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Random perfect lattices and the sphere packing problem
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Motivated by the search for best lattice sphere packings in Euclidean spaces of large dimensions we study
randomly generated perfect lattices in moderately large dimensions (up to d = 19 included). Perfect lattices are
relevant in the solution of the problem of lattice sphere packing, because the best lattice packing is a perfect lattice
and because they can be generated easily. Their number, however, grows superexponentially with the dimension,
so to get an idea of their properties we propose to study a randomized version of the generating algorithm and to
define a random ensemble with an effective temperature in a way reminiscent of a Monte Carlo simulation. We
therefore study the distribution of packing fractions and kissing numbers of these ensembles and show how as the
temperature is decreased the best known packers are easily recovered. We find that, even at infinite temperature,
the typical perfect lattices are considerably denser than known families (like Ad and Dd ), and we propose two
hypotheses between which we cannot distinguish in this paper: one in which they improve the Minkowsky
bound φ ∼ 2−(0.84±0.06)d , and a competitor in which their packing fraction decreases superexponentially, namely,
φ ∼ d−ad but with a very small coefficient a = 0.06 ± 0.04. We also find properties of the random walk which
are suggestive of a glassy system already for moderately small dimensions. We also analyze local structure of
network of perfect lattices conjecturing that this is a scale-free network in all dimensions with constant scaling
exponent 2.6 ± 0.1.
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I. INTRODUCTION

Sphere packing is a classic problem with many connections
to pure and applied mathematics (number theory and geometry
[1]), communication theory [2], and physics [3]. The statement
of the problem is very simple: Given an Euclidean space
of dimension d what is the densest spatial arrangement of
impenetrable spheres? In a more formal way one seeks to find
a maximum over all packings:

φbest(d) = max
P∈S

φ(P).

Here P is a packing of spheres (an allowed configuration of
the impenetrable spheres), S is the set of all packings, and
φ(P) is the fraction of space covered by the packing P .

As is often the case with problems related to number
theory, the simplest questions do not have simple answers.
Despite over 200 years of research the problem has been
solved only for d = 2 [4] and d = 3 [5] (the famous Kepler
conjecture). The latter case has been proved only about 15
years ago and required a substantial amount of computer work.
Although good and very good candidates for the best packings
have been identified in higher dimensions (namely, � 30) our
knowledge deteriorates quickly as dimensions become really
high, say, of order 103, where the problem becomes of interest
to communication theory.

One the greatest challenges in the sphere packing problem
is that no universal behavior is identifiable. Every dimension
seems to be peculiar, with some dimensions being very special,
like 8,12,24. In the generic case there is no restriction on
packings: They can be of any nature, ordered (crystalline
breaking of translational symmetry), or even disordered. For
relatively low dimensions, d � 9, the best (known) packings
are all lattice packings, that is, packings where spheres are
placed at the vertices of a certain Bravais lattice (one particle

per unit cell of the lattice). In d = 10 for the first time, the best
known packing is generated by a non-Bravais lattice [1]. Some
recent works [6,7] conjecture that in high enough dimensions
completely disordered packings might win over regular ones.

To understand the degree of difficulty of the problem it
is sufficient to mention that even finding good upper bounds
on best packing fractions uniformly valid for all dimensions
have resisted all attacks so far. The 100-year-old lower bound
by Minkowsky received only linear improvements until today,
and an exponential improvement [6,8] only exists subject to
an interesting but very strong conjecture.1 Even worse, the
Minkowsky bound is nonconstructive, and no methods are
known which would allow one to construct a lattice which
satisfies at least that bound in very high dimensions. Arguably
the most important recent contribution in this respect has been
given by Refs. [14,15] in which the problem is reduced, for any
given dimension, to an infinite linear programming problem.
The technique is powerful (in 8 and 24 dimensions the bounds
are saturated by the best known packing, proving hence their
global optimality) but has not yielded an understanding of the
problem for generic d.

Given the complexity of the generic case it might prove
useful to consider a simpler version of the problem. One of
them is the so-called lattice packing problem, which restricts
allowed packings to Bravais lattice packing only.2 Although
the set of possible packings is severely reduced, exact results

1For recent considerations of the applications of statistical mechan-
ics to the Roger bound [9] see the work of Parisi [10]; see also
Refs. [11–13].

2Two slightly different terminologies are being used in mathematics
and physics with respect to lattices: mathematicians differentiate
between lattices and periodic sets, while physicists talk about Bravais
and non-Bravais lattices.
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are established only up to d � 8, with the d = 9 case unlikely
to be closed in the near future.

In theory the lattice sphere packing problem is simpler,
because it admits an explicit algorithmic solution [16] where
one has to check a finite number of special lattices to find the
best one. The best packing, in fact, is both a perfect and eutactic
lattice (we give the characterization of these lattices later), and
both the number of perfect [16,17] and that of eutactic lattices
are finite [18] (hence the intersection is). This algorithm has
been applied to dimensions d � 8 to systematically find all
such lattices [19–25]. In this paper we will run a randomized
version of the algorithm in dimensions 8 to 19 to generate
large (up to several millions) sets of perfect lattices in each
dimension and then study the statistical properties thereof. We
will introduce a fictitious temperature to explore nontypical
regions of the space of perfect lattices and get the best known
packings.

II. LATTICES, PERFECT LATTICES, AND
EUTACTIC LATTICES

A. Notation

In this paper we will consider only lattices or in Physics
terminology Bravais lattices, namely lattices which have only
one particle per unit cell (see Fig. 1). A generalization of our
results to an arbitrary but finite number of particles per unit
cell will be discussed at the end of the paper. In our definitions
and logic of discussion we will follow closely Schürmann [17],
although we will not pretend to achieve the same level of rigor.

We will define a lattice A, one particle per unit cell, in Rd

by means of the square matrix of the components of the d,
d-dimensional linearly independent (basis) real vectors ei :

A =

⎛
⎜⎜⎜⎜⎜⎜⎝

e1
1 e1

2 ... e1
d

e2
1 e2

2 ... e1
d

...
...

. . .
...

ed
1 ed

2 ... ed
d

⎞
⎟⎟⎟⎟⎟⎟⎠

. (1)

The points in the lattice are elements of the set

� = {x : x = Az, z ∈ Zd/{0}}. (2)

The associated symmetric, positive definite d-by-d quadratic
form Q is defined by matrix multiplication as

Q = AT A. (3)

a b

FIG. 1. (a) Square lattice. (b) Hexagonal lattice (also known as
triangular lattice).

We will refer without a difference to the quadratic form Q or
to the basis matrix A when we talk about a lattice. The distance
of a point Az in the lattice is (here T stands for transpose, both
of a vector and of a matrix)

l = ||x|| =
√

zT AT A z =
√

zT Qz, (4)

where zT Qz = ∑d
i,j=1 ziQij zj .

The notion of shortest vector of a lattice is fundamental in
the theory of lattices and allows one to connect to the theory
of sphere packing. Namely, we define the arithmetic minimum
of a lattice Q as the square of the minimum length of a vector
in the lattice

λ(Q) = min
z∈Zd /{0}

zT Qz (5)

and the set

Min(Q) = {z ∈ Zd : zT Qz = λ(Q)}. (6)

Let us point out that the set Min(Q) should contain at least
two vectors (as x and −x have the same length) but for
the “interesting” lattices the cardinality of the set (known as
the kissing number) is usually much larger, sometimes even
exponential in d. The maximum cardinality of Min(Q) over
the set of d-dimensional lattices is an open problem in most d

and has been dubbed the kissing number problem [1].
The connection with the sphere packing problem is easily

made. The largest nonoverlapping spheres we can fit in a lattice
must have as radius half the length of the shortest vectors of Q.
Considering that the volume of a unit cell is det A = √

det Q,
we have that the maximum fraction of space covered by a
sphere packing Q is the ratio of the volume of this sphere
divided by the volume of the unit cell:

φ(Q) = Bd

[
√

λ(Q)/2]d

det(Q)1/2
, (7)

where Bd is the volume of a d-dimensional unit sphere:

Bd = 2πd/2

d �(d/2)
. (8)

A strictly related quantity is the Hermite constant of Q (in
terms of which the packing fraction can be expressed):

H (Q) = λ(Q)

det1/d (Q)
. (9)

In the following we will also use another indicator that we
will call “energy” as a target function to minimize with the
introduction of a temperature:

e(Q) = − 1

d
ln[φ(Q)]. (10)

The Minkowksy bound ensures that this quantity is bounded
from below by the best lattices even in the limit d → ∞.

The lattice sphere packing problem (henceforth LSP prob-
lem) in d dimensions is the problem of finding the maximum
of φ(Q) [or H (Q)] among all the d-dimensional lattices. The
problem is solved for d = 1,...,8 [19–25] and d = 24 [14,15]
only.
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B. Perfect lattices

We will now concentrate on a subset of lattices which turns
out to be fundamental in the solution of the lattice sphere
packing problem: the perfect lattices.

