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Accurate goodness-of-fit tests for the extreme tails of empirical distributions is a very important issue, relevant
in many contexts, including geophysics, insurance, and finance. We have derived exact asymptotic results for
a generalization of the large-sample Kolmogorov-Smirnov test, well suited to testing these extreme tails. In
passing, we have rederived and made more precise the approximate limit solutions found originally in unrelated
fields, first in [L. Turban, J. Phys. A 25, 127 (1992)] and later in [P. L. Krapivsky and S. Redner, Am. J. Phys.
64, 546 (1996)].
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I. INTRODUCTION AND MOTIVATION

The problem of testing whether a null-hypothesis theoret-
ical probability distribution is compatible with the empirical
probability distribution of a sample of observations is known
as goodness-of-fit (GoF) testing and is ubiquitous in all fields
of science and engineering. The best known theoretical result
is due to Kolmogorov and Smirnov (KS) [1,2], and has led to
the eponymous statistical test. Several specific cases have been
studied (and/or are still under scrutiny), including univariate or
multivariate samples [3–6], independent or dependent data [7],
different choices of distance measures [8], investigation of
different parts of the distribution domain [9,10], etc.

This class of problems has a particular appeal for physicists
since the works of Doob [11] and Khmaladze [12], who showed
how GoF testing is related to stochastic processes. Finding
the law of a test often amounts to treating a Fokker-Planck
problem, which in turn maps into a Schrödinger equation for
a particle in a certain potential confined by walls.

The classical KS test suffers from an important flaw:
the test is only weakly sensitive to the quality of the fit in
the tails of the tested distribution, when it is often these
tail events (corresponding to centennial floods, devastating
earthquakes, financial crashes, etc.) that one is most concerned
with (see, e.g., Ref. [13]). Here we focus on a GoF test for
a univariate sample of size N � 1, with the Kolmogorov
distance but equiweighted quantiles, which is equally sensitive
to all regions of the distribution. We unify two earlier attempts
at finding asymptotic solutions, one by Anderson and Darling
in 1952 [9] and a more recent, seemingly unrelated one that
deals with “life and death of a particle in an expanding cage”
by Krapivsky and Redner [14,15]. We present here the exact
asymptotic solution of the corresponding stochastic problem,
and deduce from it the precise formulation of the GoF test,
which is of a fundamentally different nature than the KS test.

II. EMPIRICAL CUMULATIVE DISTRIBUTION
AND ITS FLUCTUATIONS

Let X be a latent random vector of N independent and
identically distributed variables, with marginal cumulative
distribution function (cdf) F . One realization of X consists of
a time series {x1, . . . ,xn, . . . ,xN } that exhibits no persistence

(see Ref. [7] when some nontrivial dependence is present). For
a given number x in the support of F , let Y(x) be the random
vector the components of which are the Bernoulli variables
Yn(x) = 1{Xn�x}. The expected value and the covariance of
Yn(x) are given by

E[Yn(x)] = F (x),

E[Yn(x)Ym(x ′)] =
{

F (min(x,x ′)), n = m

F (x)F (x ′) , n �= m
.

The centered sample mean of Y(x) is

Y(x) = 1

N

N∑
n=1

Yn(x) − F (x), (1)

which measures the difference between the empirically de-
termined cdf at point x and its true value. It is therefore
the quantity on which any statistics for GoF testing is built.
Denoting u = F (x) and v = F (x ′), the covariance function of
Y is easily shown to be

cov(Y(u),Y(v)) = 1

N
[min(u,v) − uv],

where now and in the following

Y(u) = 1

N

N∑
n=1

Yn(F−1(u)) − u. (1′)

A. Limit properties

One now defines the process y(u) as the limit of
√

N Y(u)
when N → ∞. For a given u, it represents the difference
between the empirically determined cdf of the (infinitely
many) X’s and the theoretical one, evaluated at the uth quantile.
According to the central limit theorem, it is Gaussian and its
covariance function is given by

I (u,v) = min(u,v) − uv, (2)

which characterizes the so-called Brownian bridge, i.e., a
Brownian motion y(u) such that y(u=0) = y(u=1) = 0.

Interestingly, F does not appear in Eq. (2) anymore, so the
law of any functional of the limit process y is independent of
the law of the underlying finite size sample. This property is
important for the design of universal GoF tests.
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B. Norms over processes and the Kolmogorov-Smirnov test

To measure a limit distance between distributions, a norm
||.|| over the space of continuous bridges needs to be chosen.
Typical such norms are the norm-2 (or Cramer–von Mises
distance)

||y||2 =
∫ 1

0
y(u)2du,

as the bridge is always integrable, or the norm-sup

||y||∞ = sup
u∈[0,1]

|y(u)|,

as the bridge always reaches an extremal value (also called
the Kolmogorov distance). Unfortunately, both these norms
mechanically overweight the core values u ≈ 1/2 and disfavor
the tails u ≈ 0,1: since the variance of y(u) is zero at
both extremes and maximal in the central value, the major
contribution to ||y|| indeed comes from the central region. To
alleviate this effect, particularly when the GoF test is intended
to investigate a specific region of the domain, it is preferable
to introduce additional weights and study ||y√

ψ || rather than
||y|| itself. Anderson and Darling show in Ref. [9] that the
solution to the problem with the Cramer–von Mises norm and
arbitrary weights ψ is obtained by spectral decomposition of
the covariance kernel, and use of Mercer’s theorem. In this note
we will rather focus on the case of the weights ψ being equal
to the inverse variance ψ(u) = 1/V [y(u)], which equiweights
all quantiles, and with the Kolmogorov distance.

