse to the order parameter field,

∂�σ�(k) =
∫

q

{Ġ⊥(q)ũ�(q ′) − Ġ‖(q)ũ�(q)} − 2ρ0
�

∫
q

{
Ġ‖(q ′)

×G⊥(q)ũ2
�(q ′) + Ġ⊥(q ′)G‖(q)ũ2

�(q)
}
, (8)

and we defined q ′ = |k + q|. The flow equation of ũ�(k) can
be obtained from the flow of �

(2)
�,‖(k) = �

(2)
�,11(k, − k), which

reads

∂��
(2)
�,‖(k)

= 1

2

∫
q

{
(N − 1)Ġ�,⊥(q)

[
ũ�(0) + 2ρ0

�U
(3)
�

] + Ġ�,‖(q)

× [
ũ�(0) + 2ũ�(q ′) + 12ρ0

�U
(3)
� + 4

(
ρ0

�

)2
U

(4)
�

]}

− 2ρ0
�

∫
q

{
(N − 1)Ġ�,⊥(q ′)G�,⊥(q)ũ2

�(k)

+ Ġ�,‖(q ′)G�,‖(q)
[
ũ�(q) + ũ�(q ′) + ũ�(k)

+ 2ρ0
�U

(3)
�

]2} + [
ũ�(0) + 2ũ�(k) + 2ρ0

�U
(3)
�

]
∂�ρ0

�.

(9)
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Combining Eqs. (7)–(9) and keeping in mind that �
(2)
�,‖(k) =

σ�(k) + 2ρ0
�ũ�(k), one finds

∂�ũ�(k)

= 1

2ρ0
�

∫
q

[Ġ�,‖(q) − Ġ�,⊥(q)]ũ�(q ′) +
∫

q

Ġ�,‖(q)

× {
2U

(3)
� + ρ0

�U
(4)
� − U

(3)
�

[
ũ�(q) + ρ0

�U
(3)
�

]/
ũ�(0)

}

−
∫

q

{
(N − 1)Ġ�,⊥(q ′)G�,⊥(q)ũ2

�(k) + Ġ�,‖(q ′)

×G�,‖(q)
[
ũ�(q) + ũ�(q ′) + ũ�(k) + 2ρ0

�U
(3)
�

]2}

+
∫

q

{
Ġ‖(q ′)G⊥(q)ũ2

�(q ′) + Ġ⊥(q ′)G‖(q)ũ2
�(q)

}
. (10)

This completes the derivation of the flow equations, which
are uniquely determined by the effective action (1). The
flow equations (3), (7), (8), and (10) form a closed set that
can be used to calculate the full momentum dependence
of the self-energies in a controlled manner and the only
approximation is the form of the effective action as stated
in Eq. (1). By construction, the approach reproduces exactly
the correct structure of the leading-order perturbation theory,
which is dominant at large momenta. Also by construction it
reproduces the leading terms in a derivative expansion of both
u�(k) and σ�(k) to lowest order in the fields, which dominate
the behavior in the infrared. The same is true also for the
symmetric scheme, which we discuss below.

B. The NLPA for the symmetric state

We now derive flow equations that are valid for the
symmetric phase, which are even simpler. In the NLPA for the
symmetric state the distance to the critical point is controlled
by a mass term r� in the propagator that vanishes at criticality
in the limit � → 0. We write the ansatz for �� in the NLPA
as

��[ϕ] = 1

2

∫
k

{[σ�(k) + r�]ϕk · ϕ−k

+u�(k)ρkρ−k} +
∫

x

U�(ρ), (11)

where ρk is the Fourier transform of ρ(x) = ϕ2(x)/2 and we
set U

(1)
� = 0 to avoid double counting of the mass term, which

is already accounted for by r�. The action (11) yields again
unique flow equations for r� and the functions U�(ρ), σ�(k),
and u�(k), which can be easily derived. We define the vertices
now as expansion coefficients of �� around ϕ = 0. The flow
for the two-point vertex �

(2)
�,ab(k, − k) = δab��(k) is then

∂���(k) = 1

2

∫
q

Ġ�(q)[2ũ�(q ′) + Nũ�(0)], (12)

where ��(k) = r� + σ�(k) with σ�(0) = 0 and Ġ�(q) =
−G2

�(q)∂�R�(q) with G−1
� = G−1

0,� + ��(k). The flow of the
two-point vertex is in the symmetric phase not sufficient to
extract also the flow of ũ�(k) = u�(k) + U

(2)
� and we must

extract its flow from the four-point vertex. This yields

∂�ũ�(k) = 4 + N

2

∫
q

Ġ�(q)U (3)
� −

∫
q

Ġ�(q)G�(q ′)

×{(N − 1)ũ�(k)2 + [ũ�(k) + ũ�(q ′) + ũ�(q)]2}
−

∫
q

Ġ�(q)G�(q){[ũ�(q ′) − ũ�(q)]

× [ũ�(0) + 2ũ�(q)]}, (13)

with q ′ = |k + q|. The flow of the local potential U�(ρ) is
given by Eq. (3) with ρ0

� = 0 and with σ�(k) replaced by
σ�(k) + r� in Eqs. (4a) and (4b).

III. RESULTS

We have solved the flow equations in both the symmetric
phase and the symmetry broken phase numerically for D = 3
and different values of N . For D = 3 the field expansion of the
local potential actually converges relatively fast [7], so one can
work with a finite-order approximation of the local potential.
We have used an expansion of U�(ρ) up to eighth order in ρ

in both the symmetric and the symmetry broken schemes and
have checked that the values of the anomalous dimension η are
already converged at this level of truncation. The convergence
can clearly be seen in Fig. 1, where we show the values of η

for different maximal powers of ρ. All results presented below
were calculated with all terms up to order ρ8.

For numerical stability we choose an exponential cutoff

R�(q2) = αZ�

q2

exp(q2/�2) − 1
, (14)

where Z� = 1 + ∂k2σ�(k)|k=0 is the wave function renor-
malization. Usually the prefactor α is tuned in such a way
as to extremize the critical exponents, e.g., the anomalous
dimension

η = −�∂� ln Z�. (15)

0.01

0.02

0.03

0.04

0.05

0.06

2 3 4 5 6 7 8

η

n 

FIG. 1. (Color online) Dependence of the anomalous dimension η

on the order n of the polynomial approximation of the local potential
U�(τ ) = ∑n

j=0 U
(j )
� τ j /j ! for the symmetry broken phase (top curve)

and the symmetric scheme (bottom curve) in which the fixed point is
approached from within the symmetric phase. Values shown are for
N = 2 and D = 3.

041118-3



N. HASSELMANN PHYSICAL REVIEW E 86, 041118 (2012)

TABLE I. Values for the anomalous dimension η for various N and D = 3 from different approaches. The columns correspond to the
symmetric NLPA (SNLPA), the NLPA for the ordered phase (ONLPA), results from the background field scheme (BMW) [11], the first-order
derivative expansion (DE), field theory (FT), variational perturbation theory (VPT) [21], and Monte Carlo simulations (MC).

N SNLPA ONLPA BMW DE FT VPT MC

0 0.042 0.034 0.039a 0.0272(3)b 0.031(1) 0.0303(3)c

1 0.042 0.039 0.0443d 0.0318(3)b 0.034(7) 0.03627(1)e

2 0.041(5) 0.049 0.041 0.049a 0.0334(2)b 0.035(6) 0.0381(2)f

3 0.040 0.046 0.040 0.049a 0.0333(3)b 0.035(0) 0.0375(5)g

4 0.038 0.042 0.038 0.047a 0.0350(45)h 0.031 0.0365(10)i

10 0.026 0.024(5) 0.022 0.028a 0.024j 0.0216

aReference [22].
bReference [23].
cReference [24].
dReference [7].
eReference [25].
fReference [26].
gReference [27].
hReference [28].
iReference [29].
jReference [30].

This ensures a minimal sensitivity of the results to small
variations in α [7]. In the present scheme we do not observe an
extremal value of η as a function of α. Instead, we observe a
steady decrease of η when α is increased and a minimum that
is only reached asymptotically for large α. For the symmetric
scheme the dependence of η on α is already essentially flat for
α � 5 and we choose α = 5 for our analysis below. Similarly,
in the symmetry broken phase only a small decrease of η is
detected on increasing α from 1 to 2 and η is then essentially
unchanged up to α = 3. We set α = 2 for the analysis below.