A lattice is named perfect iff the projectors built with its
shortest vectors span the space of symmetric d-by-d matrices.
So for a perfect lattice Q let Z be the cardinality of Min(Q)
and let va ∈ Min(Q), a = 1, . . . ,Z (Z is also called the kissing
number of a lattice). Let M be any symmetric d-by-d matrix;
there exists a set of real numbers μa such that

M =
Z∑

a=1

μavavT
a . (11)

For example, take the square lattice in d = 2:

Qsq =
(

1 0

0 1

)
; (12)

the shortest vectors are

Min(Qsq) = {(1,0),(0,1)}, (13)

and the projectors are

P1 =
(

1 0

0 0

)
, P2 =

(
0 0

0 1

)
, (14)

which do not span the space of symmetric matrices. Therefore
the square lattice is not a perfect lattice.

Instead, consider the hexagonal lattice

Qhex =
(

2 1

1 2

)
. (15)

It has three shortest vectors (of length
√

2)3

Min(Qhex) = {(1,0),(0,1),(1, − 1)}, (16)

and the corresponding projectors are

P1 =
(

1 0

0 0

)
, P2 =

(
0 0

0 1

)
, P3 =

(
1 −1

−1 1

)
,

(17)

and the reader can verify that they form a basis for symmetric
2-by-2 matrices (one can easily form linear combinations of the
P to obtain the identity and two of the three Pauli matrices).
Note that the number of shortest vectors of a perfect lattice
is bounded from below by (d + 1)d since this is twice the
smallest possible number of projectors that can span the space
of symmetric matrices (the dimension of space of symmetric
matrices). So in the previous example we could have said
beforehand that the square lattice is not perfect, but we should
have checked anyway that the hexagonal lattice was indeed
perfect.4

3We remind the reader that the length of a vector is (xT Qx)1/2.
4In d = 2 it turns out that 6 (3 shortest vectors and their opposite

−x) is also the maximum kissing number achievable among lattices
(and among general point patterns too).

Voronoi proved [16,17] that perfect forms are vertices of
the Ryshkov polyhedron5 defined as a set of forms Q whose
shortest vector is larger than a given value:

Pλ = {Q : λ(Q) � λ}, (18)

where the actual value of λ (as far as λ > 0) is immaterial as
the axes can be rescaled freely. Therefore we can reduce the
sphere packing problem on Pλ, hence constraining to forms
with λ(Q) = λ without any loss by finding

H = λ

infQ∈Pλ
det1/d (Q)

. (19)

The number of vertices of the Ryshkov polyhedron and hence
of perfect forms is (up to isometries that we define below)
finite (a small subset of all the lattices in any given dimension
d).

The main result which gives importance to perfect lattices in
the context of the LSP problem is the classic Voronoi theorem,
which can be stated as follows:

Theorem: The best lattice sphere packing is a perfect lattice.
The proof (which we do not give here; see Ref. [17]) follows

if one shows that det1/d (Q) does not have stationary points
inside the Ryshkov polyhedron. This in fact implies that the
minimum of det(Q) and the maximum of φ (or H ) occur on
the vertices of the polyhedron, hence on perfect lattices.

Therefore the problem of LSP is reduced to finding all
the perfect lattices and comparing their packing fractions: It
becomes a problem for a computer to solve.6 Unfortunately (or
maybe, fortunately) things are not so easy as they might seem.
Indeed, the number of perfect lattices grows very fast with the
dimension (probably faster than exponential, as we will argue
later) and the task of finding them all has been completed up
to d = 8 (where they are 10 916). For d = 9 one has found
5 × 105 forms [26], but the conjectured total number should
be about 2 × 106.

C. Isometry of lattices

A lattice admits many equivalent representations in terms
of quadratic forms Q: One can rotate the lattice or replace its
basis vectors with their independent linear combinations. This
equivalence is captured by notion of isometry:

Definition: Lattices Q and Q′ are isometric if there exists a
matrix U ∈ GLd (Z) and c ∈ R such that

Q′ = c Ut QU.

Another name in use is arithmetical equivalence. For
example, the hexagonal lattice Qhex given by Eq. (15) has

5The Ryshkov polyhedron is not a finite polyhedron but is a locally
finite polyhedron. This difference turns out to be immaterial here.

6In principle LSP is an algorithmically solvable problem even
without restricting to perfect lattices, since the number of Bravais
lattices is finite in any dimension (for example, there are 14 such
lattices in three dimensions, 64 in four dimensions, and the number
should rapidly increase with d). However, the mere enumeration
of Bravais lattices is an unaccomplished task in d � 7, and to our
knowledge no algorithm for generating them sequentially exists.
Restricting the problem to perfect lattices simplifies it considerably.
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an equivalent representation

Q′
hex =

(
2 −1

−1 2

)
,

which is isometric to Qhex with isometry matrix

U =
(

1 −1

−1 0

)
.

A practical way of checking if a given pair of forms are
isometric was developed in Ref. [27] where one uses backtrack
search to construct an isometry matrix (if this exists). However,
most of the times it is sufficient to check if some criteria (like
the number of shortest vectors) are satisfied before running the
generic code, which can be quite slow in high dimensions.

D. Eutaxy

The last concept that we need for our investigation is that of
eutactic lattice. This is not strictly necessary for understanding
our results in this paper, but it gives a suggestive connection
with the theory of spin glasses, which we plan to investigate as a
continuation of this work. Eutactic lattices cannot be improved
(as we will prove below) by an infinitesimal transformation of
the matrix base and therefore are local maxima of the packing
fraction. Their number also grows with the dimension d, and
one is then led to think that in high enough dimensions this
phenomenon is reminiscent of the landscape of a mean-field
spin glass free energy [28].

Given a perfect form Q we can always write (since it is a
symmetric, nonsingular matrix) its inverse Q−1 in terms of the
projectors built on its shortest vectors

Q−1 =
∑

x∈Min(Q)

αx xxT (20)

(here xxT is the matrix with elements xixj ).
Definition: Eutactic form is one for which one can choose

all the above αx > 0. An equivalent definition is that Q−1 is
in the interior of the Voronoi domain of the perfect form Q,
defined as

V(Q) = cone{xxT : x ∈ Min(Q)}, (21)

the cone in the space of forms generated by the projectors built
with the shortest vectors of Q.

The Hermite constant (or packing fraction) of an eutactic
form can be decreased by any infinitesimal change of the form.
In fact, by using the identity

Tr [(∇ det Q)A] = det(Q)Tr Q−1A, (22)

we obtain, to first order in δQ = Q′ − Q where Q′ ∈ Pλ(Q)

(so the length of the minimal vectors is unchanged)

H (Q + δQ) = H (Q) − λ/d

det1/d (Q)
Tr(Q−1δQ) < H (Q),

(23)

where the inequality follows from

Tr(Q−1,Q′ − Q) =
∑

x∈Min(Q)

αx(xT Q′x − xT Qx) > 0, (24)

as Q′ ∈ Pλ(Q) and αx > 0.

It follows then that a perfect and eutactic lattice is a local
maximum of H from which we obtain the following theorem:

Theorem: Perfect and eutactic (PE) lattices are local
maxima of the Hermite constant and hence of the packing
fraction

and therefore
Corollary: The best packing lattice is both perfect and

eutactic.
The concept of eutaxy is extended to arbitrary lattices with

introduction of weakly eutactic, semi-eutactic, and strongly
eutactic lattices. Weakly eutactic lattices satisfy Eq. (20) with
real coefficients αx , semieutactic lattices have αx � 0 [i.e.,
some of the coefficients in Eq. (20) are zero], and finally
strongly eutactic lattices are eutactic lattices with all αx

equal. Recall that by definition a perfect lattice is (at least)
weakly eutactic since xxT span the space. The interest in
strongly eutactic lattices comes from the fact they are also
the best packers locally among lattices with arbitrary number
of particles per unit cell [29].

The problem of determining eutaxy class of a form admits
an efficient solution: Given a form, its eutaxy class, either non-
eutactic, weakly eutactic, semi-eutactic, or strongly eutactic,
can be decided by solving a sequence of linear programs [25]
and therefore is of polynomial complexity with respect to the
number of shortest vectors (which, however, can grow as fast
as an exponential of d).

Summarizing, the take-home messages of this section are
that the maximum of the packing fraction over lattices in any
given dimension is attained by one of the PE lattices, of which
there is a finite number (in any given d) and that each of the PE
lattices is a local maximum. This characterization is extremely
powerful but still does not prevent us from having to find all
perfect lattices and checking which ones are eutactic and which
are not. There is a simple and efficient way to generate perfect
lattices, but there is not (as far as we know) a similarly efficient
way to generate eutactic [30,31] or PE lattices. One should first
generate perfect lattices and then check them for eutaxy. The
simple and efficient way to generate perfect lattices is given
by the Voronoi algorithm, which we review in the following
section.

III. THE VORONOI ALGORITHM AND
ITS RANDOMIZATION

We have now reduced the problem of finding the best lattice
packing to that of finding the best lattice packing among perfect
and eutactic lattices. We need a way to generate all the perfect
lattices, select the eutactic ones, and look at the most dense
among them. The first task is accomplished by the Voronoi
algorithm [16,17,32], which we now describe.