Solutions for the distributions of such variance-weighted
Kolmogorov-Smirnov statistics were studied by Noé, leading
to the laws of the one-sided [16] and two-sided [17] finite
sample tests. They were later generalized and tabulated
numerically by Niederhausen [18–20]. However, although
exact and appropriate for small samples, these solutions rely on
recursive relations and are not in closed form. We instead come
up with an analytic closed-form solution for large samples that
relies on an elegant analogy from statistical physics.

III. THE WEIGHTED BROWNIAN BRIDGE:
LAW OF THE SUPREMUM

So again y(u) is a Brownian bridge, i.e. a centered Gaussian
process on u ∈ [0,1] with covariance function I (u,v) given in
Eq. (2). In particular, y(0) = y(1) = 0 with probability equal
to 1, no matter how distant F is from the sample cdf around the
core values. To zoom in on these tiny differences in the tails,
we weight the Brownian bridge as follows: for given a ∈]0,1[
and b ∈ [a,1[, we define

ỹ(u) ≡ y(u)
√

ψ(u; a,b), (3)

with

ψ(u; a,b) =
{

1
u(1−u) , a � u � b

0 , otherwise.

We will characterize the law of the supremum K(a,b) ≡
supu∈[a,b] |ỹ(u)|:

P<(k|a,b) ≡ P [K(a,b) � k]

= P [|ỹ(u)| � k,∀ u ∈ [a,b]].

A. Diffusion in a cage with moving walls

Define the time change t = u
1−u

. The variable W (t) =
(1 + t) y( t

1+t
) is then a Brownian motion (Wiener process)

on [ a
1−a

, b
1−b

], since one can check that

cov(W (t),W (t ′)) = min(t,t ′).

P<(k|a,b) can be now written as

P<(k|a,b) = P

[
|W (t)| � k

√
t, ∀ t ∈

[
a

1 − a
,

b

1 − b

]]
.

The problem with initial time a
1−a

= 0 and horizon time
b

1−b
= T has been treated by Krapivsky and Redner in

Ref. [14] as the survival probability S(T ; k =
√

A
2D

) of a
Brownian particle diffusing with constant D in a cage with
walls expanding as

√
At . Their result is that for large T ,

S(T ; k) ≡ P<

(
k

∣∣∣∣0,
T

1 + T

)
∝ T −θ(k).

They obtain analytical expressions for θ (k) in both limits
k → 0 and k → ∞. The limit solutions of the very same
differential problem were found earlier by Turban for the
critical behavior of the directed self-avoiding walk in parabolic
geometries [21].

We take here a slightly different route suggested by
Anderson and Darling in Ref. [9] but where the authors did
not come to a conclusion. Our contributions are (i) we treat the
general case a > 0 for any k; (ii) we explicitly compute the
k dependence of both the exponent and the prefactor
of the power-law decay; and (iii) we provide the link with the
theory of GoF tests and compute the preasymptotic distribution
when ]a,b[→]0,1[ of the weighted Kolmogorov-Smirnov test
statistics.

Choosing a constant weight function ψ instead of the
one above corresponds to the usual KS case and leads, after
appropriate change of variable and time change, to a similar
problem of a Brownian diffusion inside a box with walls
moving at constant velocity. Since the walls now expand as
V t faster than the diffusive particle can move, the survival
probability clearly decays to a positive value. The resulting
survival probability turns out to be the usual Kolmogorov-
Smirnov distribution. Other choices of ψ generally result in
much harder problems.

Still, a simple and elegant GoF test for the tails only
can be designed starting with digital weights in the form
ψ(u; a) = 1{u�a} or ψ(u; b) = 1{u�b} for upper and lower
tail, respectively. The corresponding test laws can be read off
Eq. (5.9) in Ref. [9].1 Investigation of both tails is attained
with ψ(u; q) = 1{u�1−q} + 1{u�q} (where q > 1

2 ).

B. An Ornstein-Uhlenbeck process with fixed walls

Introducing now the new time change τ = ln
√

1−a
a

t , the

variable Z(τ ) = W (t)/
√

t is a stationary Ornstein-Uhlenbeck

1The quantity M appearing there is the volume under the normal
bivariate surface between specific bounds, and it takes a very
convenient form in the unilateral cases 1

2 � a � u � 1 and 0 � u �
b � 1

2 . Mind the missing j exponentiating the alternating (−1) factor.
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process on [0,T ] where

T = ln

√
b(1 − a)

a(1 − b)
, (4)

and

cov(Z(τ ),Z(τ ′)) = e−|τ−τ ′|.