A. Critical exponents η and ν

The value of η can be easily determined from the flow
of the quantity σ�(k) and its low momentum structure via

Eq. (15). To determine the thermal exponent ν, we use in the
symmetric phase the value of the fully renormalized mass term
r∗ = lim�→0 r�, which scales as r∗ � (r�0 − rc)2ν , where rc

is the critical value of the mass term at the initial cutoff scale
�0. Similarly, in the symmetry broken phase we analyze the
scaling of the order parameter ρ∗ = lim�→0 ρ�, which scales
as ρ∗ � (ρ�0 − ρc)2β , where β is the critical exponent of the
order parameter and ρc is the critical value of ρ� at the initial
scale �0. From β and η we can extract ν via the hyperscaling
relation ν = 2β/(D − 2 + η).

In Tables I and II we show our results for the critical
exponents η and ν and compare them with results from various
other approaches. Somewhat surprisingly, in contrast to what is
observed in a standard derivative expansion, the results for the
critical exponents are generally better in the scheme where one

TABLE II. Values for the anomalous dimension ν for various N and D = 3 from different approaches. The columns correspond to the
symmetric NLPA (SNLPA), the NLPA for the ordered state (ONLPA), results from the background field scheme (BMW) [11], the first-order
derivative expansion (DE), field theory (FT), variational perturbation theory (VPT) [21], and Monte Carlo simulations (MC).

N SNLPA ONLPA BMW DE FT VPT MC

0 0.58 0.589 0.590a 0.5886(3)b 0.5883 0.5872(5)c

1 0.62 0.632 0.6307d 0.6306(5)b 0.6305 0.63002(10)e

2 0.66 0.68 0.674 0.666a 0.6700(6)b 0.6710 0.6717(1)f

3 0.70 0.72 0.715 0.704a 0.7060(7)b 0.7075 0.7112(5)g

4 0.74 0.76 0.754 0.739a 0.741(6)h 0.737 0.749(2)i

10 0.89 0.89 0.889 0.859a 0.859j 0.866

aReference [22].
bReference [23].
cReference [31].
dReference [7].
eReference [25].
fReference [26].
gReference [27].
hReference [28].
iReference [29].
jReference [30].
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TABLE III. Values for the quantity c defined in Eq. (16), from both the symmetric NLPA (SNLPA) and the NLPA for the ordered state
(ONLPA) as well as from a perturbative FRG approach (PFRG), the background field scheme (BMW), variational perturbation theory (VPT),
and Monte Carlo simulations (MC).

N SNLPA ONLPA PFRGa BMWb VPTc MC

1 1.38 1.15 1.07(10) 1.09(9)d

2 1.49 1.60 1.23 1.37 1.27(10) 1.29(5)e

1.32(2)f

3 1.59 1.72 1.50 1.43(11)
4 1.68 1.82 1.63 1.54(11) 1.60(10)d

10 2.02 2.11 2.02

aReference [9].
bReference [11].
cReference [37].
dReference [34].
eReference [35].
fReference [36].

approaches the critical point from the symmetric side, where a
field expansion around ρ = 0 rather than around a finite value
ρ0 is employed. As can be seen from Table I, the values for
η in the symmetric scheme are, except for N = 0, quite close
to those obtained within the BMW scheme of Ref. [11]. For
large N , it is known that η behaves as η = 0.27/N [32] and
the result from the symmetric scheme for N = 10 is already
close to this value.

The results for the approach from the symmetry broken
phase are similar to those of the leading-order derivative
expansion [where terms up to O(q2) are kept] (see Table I).
A possible reason for the inferior accuracy of the scheme
for the symmetry broken phase compared with the accuracy
of the symmetric scheme is that all nonlocal correlations are
determined already from the two-point function, whereas in the
symmetric scheme the nonlocal potential flow is determined
from the four-point function. Including further terms in the
effective action is expected to improve also the results of the
symmetry broken NLPA.