Start with a perfect form Q.
(1) Find all the shortest vectors x ∈ Min(Q), and the

inequalities describing the cone V(Q):

V(Q) = {Q′| ∀x ∈ Min(Q) : xT Q′x � 0}. (25)

(2) Find all the extreme rays of the polyhedral cone V(Q).
Call them R1, . . . ,Rk .

(3) Create the forms Qi = Q + αiRi , choosing rational
numbers αi such that the new form Qi is again perfect.
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(4) Check for isometries and repeat from Start with each of
the genuinely new Qi .

In this way we are guaranteed to find all the perfect
forms. If we check for isometry with previously found forms
the algorithm will at a certain point terminate, its output
being the list of all perfect forms in a given dimension. The
extreme rays of an n-dimensional polyhedral cone are the
half-lines at which at least n − 1 inequalities are binding
[n = d(d + 1)/2 here]. The bottleneck of the algorithm is
finding all the extreme rays Ri of a given lattice Q [33] [or
more rigorously of the Voronoi domain V(Q)], which, since
the number of minimal vectors can be quite large (as much as
exponential in d), can be a complicated linear programming
problem. The generic version of this problem is known as a
polyhedral representation conversion problem in polyhedral
geometry computation community, and its complexity is
currently unknown [33,34]. All the forms generated from
a given form Q are called neighbors of Q, and the graph
consisting of perfect forms linked to their neighbors is called
the Voronoi graph of perfect forms in a given dimension d.
Importantly, the graph is connected and starting from any
vertex one can at least in principle reach any other vertex
of the graph [16,17,32].

Thus generated lattices might (and often do) have gen-
erating forms with rather large norms of basis vectors. For
example, we know there is just a single perfect form in
d = 2. A plain random walk would generate forms with entries
growing as a function of the step number. To remedy this
problem we use the fact that for a given lattice its basis can
be transformed to an equivalent basis but with reduced basis
vector norms. Figure 2 illustrates this idea for a square lattice.
The exact transformation which reduces the norms to the
smallest possible value is expensive, and we use a inexact one
known as the LLL reduction after the names of the authors [35]
to produce equivalent representations of lattices with rather
short basis vectors. Technically we apply the LLL reduction
on every newly generated form: This extra step allows us to
generate forms with relatively small entries. Coming back to
d = 2 case we find just three distinct forms (all of which
are isometric). It is worth pointing out that the probability
of generating isometric forms becomes much less relevant
for higher dimensions and completely irrelevant for d � 13.
The LLL reduction is also a subset of isometry testing and
actually removes the most trivial isometries. In order to focus
on higher dimensions we propose to randomize the Voronoi
algorithm, namely, to introduce a randomized subroutine to

a b

FIG. 2. Example of lattice reduction for a square lattice: random
initial basis (a) where basis vectors have large norms. After lattice
reduction (b) one gets “short” basis vectors.

find an extreme ray Ri . In this way we do not have to find all
the extreme rays but just pick one and move in that direction.

We do the following: We slice the cone V(Q) with a plane;
in this way the extreme rays become vertices of a polytope.
We then define a random linear cost function

f (Q′) =
d∑

i,j=1

AijQ
′
ij , (26)

where the Aij are Gaussian random variables, and we
solve the corresponding linear programming problem
maxQ′∈V(Q) f (Q′). Linear functions are necessarily maxi-
mized at the vertices of the polytope, and therefore in this way
we select randomly an extreme ray, which gives a neighbor of
Q. The Gaussian distribution of the Aij induces a distribution
on the frequency each neighbor is visited with which is far from
uniform (a vertex is visited more often if in the polyhedron
it is surrounded by facets with relatively large surface). We
will discuss later our attempts to make more uniform this
distribution.

We have now defined the random generation of a new
neighbor of Q, so in order to define a random walk we need
to define the rules for accepting or rejecting said moves.

IV. MONTE CARLO PROCEDURE AND
THE VORONOI GRAPH

It is clear that if we are only interested in the structure of the
Voronoi graph we should run a random walk as unbiased as we
can. Of course, the most naturally unbiased algorithm would
ideally generate any neighbor with equal probability. However,
this would be equivalent to finding all the neighbors for every
perfect lattice; this problem can be incredibly difficult, and
it has been solved only for d � 8 [24], with a large use of
computer resources, so we do not attempt to solve it here.

A. A warm-up: Simple cases d � 7

As a warm-up we study very low dimensions: For d � 7 the
problem of enumeration of perfect lattices is relatively simple
due to small number of nonisometric perfect forms N :

Dimension 1 2 3 4 5 6 7
N 1 1 1 2 3 7 33

The problem is completely trivial for d � 3 since there
is a single perfect lattice (up to isometries). For d = 4,5
enumeration is trivial: Our code finds the other forms on the
first steps. Less trivial cases are d = 6 and d = 7 with 7 and
33 perfect forms, respectively (the Voronoi graphs are shown
in Fig. 3). It takes about 1000 steps to find all 7 forms in d = 6.
In d = 7 we recover 32 forms after 106 steps.

B. Properties of the d = 8 and d = 9 Voronoi graphs

We compare the random walk on the exact Voronoi graph as
found in Ref. [24] with the numerical results of the previously
described randomized Voronoi algorithm.

The Voronoi graph for d = 8 is quite an interesting object
if seen through the lens of statistical mechanics of random
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(a)

E6

D6

A6
(b)

FIG. 3. (Color online) (a) The Voronoi graph in d = 6; vertex 1
is E6, vertex 3 is D6, vertex 7 is A6. (b) The Voronoi graph in d = 7;
there are just 33 perfect forms. The central point is E7; it is connected
to all the other vertices but A7, which is the rightmost vertex of the
graph.

graphs. We unveil here only a small set of observations. The
number of vertices is the number of perfect forms, namely,
10 916, and we put an edge whenever two forms are the Voronoi
neighbors. The most connected form is the densest packing E8,
which has 10 913 neighbors, and it is interesting to notice that
the distribution of the connectivity of the graph follows quite
closely a power law decay (a so-called scale-free network) for
c � 150 as we see in Fig. 4. Over this two orders of magnitude
range we can fit the connectivity distribution by the law

p(c) ∝ c−(2.5±0.1), (27)

which defines a critical exponent. We will see that this is also
the case in d = 9.

It follows from the large connectivity of E8 that an unbiased
random walk on this graph would visit E8 a large number of
times. By running a completely unbiased random walk on the
exact Voronoi graph in eight dimensions we find that E8 should
be visited about 1.6% of the times (this has to be compared
with an average of 1/10 916 � 0.01%). In our algorithm we
see, however, that this number is much larger: E8 is visited
about 80% of the time. This means that our algorithm is biased
towards lattices with higher connectivity even more than an
unbiased random walk is. This has to do with the large surface
occupied by facets of the Ryshkov polyhedron enclosed by
rays generating E8.

This is a common feature in any dimension: The densest
lattices are reached quite fast by our randomized algorithm
even in the absence of any a priori bias towards them. The
balance between the increase in the attractivity of the best
packers and the increase in the size of the graph allows one
to stumble upon the densest lattice up to d = 12 with a few
hundred trials without having to bias the random walk towards
the densest lattices. Moreover, as a typical scale-free network,
the diameter of the Voronoi graphs will be quite small, scaling
as the logarithm of the number of vertices divided by average
of the logarithm of the connectivity.

We now discuss the results of our randomized algorithm
in d = 8. We find, as said, that 80% of the times is spent
on E8. The remaining 20% of the time is divided among the
remaining lattices. Every time a lattice is visited, an isometry
test is run against the previously visited lattices. If it is new,
it is added to the list; in any case a link between the two

3.5 4.0 4.5 5.0 5.5 6.0 6.5 7.0
0

1

2

3

4

5

6

7

ln c

ln
N

(a)

1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0
0

1

2

3

4

5

6

ln c

ln
N

(b)

FIG. 4. (Color online) (a) The distribution of the connectivity of
the d = 8 Voronoi graph, exact results. (b) The same distribution
sampled with the randomized Voronoi algorithm. N is the number
of perfect lattices with connectivities between c and c + δc, where
δc = 10,1 for the exact and sampled cases. The power-law fit is
described in Eq. (27). In general, an underestimation by the random
walk of the connectivity of the nodes is observed, but a power law
fit still works well, and the power law is compatible with the exact
result (see text).

lattices is added to the list of edges in the graph. In this way,
in 106 runs we generate about 3 × 103 nonisometric perfect
lattices (out of 10 916). This might be taken as a measure of
the importance of isometry as well as of the dominance of E8

in eight dimensions.
In d = 9 we run the randomized Voronoi algorithm for 5 ×

106 steps, and we generate about 3 × 105 nonisometric perfect
forms. We recall that in d = 9 the Voronoi graph is conjectured
to be made of about 2 × 106 inequivalent perfect forms. We
hence find in this case that the importance of isometry is much
reduced. We will see that in higher dimensions the isometry
test becomes irrelevant as randomly generated forms turn out
to be almost always nonisometric.

By looking at the distribution of the local connectivity in
Fig. 5(a) we see that also in this case a power-law distribution
is the best fit over three orders of magnitude:

p(c) ∝ c−2.5±0.1. (28)

We also observe the same slight overestimate of the fraction
of low-connectivity graphs we saw in d = 8. This is due (as in
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FIG. 5. (Color online) The distribution of the connectivity of the
d = 9 (a), d = 10 (b), and d = 11 (c) Voronoi graphs estimated by the
random walk. N (c) is the number of perfect lattices with connectivity
c. The power-law fit is described in Eq. (28).

other dimensions) to the fact that in order to assign a connectiv-
ity c to a graph the random walk has to visit said graph at least
c times. There is no proved estimate of the number of perfect
lattices (size of the Voronoi graph) as a function of dimension.
The sequence looks like 1,1,1,3,7,33,10 916, ∼ 2 × 106, . . .

and suggests a superexponential growth, for example, like
eA d2

. Consequently the number of steps required for an
accurate estimation of connectivity grows rapidly. This means
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FIG. 6. (Color online) (a) Kissing number vs energy (d = 8),
generated set. (b) Kissing number vs energy (d = 8), exact data.
The insets show same plots with kissing numbers Z � 110. In both
cases the best packer and kisser is alone in the upper left of the
figures.

that for dimensions higher than nine a different strategy has to
be used.

However, after observing the similarity between the two
exponents for the connectivity distribution and checking our
random walk results against the exact results in d = 8, it is
nothing but tempting to conjecture that the Voronoi graph
is a scale-free random network in any dimension and that
the exponent of the distribution of the connectivity is about
2.4–2.5. With the above proviso we also checked d = 10,11
and found p(c) ∼ c−2.4 as shown in Fig. 5(b) and 5(c).

One can also plot (see Figs. 6 and 7) the joint distribution
of kissing number and energy observing how the best packers
have largest kissing number, and they are both rare events
with respect to the typical distribution. This phenomenon is
constant across all dimensions.

V. BIASING THE RANDOM WALK
WITH A TEMPERATURE

Following a common trick in statistical mechanics we
introduce a temperature β as a Lagrange multiplier for the
packing fraction. We therefore would like to define a statistical
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FIG. 7. (Color online) Kissing number vs energy (d = 9). The
inset shows detailed plot for kissing numbers Z � 140.

ensemble described by the partition function:

Z =
∑
Q

μ(Q) e−β d2 e(Q),

(29)

e(Q) = − 1

d
ln φ(Q),

where Q is a perfect lattice in d dimensions and μ(Q) is
the measure induced on the space of perfect lattices by the
solution of the linear program (26);7 namely, μ(Q) is the
fraction of times the lattice Q is visited when the random
walk described in the previous section is run. We also defined
energy of a packing e(Q) thus in (10) that it is a quantity of
order 1 for the best packings which have a packing fraction
decreasing exponentially in dimension. Quite conveniently
the best packings translate into packings with lowest energy,
i.e., “ground states.” The normalization for the temperature is
due to the expectation that for the densest lattices ln(φ) ∼ d

(as both upper and lower bounds predict), and we need the
exponent to be the order of the number of degrees of freedom,
namely, ∼ d2.

By lowering the temperature we expect to explore the
regions of the Voronoi graph in which lattices are denser.

VI. RESULTS

Below we present the numerical results generated by
random walks described above and their interpretation.

A. Aims

The generation procedure is inherently stochastic, and we
do not aim at generating complete sets of perfect lattices in a
given dimension. As we already mentioned we have discovered
32 and approximately 3 × 103 forms after 1000 and ∼106

runs in d = 7 and 8, respectively. The number of discovered

7In practice we introduce the temperature on the random walk via
Monte Carlo sampling, but since we cannot ensure that the detailed
balance holds for our randomized Voronoi algorithm, we cannot
ensure that we are quantitatively sampling the partition function
above. For the purpose of this paper this is a minor point.

forms in d = 8 increases with extra runs, although a complete
enumeration would require a huge number of runs.

Such a huge number of perfect lattices suggests a statistical
approach so that properties of typical or even dense lattices
can be extracted from a subset of the complete set. Thus our
goal is rather to generate sufficiently large, representative sets
of perfect forms in a given dimension which would allow us to
understand typical properties of perfect lattices and spot any
universal pattern behind.

The fact that we are dealing with relatively large sets of
forms together with the stochastic nature of the generating
procedure allows to introduce empirical distributions of vari-
ous characteristics of lattices. We are going to focus mainly on
two quantities: energy, which was defined above, and kissing
number. Both quantities are of interest with respect to the
best packings. We will analyze their statistical properties, in
particular, their distributions and moments on the ensemble
generated by the random walk.

We have generated random walks (both simple and biased)
in dimensions from 8 to 19. Complexity of computation
gradually increases with dimension as does typical running
time to generate sufficiently representative set of lattices.
Running times vary from about an hour in d = 8,9 to 5–7 days
in d = 19 to generate 5 × 104 lattices. Higher dimensions, i.e.,
d � 20 are accessible, the difficulties encountered being rather
of a technical than a conceptual nature.

B. Random walk at infinite temperature

We have first performed runs in different dimensions at
infinite temperature which correspond to plain random walks:
Departing from an initial lattice one computes a random
neighbor and hops there. It is natural to think that in this way
one generates typical perfect lattices.8 The walk terminates
after a finite number of steps N have been made. The averages
〈. . . 〉 are simple summations normalized by N .

Typically Ad was used as a starting point of a random walk
for d � 12 and Dd was used for d � 16 since here the energy
of Ad becomes too high. In even higher dimensions (d > 16)
the energy of Dd itself becomes too high for Dd to be a good
starting point, and we used different initial lattices with better
packing fractions which we generated by chain runs, that is,
first running a random walk starting at Dd and then picking
a suitably dense lattice as a starting point for a new random
walk.

As already mentioned our randomized code is biased
towards denser lattices, and it does not sample all lattices
uniformly like a complete enumeration would do (this effect is
on top of the bias given by the larger connectivity of the densest
lattices). It is instructive to compare our results to exact data.
Unfortunately the latter are known only for d < 9,9 and there
are too few perfect lattices for our approach to be beneficial for
d < 8. So we start by comparing energy and kissing number

8Remember that there is already a bias built in into generation of
neighbors.

9Enumeration in d = 9 is in progress; see Ref. [26]. Partial results
are available, but due to nature of the enumeration procedure they are
biased and cannot be directly compared to our data.
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FIG. 8. (Color online) Comparison of exact and empirical dis-
tributions generated by the randomized Voronoi algorithm. (a)
Distribution of energies e from the randomized Voronoi algorithm
with isometry testing (blue/dashed) and exact distribution (red/solid)
for d = 8. (b) Same comparison of distributions of kissing numbers
from the randomized Voronoi algorithm with isometry testing (blue)
and exact distribution (red) for d = 8.

distributions as sampled by our code and their exact values in
d = 8 shown in Fig. 8. We see a reasonable agreement between
the exact data and the ones generated by the randomized
algorithm. This allows us to assume that data generated by
the randomized Voronoi algorithm are representative and
unbiased, and we use data generated in higher dimensions
where no exact data are available. The discrepancies present
can be attributed to fluctuations associated to stochastic nature
of our algorithm. This is especially clear for the kissing number
which is integer by definition.

A rough measure of representativity of a sample generated
by a random walk is whether it visits “dense” lattices with high
kissing numbers, or even better, the densest (known) lattice in
that dimension. For low dimensions, d < 13, just Nd = 104

runs were enough to satisfy this requirement. Starting with
d = 13 one has to make more runs (although in d = 13 a
random walk of 104 steps comes quite close to the best packing:
e = 0.28 and ebest = 0.27). The required number of steps Nd

is growing fast: N13 ∼ 105, while N14 > 105. The situation
quickly deteriorates in higher dimensions: While in d = 8 the
random walk is hitting E8 about 80% of the time, the number
drops down to < 1% of hits for �10 (the best known lattice
packing in d = 10) and goes further down for higher d. Table I

TABLE I. Frequencies with which a best known packing is visited
by a random walk as a function of dimension.

Dimension 8 9 10 11 12
Frequency 0.835 0.341 0.096 0.0156 0.00191

gives frequencies for a random walk to visit the best packers in
d = 8 − 12. The data seem to suggest a faster than exponential
decay, a simple fit giving ∼e−7.0 x1.92

.
Table II gives a summary on average energies, their standard

deviations σe, best found, worst found, and best known lattice
for d = 8–19 (N is number of steps in random walk): The
standard deviation clearly decreases with dimensions; the
increase for d = 17–19 indicates that more runs are required
to get a representative set of lattices. Indeed, comparing the
behavior of the deviation with number of runs for d = 17 (See
Table III), one sees the decrease as the number of runs increases
(the same behavior is present in d = 18,19): The decrease of
standard deviation suggests that distribution of energies Pd (e)
is concentrating around the mean value and becomes peaked
around its mean value for large d:

Pd→∞(e) ∼ δ(e − 〈 e〉d→∞). (30)

Figure 10 shows behavior of average energy (no checks for
isometry) with dimension. Large deviations in low dimensions
up to d < 12, represented by error bars on the figure, are related
to the fact that the distribution of energies in these dimensions
is highly irregular if no check for isometry is performed during
the random walk (see Fig. 9, case of d = 8 for an illustration).