The results for the thermal exponent ν are similar in both
schemes and generally close to the most accurate Monte Carlo
(MC) results with deviations never more than about 3%. Our
values are also close to values from other approaches.

B. Beyond the universal regime

Both the schemes for the symmetric and the symmetry
broken phase reproduce the logarithmic behavior of the self-
energy at large momenta �(k) � u2

�0
ln(k/u�0 ), which can be

derived from perturbation theory [33]. To assess the accuracy
of the calculated self-energy over the whole momentum regime
a useful quantity is the small-u�0 limit of the one-dimensional
integral [ζ (z) is the Riemann zeta function]

c = 128

3πu�0

ζ (3/2)−4/3
∫ ∞

0
dq

�(q)

q2 + �(q)
, (16)

where �(q) is the full self-energy at criticality, �(2)
�,ab(k,−k) =

δab��(k), and �(k) = lim�→0 ��(k). The quantity c is finite
in the limit u�0/�0 → 0 and has physical significance for
N = 2, where it relates to the suppression of the critical
temperature of the weakly interacting Bose gas in D = 3

dimensions [33]. The integral in Eq. (16) is dominated by
contributions from the crossover regime k � u�0 , where the
momentum dependence of the self-energy changes from the
perturbative ln(k) behavior at large momenta to the anomalous
k2−η scaling at small momenta. The value of c has been
estimated for different N from Monte Carlo simulations
[34–36] and has been used to quantify the accuracy of various
approaches [9,11,37]. To calculate c we used a small initial
value of u�0 , u�0/�0 = 0.001. Again we find generally better
values for the symmetric scheme. For N = 2 the value is about
15% too high when compared to MC results and for N = 1 the
difference is slightly larger. For N = 4 the difference is less
than 5%. In comparison with the BMW scheme, the differences
are 8% for N = 2 and rapidly decrease for larger N (see
Table III).

IV. CONCLUSION

We have presented a straightforward nonlocal potential
approximation that allows access to finite momentum prop-
erties of correlation functions and also allows for an accurate
calculation of critical exponents. In the NLPA all truncations
are done at the level of the effective action, a property it
shares with the derivative expansion. This allows for a strict
control of the symmetries of the underlying model and also
allows for extensions of the approach. While the present
approach includes both terms of arbitrary powers in the
fields (in the local term), the nonlocal terms are restricted
up to fourth order in the fields. In contrast, in the BMW
scheme [11] all vertices have a momentum dependence that is,
however, only approximately taken into account. The present
scheme can easily be extended by including, for example,
terms of the type ρ(x)ρ( y)2κ(x − y), which would result in
momentum-dependent vertices with up to six legs, and similar
terms of higher order in the densities can of course also easily
be constructed. In D = 3 it might suffice to limit such terms
only to a small maximal power in ρ to get converged values
for the critical exponents. For each such additional term a
new coupling function must be introduced, so the nonlocality
in the scheme will always be restricted to a finite order in the
fields. The computational cost of such an extension is relatively
modest since one would still deal with the flow of a small
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number of one-parameter functions. In contrast, in the BMW
scheme the flow must be analyzed for a two-point function that
is defined on a two-dimensional grid, one dimension each for
the dependence on fields and momenta, which is numerically
more difficult.

Even in the the simplest NLPA truncation analyzed here, the
results for both the critical exponents and for the momentum
dependence of the two-point function are already surprisingly
good and the present scheme offers direct access to both
universal and nonuniversal quantities. The present scheme is

also certainly useful for more complex models where even
the local terms are restricted to a finite order in the fields
[13–18].
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[20] F. Schütz and P. Kopietz, J. Phys. A 39, 8205 (2006).
[21] H. Kleinert, Phys. Rev. D 60, 085001 (1999).
[22] G. v. Gersdorff and C. Wetterich, Phys. Rev. B 64, 054513

(2001).
[23] A. A. Pogorelov and I. M. Suslov, J. Exp. Theor. Phys. 106,

1118 (2008).
[24] P. Grassberger, P. Sutter, and L. Schäfer, J. Phys. A 30, 7039
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