An important issue is equivalence or isometry of generated
lattices. As we have discussed above a single lattice admits
many equivalent representations in terms of quadratic forms.
One might worry if random walk is generating many or
few equivalent lattices. The above results were generated
neglecting isometry partially: Only the LLL reduction was
performed on newly generated forms. Based on d = 7,8
results we know that isometry is definitely important in low
dimensions. However, it is relevant only for low dimensions,

TABLE II. Average energies of perfect lattices for d = 8, . . . ,19.
Sample sizes N are 106 for d = 8–12, 105 for d = 13–16, 2 × 105

for d = 17,18, and 1.5 × 105 for d = 19. The observed increase of
standard deviation σe for d > 17 indicates that sample size was not
big enough. Increasing the sample size decreases the deviation.

Best Worst Best
Dim. 〈e〉 σe found found known

8 0.180572 0.021502 0.171465 0.308792 0.171465
9 0.23352 0.01823 0.21396 0.34188 0.21396
10 0.26828 0.01422 0.23857 0.37285 0.23857
11 0.29347 0.01228 0.25511 0.40193 0.25511
12 0.31505 0.00796 0.25055 0.38024 0.25041
13 0.33106 0.00328 0.27179 0.40709 0.27178
14 0.34277 0.00236 0.31862 0.43265 0.27386
15 0.35405 0.00273 0.33522 0.45703 0.27218
16 0.36507 0.00197 0.34235 0.48031 0.26370
17 0.37205 0.00280 0.33949 0.50258 0.27833
18 0.38322 0.00235 0.37805 0.39238 0.28489
19 0.39000 0.00391 0.37909 0.40146 0.28903
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TABLE III. Standard deviation of energy in d = 17 as a function
of number of runs N .

N 104 105 2 × 105

Deviation 0.0064997 0.0030565 0.0028058

our data suggest d < 13, where the number of perfect lattices
is relatively small and random walks of moderate size
contain many isometric copies of the same lattice. For higher
dimensions, d � 13, where the number of perfect lattices is
huge, the chance of hitting an isometric lattice is vanishingly
small except for the densest lattices, which have a larger
isometry family. This is illustrated by Fig. 9, which compares
probability distributions of energies for d = 8 and 12. It is
worth stressing that this statement holds true only if one
samples a relatively small subset of all perfect lattices. Once
sample size is comparable to the size of the full set of perfect
forms, isometry becomes important in any dimension. This fact
can in principle be used to define a formal criterion whether
one has generated a representative sample. Including isometry
test in generation procedure is easy: Every newly generated
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FIG. 9. (Color online) (a) Distribution of energies e with isometry
test (blue/dashed) and without (red/solid) the test in d = 8. Isometry
is very important and the two distributions are completely different:
Without isometry check distribution concentrates around the energy
of E8. (b) Distribution of energies e with (blue/dashed) and without
(red/solid) isometry test in d = 12. Isometry is no longer important,
and the distributions are almost the same, except the low energy tail,
where one still sees small spikes.
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FIG. 10. (Color online) Average energy 〈e〉 = − 1
d
〈ln ϕ〉 of a

random walk as a function of dimension (d = 8 − 19) (black dots).
Error bars correspond to standard deviation of energy. The smooth
curve (blue/top) is a guide to the eye. The red curve (bottom) is the
energy of the best known lattice packings.

form is checked for isometry against all previously generated
forms.10

The effect of isometry on energy average 〈 e〉 is to
increase values for low dimensions, which are dominated
by dense lattices if no isometry checks are performed. The
higher-dimensional data, d > 12, are left intact since isometry
becomes completely irrelevant. We reproduce in Table IV
the 〈 e〉 curves for data with isometry checks. We see the
same trend of decreasing standard deviation with increase of
dimension as in the case of no isometry testing.

In what follows we use a mixed set of data: Samples with
isometry checks for d < 13 and samples with no isometry
testing applied for d > 11. We do so to remove features
specific to low dimensions d < 13 and reveal the generic
features common with dimensions d > 11.

Let us concentrate on two possible scenarios, the simplest
cases where to locate our typical lattices. On one hand we
can for example look at the energies of Ad , Dd families of
lattices [7]:

e(Ad ) = 1

2
ln

2

π
+ ln(1 + d)

2d
+ 1

d
ln �

(
1 + d

2

)
(31)

� ln(d)/2 + O(1), (32)

e(Dd ) = −1

2
ln π +

(
1

2
+ 1

d

)
ln 2 + 1

d
ln �

(
1 + d

2

)
� ln(d)/2 + O(1). (33)

Both Ad and Dd have asymptotically equal energies for
d → ∞: ∼ ln d/2, which means the subexponential packing
fraction.

The Minkosky and the Kabatiansky-Levenstein bounds tell
us that there are lattices with only exponentially small packing
fraction. Asymptotically in large dimensions, upper and lower

10See Appendix B for more details.
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TABLE IV. Comparison of energy averages 〈 e〉 without and with isometry test. Additionally exact values of average and standard deviation
are given for d = 8.

d 〈e〉 Std(e) 〈e〉i Stdi(e) 〈e〉ex Stdex(e)

8 0.180571 0.021502 0.258296 0.0050364 0.258845 0.003593
9 0.233521 0.018231 0.266341 0.005073 0.259662a 0.006006a

10 0.268281 0.014227 0.281615 0.005484 – –
11 0.293471 0.012288 0.299142 0.005262 – –
12 0.31506 0.007967 – – – –

aValues for d = 9 are extracted from partial enumeration [26].

bounds give

eM = ln(2) + O[ln(d)/d], (34)

eKL = 0.413 . . . , (35)

and it is worth remembering the Torquato-Stillinger conjec-
tured bound which should replace Minkoswky’s under an
appropriate hypothesis on high-dimensional lattices [6,8]:

eTS = 0.539 + O[ln(d)/d]. (36)

Random walks in high dimensions are sampling lattices
with energy close to its mean value 〈e〉. We try two fits for
this function of d, one with the leading order term constant,
hypothesizing a “best packer” behavior for typical lattices in
high dimensions and the other with leading ln(d).11 For the
first we obtain

〈e〉 = (0.58 ± 0.04) − ln(d)

d
(0.9 ± 1.0) − (0.8 ± 0.6)d−1.

(37)

The constant term is suggestively close to the Torquato-
Stillinger bound, and, within the associated error, it is below the
Minkowsky bound ln(2) = 0.69. However, an equally good fit
can be obtained by assuming that the leading term is growing
logarithmically:

〈e〉= (0.066 ± 0.04) ln(d) + (0.27 ± 0.04) − (1.4 ± 0.2)d−1,

(38)

although the coefficient of the logarithm is well below the
value 0.5 of the Ad and Dd families (typical lattices are much
denser than these examples). Both fits are equally good; as can
be seen from Fig. 11, the resolution of the two can occur only
for d � 40.

The main effect of isometry on distribution of energies
P(e) is to suppress low energy spikes (see Fig. 9) associated
with dense lattices which are relatively often visited in these
dimensions by a random walk, and shift the weight to the
universal bell-like feature which dominates the distribution
Pd (e) in high dimensions as presented in Fig. 12. As for the
distribution of kissing numbers Z switching on the isometry
testing kills the large-Z tail of the distribution and concentrates
the weight around small values of Z of order d(d + 1) (recall
that this is the lower bound on kissing number for perfect

11We use eight points between d = 12 and 19; no sensible differences
are obtained including less points in this range.

lattices). These facts indicate that in high dimensions typical
perfect lattices have relatively high energy (but still lower than
Ad and Dd ) and small kissing numbers, of order d(d + 1).
If we define rescaled variable x = (e − 〈 e〉d )/σe we expect
the probability distribution functions of x to collapse on some
master curve with mild dependence on d:

Pd (x) ∝ Pd

(
e − 〈 e〉

σe

)
.

Indeed, after rescaling a master curve is emerging as shown
in Fig. 13 though the collapse is not perfect: The case d = 12
is special with a quite different shape as compared to other
dimensions as highlighted in Fig. 13. All the distributions are
skewed to the left, i.e., towards denser lattices, although this
is hard to spot in Fig. 13 while this is clearly so for d =
12. These features become more pronounced if one studies
gd (x) = − ln Pd (x), shown in Fig. 14: The generic skewness
to the left (towards the denser lattices) becomes clear. For all
dimensions studied except d = 12 the central part of gd (x) can
be well fitted with a Gaussian

− lnPd (x ∼ 0) ∼ 0.85 + x2

1.8
;
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FIG. 11. (Color online) Average energy 〈e〉 = − 1
d
〈ln φ〉 of a

random walk as a function of dimension (d = 8 − 19) (red dots)
compared to energy of Ad and Dd lattices [yellow/top solid and
blue/next to the top solid continuous lines; see Eq. (31)]. The
dashed curves are the leading asymptotics of the Minkowksy (M,
top), Torquato-Stillinger (TS, middle) and Kabatiansky-Levenstein
(KL, bottom) bounds. The Minkowksy and Torquato-Stillinger are
upper bounds, while the Kabatiansky-Levenstein bound is a lower
bound on the energy of the best packing. The green/lowest solid and
purple/dot-dashed lines are the two fits (37) and (38).
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FIG. 12. (Color online) Probability distributions Pd of energy
e for d = 8–10,12–19; color/peak goes from red/left (d = 8) to
violet/right (d = 19). As dimension increases averages increase and
peaks shift to the right.

the value of the coefficient of x2 being slightly larger than
(but still consistent with) 1/2 reflects the skewness of the
distribution. The skewness appears only for larger values of x

which are noisy because we do not have enough statistics to
probe them accurately.

We now study the statistics of kissing number. For a typical
perfect lattice the kissing number is of order d2, i.e., like for Ad

or Dd , and of the same order of magnitude as the lower bound
d(d + 1). To highlight this point we normalized 〈z〉 by d(d +
1), the minimal possible kissing number which gave a curve
shown in Fig. 16. Thus a typical perfect lattice is similar to Ad

or Dd in kissing numbers but has a lower energy or higher pack-
ing fraction. As we see from Figs. 15 and 16 the kissing number
fluctuates much stronger than energy, and the only conclusion
we can make from the plots is that the distributions concentrate
around their means just like it happens with energy. Combining
this observation together with behavior of average energy we
see that in high dimensions the Voronoi graph is dominated by
lattices which have properties similar to Ad and Dd .

C. Random walk with β > 0

As the dimension of space is increased beyond d = 13 we
are no longer able to recover the densest known lattice packing
with a plain random walk, at least for the number of steps we
have tried (from a few hundred thousands to a few millions,
depending on dimension). Given a fast growth of the number

FIG. 13. (Color online) (a) Probability distributions P(x) vs x

for d = 8–10,13–17; color goes from red for d = 8 to magenta for
d = 19. We have used exact distribution for d = 8 for convenience
and skipped d = 12. (b) Comparison of distributions Pd (x) for d =
10,12,13. The case d = 12 (red, the highest peaked curve) is very
distinct from neighboring dimensions shown here for comparison.
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FIG. 14. (Color online) Gaussian fit (red dashed curve) to the cen-
tral part of the probability distributions Pd (x) for d = 8–11,13–19.

of perfect forms with dimension, one would likely have to
sample random walks of size comparable to the number of
perfect forms to see the densest lattices, something that is out
of reach already for moderate dimensions d ∼ 13–14.

We therefore introduced a procedure which biases the walk
towards denser lattices. We employed the standard Metropolis-
like rule with fictitious temperature β described in Sec. V
which favors denser lattices. Namely, we generate a neighbor
Q′ of the lattice Q and compute its packing fraction φ(Q′)
and from this its energy e(Q′). If e(Q′) � e(Q), we accept
the move, and if e(Q′) > e(Q), we accept the move only with
probability exp[−β(e(Q′) − e(Q)]).

This allowed us to recover consistently the densest (known)
lattice packings up to d = 17 and to get very close to the
best known lattices in d = 18,19, where we start seeing some
complex landscape behavior. We managed to get the best
known packing in these dimensions too but in a much less
consistent fashion.

Again we are looking at distributions and moments, aver-
age, and standard deviation of energy and kissing number. We
saw for a plain random walk which corresponds to β = 0 that
E(d) = 〈 e〉 is a smooth curve as a function of dimension. As
the temperature is lowered Eβ (d) curves become more singular
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FIG. 15. (Color online) Average kissing number for d =
8–10,12–19 (black dots). The red (top) curve is the best known kissing
numbers in corresponding dimensions.

041117-12



RANDOM PERFECT LATTICES AND THE SPHERE . . . PHYSICAL REVIEW E 86, 041117 (2012)

8 10 12 14 16 18
1.0

1.1

1.2

1.3

1.4

1.5

d

z
d
d

1

FIG. 16. (Color online) Average kissing number normalized by
d(d + 1) for d = 8–19. Error bars correspond to first and third
quartiles (these are zero for d = 18,19). Despite strong fluctuations
the value of normalized kissing numbers is of order 1.

reflecting the peculiarities of any given dimension (Fig. 17): It
is well known that the nature of dense sphere packings varies
greatly as a function of dimension, one of the factors that makes
the problem of sphere packing so complicated. Up to d = 11
changing the temperature immediately affects the range of
energies probed by the random walk: The lower the temper-
ature the lower the energy and E(β) = 〈 e〉β is essentially an
exponentially decaying function of β (Fig. 18). Starting from
d = 12 and up the pattern of E(β) changes qualitatively: A
plateau emerges at small β where the probed energy is almost
insensitive to variations of temperature and is roughly equal to
the energy of β = 0 random walk (see Fig. 19). As the inverse
temperature β is increased there is a crossover to a lower value
of energy. The value E(β) for large β is approximately equal to
the ground state energy, again almost insensitive to variation of
β. Furthermore, sufficiently close to the crossover we observe a
strong run to run fluctuations of values of 〈 e〉β , a phenomenon
which is reminiscent of a glassy free energy landscape [28].
Such behavior suggests a phase transition as a function of β, as
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FIG. 17. (Color online) (Top) Average energy 〈e〉 = − 1
d
〈ln φ〉 of

a biased random walk as a function of dimension d = 8–17: inverse
temperature β goes from 0 (red/higher curves) to 5 (violet/lower
curves); (red) asterisks mark the best known lattice packings. As the
temperature is decreased, details of the scenarios in finite dimensions
become relevant.
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FIG. 18. (Color online) Average energy 〈e〉 = − 1
d
〈ln φ〉 of a

biased random walk as a function of temperature for dimensions
d = 8–11 (colors go from red to green, bottom curve is d = 8,
top curve is d = 11); dashed lines are the best known energies in
corresponding dimensions.

d → ∞: As the temperature is lowered one leaves a universal
phase dominated by typical perfect lattices and enters a phase
where lattices with low energies dominate the biased random
walks. To test this assumption we define βc(d) as a solution
to Ed (βc) = Ec(d) = [Ed (0) + Ed (∞)]/2. As usual Ed (∞)
should read as Ed (β1) for some sufficiently large β1. The
crossover width is defined as β<(d) − β>(d) where

�d = Ed (0) − Ed (∞)

2
,

E<(d) = Ed (β<) = Ed (∞) + 3

4
�d = 3

4
Ed (0) − 1

4
Ed (∞),

E>(d) = Ed (β>) = Ed (∞) + 1

4
�d = 1

4
Ed (0) − 3

4
Ed (∞).

The choice of factors 1/4 and 3/4 is not important, and
they can be replaced by other number. If there is indeed a
phase transition, then W = (β> − β<)/βc should converge to
a constant value as d → ∞. Figure 20 shows dependence
of W on dimension. One observes, indeed, a tendency to
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FIG. 19. (Color online) Average energy 〈e〉 = − 1
d
〈ln ϕ〉 of a

biased random walk as a function of temperature for dimensions
d = 12–17 (colors go from yellow to red, bottom curve is d = 12,
top curve is d = 17).
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FIG. 20. (Color online) W = (E> − E<)/Ec as function of di-
mension d = 8–18.

convergence to a constant value of O(1) (although with notice-
able oscillations around it). We attribute the increase for d >

17 to the glassy nature of the energy landscape of perfect lat-
tices: These are exactly the dimension where the simple Monte
Carlo approach starts experiencing problems finding the best
packer. The d = 18 is intermediate between d < 18 and 19.

The situation seems to change qualitatively in d = 18 and
19: For mildly low temperature one has to increase drastically
running time (as compared to d < 18) in order to reach the
best known packings. For very low temperatures, β ∼ 3–5 for
d = 18,19, the Monte Carlo routine gets stuck around some
relatively dense lattices and is never able to recover the densest
lattice, or even approach it within the accuracy achieved in
smaller dimensions. Typical energies reached by Monte Carlo
are of order e ∼ 0.35–0.36 for β � 5. This is to be compared
to the ground state e = 0.29 corresponding to lattice �19. It is
then crucial to study higher dimensions in order to understand
whether this behavior is a peculiarity of d = 18,19 or if it is
a generic trend establishing in high dimensions. However, we
are unfortunately currently unable to investigate dimensions
higher than 19, but we hope to be able to do so in the future.

VII. DIAMETER OF THE VORONOI GRAPH

An interesting question is the number of perfect forms as
a function of dimension d. The exact numbers for d < 9
and the estimate in d = 9 suggest a very steep, perhaps
superexponential law which would make the full enumeration
impossible beyond d ∼ 11. We conjecture that the number
of perfect lattices should grow as Nd ∼ exp(Ad2) for an
appropriate constant A for large d. This conjecture is natural
in the framework of statistical mechanics as the number of
degrees of freedom is O(d2), and so should be the “entropy”
of the system.

Looking at the distribution of the connectivities we can
moreover conjecture that the Voronoi graph is a scale-free
random graph, at least for a range of connectivities and for
large d. For scale-free networks an estimate of number of
vertices as a function of connectivities c of the vertices of the
graph is [36]

lnNd

〈ln c〉 � Diam(Gd ). (39)

Here Diam(Gd ) is diameter of the graph: the longest among
the shortest paths between any pair of vertices.

We have estimated the diameter of the Voronoi graph Gd

using the information on the graph provided by the random
walk. This contains partial information and serves just as
an order of magnitude consideration, so we must consider
the dependence on the size of the sample. This computation
becomes increasingly harder with growing d and, we have
restricted this study to d � 11.

If the distribution of the connectivity is indeed scale free
with fixed exponent 2.6, we find that

〈ln c〉 = 1

2.6 − 1
= 0.62. (40)

We find a reasonable agreement with numerical estimates
of 〈ln c〉: 1.274, 0.954, 0.771, 0.7 for d = 8,9,10,11, re-
spectively. The excess of values of 〈ln c〉d with respect to
conjectured value 0.62 is due to the fact that we sample many
well-connected, dense lattices while not visiting many lattices
with low connectivity. Therefore the logarithm of the size of
the graph and the diameter should be proportional as

lnNd � 0.62 Diam(Gd ). (41)

We can then test if our hypotheses on the connectivity, the
number of forms, and size of the graph fit well together. We
find graph diameters 3, 6, 13, 32, and 131 for d = 7,8,9,10,11,
respectively. Remark that the exact diameter is 3 and 4 in d = 7
and 8, respectively. The growth is clearly faster than linear
as shown in Fig. 21 and is consistent with the hypothesis of
scale-free Voronoi graph. The quadratic fit for Diam(Gd ) based
on data for d = 7 − 10 reads as

Diam(Gd ) = 217.6 − 58.6 d + 4 d2.

However, with the actual data we cannot find the precise
scaling. Although the exponential fit looks more accurate
than the quadratic in Fig. 21, we know that there are many
forms in d = 11 which were not visited by a random walk.
Their addition to the graph would reduce the diameter and
perhaps smear the seemingly exponential growth. More data
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FIG. 21. (Color online) (Red) asterisks: estimate of diameter
of the Voronoi graph as function of dimension. Blue/dashed and
brown/solid curves are quadratic and exponential fits, respectively,
provided here as guides for the eye.
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Input: Voronoi domain V(Q)
Pick an inequality at random
Saturate the inequality, i.e. replace it with equality
Make a random Gaussian cost function f as before
Solve linear program to get an extreme ray

Output: Random extreme ray R

FIG. 22. Algorithm for uniformized random extreme ray
generation.

are required to resolve this issue, and we leave the resolution
of this problem for future work.

VIII. TRYING TO UNIFORMIZE THE CHOICE
OF A NEIGHBOR

As we have already mentioned above, the randomization of
the Voronoi algorithm is not unique: Different cost functions
(26) produce slightly different results. We have considered
a number of functions, targeting uniformization, i.e., trying
to make sampling of rays or neighbors more uniform, more
like it is for full enumeration. In all cases we observed a bias
towards denser forms with higher kissing numbers, which we
try to reduce. In particular we constructed a “uniformized”
cost function as shown in Fig. 22 [recall that we have a n-
dimensional polyhedron, n = d(d + 1)/2 here, defined by a
set of inequalities, the number of inequalities N � n]. This
construction is inspired by the remark that a purely random
cost function generates rays weighted with areas of facets
adjacent to that ray, and it also favors forms that have higher
connectivity, i.e., number of neighbors. This is an advantage if
one is interested in denser forms. However, if one is studying
properties of the Voronoi graph it might be preferable to make
the outcome of neighbor generation more uniform.

The above construction tries to give facets a more uniform
weights. Comparison of numerical results for random and
uniform cost functions is presented in Fig. 23, which shows
distributions of the kissing number and energy in d = 8. There
is no significant difference of distributions between the random
and uniformized cost function. However, the uniformized cost
function is advantageous over the random function if one is
interested in the properties of the Voronoi graph: Typically it
yields more nonisometric forms than the pure random function
for equal number of runs. We have performed this comparison
for d = 8–12, and results are summarized in the table below
(where the Fraction column is a ratio Nu/Nr of number of
forms found Nr and Nu with random and uniformized cost
functions, respectively):

Dim. Steps Random Uniformized Fraction

8 2 × 106 1793 2955 1.648
8 4 × 106 2529 3963 1.567
10 106 331 065 434 317 1.312
11 106 744 282 825 695 1.109

The difference between the two cost functions is decreasing
rapidly as dimensionality is increased. We believe that these
strategies are better suited for lower dimensions d � 12 where
isometry is important.
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FIG. 23. (a) Distribution of energies. (b) Distributions of kissing
numbers. Blue(dashed) and red(solid) curves are generated by random
walks in d = 8 with random and uniformized cost functions.

IX. EXTENSION TO PERIODIC SETS

Before concluding let us describe a possible extension of
our approach to lattices with many particles per unit cell,
which we refer to as periodic sets throughout this section.
Such an extension is possible but has a number of limitations
which make the problem more difficult than the Bravais lattice
version.

The generalization of the Voronoi algorithm to periodic
sets was introduced by Schürmann [17]. An m-periodic set is
defined by a quadratic form which describes how a unit cell is
translated in space and a set of m real vectors (translational
part) that defines the positions of m particles inside the cell. It is
then possible to extend the Voronoi theory presented in Sec. II
and introduce m-perfect and m-eutactic lattices; m-extreme
lattices are defined as local maxima of a packing fraction of
m-periodic sets, just like in the Bravais case. There is as well
an analog of the Ryshkov polyhedron.

It is at this point that a crucial difference appears which
makes the problem more complicated than the lattice one. In
general not all extreme lattices are m-perfect and m-eutactic:
There exist lattices which are extreme, but not perfect. An
example is provided by fluid diamond packings [1] where
a fraction of spheres can be moved around freely without
changing the packing fraction. Furthermore the Voronoi graph
no longer exists: The method provides only a local direction in
which packing fraction is increasing. Potentially this allows
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one to design an algorithm that starts with a periodic set
and ends up at an m-perfect lattice [17]. On the other hand,
the extension to many particles in a unit cell highlights the
importance of perfect, strongly eutactic lattices since one can
prove that they are extreme [29], that is, they are extreme
among lattices with any number of particles per unit cell.

These limitations are lifted if one fixes translational part
and replaces real vectors in the definition of a periodic set
by their rational approximations [17]. Under this assumption,
all the features of the Voronoi theory are recovered. Yet the
complexity is increasing too: The computation of the shortest
vectors of such periodic set is more involved.

X. COMPARISON WITH OTHER ALGORITHMS FOR
GENERATION OF DENSE PACKINGS

It is instructive to compare the performance and the range
of applicability of our method to other algorithms devised to
generate dense packings [37–40]. The main difference with
respect to these other approaches is that they perform searches
and construct dense packings in an iterative manner from
some initial guess imposing the no overlap constraints. We
sample lattices from a large but finite set of perfect lattices
which contains the densest lattice by construction and optimize
the sampling procedure, while consequtive lattices are not
necessarily close or similar or denser a priori. The advantage
of the algorithms [39,40] is their universality, as they can be
adapted to problems of packing other convex nonspherical
bodies, like tetrahedra, while the Voronoi theory is hardly if at
all extendable to cover these cases. On the other hand we expect
to be able to study higher dimensions than other methods could
probably handle.12

XI. CONCLUSIONS AND FURTHER DIRECTIONS

We have suggested a new approach to the lattice sphere
packing problem based on randomization of the exact Voronoi
algorithm. Previous works used complete enumeration that
becomes computationally unfeasible beyond d ∼ 10–11 (see,
however, Refs. [33,41–43]). We have developed an implemen-
tation of our algorithm that allowed us to study dimensions
from 8 to 19 and we foresee its application for studying perfect
lattices up to d = 40 at least (beyond that, technical problems
with the implementation of the algorithm become conceptual
problems).

We have studied statistical properties of the sets of perfect
lattices generated by our algorithm, both typical and extreme
values focusing on two quantities: energy, which we define as
proportional to the logarithm of the packing fraction, and the
kissing number. For all dimensions except d = 19 we were
able to retrieve the best known packings starting from Ad or
Dd lattices either using a simple random walk for d � 12 or
biasing the random walk with temperature for d > 12. In d =
19 we had to restart the walk many times in order to hit the best
packer: The random walk was always getting stuck in some

12The algorithm of Ref. [39] reproduced the densest packings up to
d = 14 with very small running time (6s for d = 14). It would be
interesting to understand how its performance scales with dimension.

TABLE V. Fraction of eutactic and strongly eutactic discovered
by random walks in d = 8–19.

Dimension Fraction of eutactic lattices

8 0.2258
9 0.2351
10 0.3531
11 0.3246
12 0.1337
13 5.110e-03
14 3.000e-04
15 1.300e-04
16 8.000e-05
17 6.000e-05
18 1.250e-05
19 1.500e-05

higher-energy lattice, a phenomenon which is reminiscent of
a glassy free energy landscape. The change of the average
energy with temperature suggests the existence of a sharp
phase transition as d → ∞, although we cannot make a further
argument on this topic, due to the large dimension-dependent
fluctuations as the energy is lowered. We do not exclude that
we will be able to say more on this topic in future work.

We also found that the typical values tend to have much
smoother behavior, and this allowed us to propose two possible
scenarios for the large d behavior of the packing fraction of the
typical perfect lattices. In one case we obtain an exponential
decay of the packing fraction whose leading order improves
upon the Minkowsky bound

φ ∼ 2−(0.84±0.06)d , (42)

while in the second case we have a faster, factorial-like decay

φ ∼ d−(0.06±0.04)d , (43)

however, with an unnaturally small exponent. A separation
of these two behaviors would need investigation of lattices in
dimensions 40 and higher.

Higher dimensions are also accessible and will require
mostly technical rather than conceptual modifications in the
code, at least for d � 40. Getting beyond d = 24 is important
since dimensions below 24 are dominated by the Leech lattice
�24, and all the densest lattices in these cases are cross sections
of �24.

Other possible applications of our work include a test of
the “decorrelation principle” in Ref. [6], by studying the two-
particle correlation functions of typical perfect lattices, and
a systematic study of the perfect and eutactic lattices, which
are the true local minima of the energy for the purpose of
unveiling a glassy structure of the energy landscape. Checking
for eutaxy is quite straightforward, after a set of perfect lattices
has been generated, but we found that this requires a much
larger statistics than that used in our paper since the rejection
rate is quite large: As the dimension of space is increased the
fraction of (at least) eutactic lattices discovered by a plain
random walk drops rapidly as illustrated in Table V. If one
biases the walk with temperature the numbers increase, but
they are still low, and we have not tested whether the increase
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is due to different lattices or isometric copies of few lattices.
Therefore we leave this for future work.

Finally, the randomization procedure we have introduced
could also be applied to other optimization problems like the
lattice covering problem [17], where one searches for the most
economical way of covering a space with spheres of equal size.
Another possible activity along the same direction is to adapt
our randomization procedure to the algorithm generating all
eutactic lattices in a given dimension [30].

As we have indicated, finding extreme rays of the Voronoi
domain V is a particular case of a general polyhedral represen-
tation conversion problem [34]. This is an important problem
in combinatorial optimization and computational geometry.
Although efficient algorithms exist for certain classes of poly-
hedra, its complexity in general is unknown [33,34], but all ex-
isting full conversion algorithms are exponential in the number
of constraints that define a polyhedron [34]. In this wider con-
text our randomization approach offers a possible work-around
for optimization problems which require a solution of the
representation conversion problem in order to find an optimum.
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APPENDIX A: SOME TECHNICAL DETAILS

The two main technical ingredients of the Voronoi algo-
rithm are generation of a random extreme ray R of the Voronoi
domain V(Q) and finding a neighbor Q′ of a given lattice Q

provided an extreme ray R.
Computing a random extreme ray has the same complexity

as generating the Voronoi domain V(Q) and solving a linear
program. We need to know shortest vectors of Q in order to
build V(Q). Computing the shortest vectors of a lattice is an
exponentially hard problem in d. However, good algorithms
exist allowing computation to be carried out in reasonable
time at least up to d ∼ 40 [45,46]. The other source of
complexity is the size of linear program, which is defined by a
kissing number of Q (and hence scales exponentially in d for
dense packings) and is limited by the ability of linear program
(LP) solvers to cope with huge linear programs: Size of the LP
becomes of order 1010 for the densest known lattices in d � 40.
Based on this observation we expect our method to work up
to d ∼ 40, at least in theory. It is also worth pointing out that
it is straightforward to check if a given ray R is extreme [34].

Finding a neighbor Q′ = Q + α R with α ∈ Q proved to
be a harder problem computationally, and it is this part of
the problem that limited our data to d < 20. The value of α is
rational [17,32], so that we can always choose Q′ to be integral,
and all perfect lattices then have integral representation. We use
a modified binary search algorithm as defined by Schürmann
[17] to compute neighbors of a lattice (Sd

>0 is set of all lattices)
presented in Fig. 24. The idea behind this construction is

Input: perfect form Q, extreme ray R
whileQ + u R Sd

>0 and λ(Q + u R) = λ(Q) do
ifQ + u R Sd

>0 and λ(Q + u R) = λ(Q) then
u ← (l + u)/2

else
(l, u) ← (u, 2 u)

end if
end while
whileMin(Q + l R) ⊂ Min(Q) do

g ← (u + l)/2
if λ(Q + g R) ≥ λ(Q) then

l ← g
else

u ← min{(λ(Q) − Q[v])/R[v]|v ∈ Min(Q +
g R),R[v] < 0} ∪ {g}
end if

end while
Output: α ← l

FIG. 24. Modified binary search for neighbor Q′ of a lattice Q

given an extreme ray R.

very simple: The neighbor of Q is Q′ = Q + α R with the
smallest positive rational α such that λ(Q) = λ(Q + α R) and
Min(Q + α R) �⊆ Min(Q).13 In the first part of the algorithm
presented in Fig. 24 upper and lower boundaries for α are
defined. The second part of the algorithm is a modified binary
search for value of α. The modification, an extra conditional in
the assignment of u, is necessary to make the algorithm con-
verge in a finite number of steps to an exact rational value of α.

APPENDIX B: RANDOM WALKS AND ISOMETRY CHECK

We have used two different approaches to perform checks
for isometry of lattices. In the first approach we split the
data generation into two steps: (1) Generate a random walk
in space of lattices with no check for isometry and (2) run
an isometry test on the trajectory of the random walk and
generate an approximate Voronoi graph. After the first step
one obtains a full trajectory of a random walk as list of lattices.
The second step generates the graph by eliminating isometric
copies of lattices by gluing together isometric elements of the
list. This induces a relation of the neighborhood in the list and
transforms the list into a graph.

The second possibility is to perform an isometry check
and graph construction on the fly (P ∼ Q denotes isometric
equivalence, and V and E are sets of vertices and edges of the
graph G, respectively) as shown in Fig. 25.

Both algorithms terminate after a predefined number of
steps has been done.

An algorithm to check whether two lattices are isometric
was developed by W. Plesken and B. Souvignier in Ref. [27].
We adapted the original code of B. Souvignier to perform
isometry testing.

13Note that self-loops are allowed, i.e. α �= 0 and Min(Q + α R) =
Min(Q).
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Input: perfect Q, graph G = (V = ∅, E = ∅)
loop
Random extreme ray R ← Q
Neighbor Q ← Q + α R
for P ∈ G do
if P ∼ Q then

E ← E ∪ (Q, P )
else

V ← V ∪ Q
E ← E ∪ (Q , Q)

end if
end for

end loop
Output: Voronoi graph G

FIG. 25. Algorithm that constructs an approximation to the
Voronoi graph.

APPENDIX C: NAIVE RANDOM WALK

It is worth discussing performance of a straightforward
approach that one might be tempted to follow. The Voronoi
construction is elaborate and requires computational effort. A
priori one might wonder if a simple lattice random walk or
Monte Carlo approach [10] is preferable (maybe in higher
dimensions?). The algorithm shown in Fig. 26 is extremely
simple: One hopes to approach the best packer by small steps if
the random walk is sufficiently biased towards denser lattices.
When generating a move one has the option of either producing
a new lattice A′ which might or might not be an isometric copy
of A. Acceptance probability p could be 1 (random walk) or,
for example, the Metropolis rule (à la Monte Carlo).

An unbiased random walk (infinite temperature in our
language) with moves that generate nonisometric lattices A′

Input: Lattice A
loop

(∗) A ← A
Accept A with some probability p
Goto (∗)

end loop
Output: Dense lattice A

FIG. 26. Naive random walk.

gives an average packing fraction which is equal to the
Minkovsky bound [9,10,47–49]. This is a rather strong
result since the Minkovsky bound is nonconstructive and
constructing a lattice in a given dimension satisfying the bound
is yet an open problem. However, it is very hard to implement
that type of updates in practice [9,10,47–50], and one has to
rely on various approximations. In the case when one allows
for any A′ the performance of the algorithm is extremely
poor: With the simple Gaussian measure for lattices [10]
P(A) ∼ exp(−γ Tr AAt ) we were able to recover the best
packers in d = 2,3, although already in three dimensions we
had to go to very low temperatures. The performance of the
algorithm quickly deteriorates with dimension, and by d = 10
it is completely useless. The above mentioned variant of the
algorithm where one samples only among the nonisometric
lattices has similar performance when approximations are
used. Finally it is worth mentioning that the lattices generated
by such Markov chains are never perfect and are typically far
from being such.

These negative results provide an extra motivation for
studying perfect lattices and the Voronoi construction where
much better performance is achieved.
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