Its dynamics is described by the stochastic differential equation

dZ(T ) = −Z(T )dT +
√

2 dB(T ), (5)

with B(T ) an independent Wiener process. The initial
condition for T = 0 (corresponding to b = a) is Z(0) =
y(a)/

√
V [y(a)], a random Gaussian variable of zero mean

and unit variance. The distribution P<(k|a,b) can now be
understood as the unconditional survival probability of a
mean-reverting particle in a cage with fixed absorbing walls:

P<(k|T ) = P [−k � Z(τ ) � k,∀ τ ∈ [0,T ]]

=
∫ k

−k

fT (z; k)dz,

where

fT (z; k)dz = P [Z(T ) ∈ [z,z + dz[ | {Z(τ )}τ<T ]

is the density probability of the particle being at z at time
T , when walls are in ±k. Its dependence on k, although not
explicit on the right-hand side, is due to the boundary condition
associated with the absorbing walls (it will be dropped in the
following for the sake of readability).2

The Fokker-Planck equation governing the evolution of the
density fT (z) reads

∂τfτ (z) = ∂z [z fτ (z)] + ∂2
z [fτ (z)] , 0 < τ � T .

Calling HFP the second-order differential operator −[1 +
z∂z + ∂2

z ], the full problem thus amounts to finding the general
solution of {−∂τfτ (z) = HFP(z)fτ (z),

fτ (±k) = 0,∀ τ ∈ [0,T ].

We have explicitly introduced a minus sign since we expect
that the density decays with time in an absorption problem.
Because of the term z∂z, HFP is not Hermitian and thus cannot
be diagonalized. However, as is well known, one can define

fτ (z) = e− z2

4 φτ (z) and the Fokker-Planck equation becomes{
−∂τφτ (z) = [−∂2

z + 1
4z2 − 1

21
]
φτ (z),

φτ (±k) = 0, ∀ τ ∈ [0,T ],

and its Green’s function, i.e., the (separable) solution condi-
tionally on the initial position (zi,Ti), is the superposition of
all modes

Gφ(z,T | zi,Ti) =
∑

ν

e−θν (T −Ti )ϕ̂ν(z)ϕ̂ν(zi),

2In particular, P<(k|0) = erf( k√
2
).

where ϕ̂ν are the normalized solutions of the stationary
Schrödinger equation{[−∂2

z + 1
4z2

]
ϕν(z) = (

θν + 1
2

)
ϕν(z),

ϕν(±k) = 0,

each decaying with its own energy θν , where ν labels the
different solutions with increasing eigenvalues, and the set of
eigenfunctions {ϕ̂ν} defines an orthonormal basis of the Hilbert
space on which HS(z) = [−∂2

z + 1
4z2] acts. In particular,∑

ν

ϕ̂ν(z)ϕ̂ν(z′) = δ(z − z′), (6)

so that indeed G(z,Ti | zi,Ti) = δ(z − zi), and the general
solution writes

fT (zT ; k) =
∫ k

−k

e
z2
i
−z2

T
4 Gφ(zT ,T | zi,Ti) f0(zi)dzi,

where Ti = 0, which corresponds to the case b = a in Eq. (3),
and f0 is the distribution of the initial value zi which is here,
as noted above, Gaussian with unit variance.

HS figures out an harmonic oscillator of mass 1
2 and

frequency ω = 1√
2

within an infinitely deep well of width 2k:
its eigenfunctions are parabolic cylinder functions [22,23]

y+(θ ; z) = e− z2

4 1F1

(
−θ

2
,
1

2
,
z2

2

)
,

y−(θ ; z) = z e− z2

4 1F1

(
1 − θ

2
,
3

2
,
z2

2

)
,

properly normalized. The only acceptable solutions for a
given problem are the linear combinations of y+ and y−
which satisfy orthonormality (6) and the boundary conditions:
for periodic boundary conditions, only the integer values of
θ would be allowed, whereas with our Dirichlet boundaries
|ϕ̂ν(k)| = −|ϕ̂ν(−k)| = 0, real noninteger eigenvalues θ

are allowed.3 For instance, the fundamental level ν = 0 is
expected to be the symmetric solution ϕ̂0(z) ∝ y+(θ0; z) with
θ0 the smallest possible value compatible with the boundary
condition:

θ0(k) = inf
θ>0

{θ : y+(θ ; k) = 0}. (7)

In what follows, it will be more convenient to make the
k dependence explicit, and a hat will denote the solution
with the normalization relevant to our problem, namely,
ϕ̂0(z; k) = y+(θ0(k); z)/||y+||k , with the norm

||y+||2k ≡
∫ k

−k

y+(θ0(k); z)2dz,

so that
∫ k

−k
ϕ̂ν(z; k)2dz = 1.

3A similar problem with a one-sided barrier leads to a continuous
spectrum; this case was studied originally in Ref. [22] and more
recently in Ref. [24] (it was shown that there exists a quasistationary
distribution for any θ ) and generalized in Ref. [25].
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C. Asymptotic survival rate

Denoting by �ν(k) ≡ [θν(k) − θ0(k)] the gap between the
excited levels and the fundamental, the higher energy modes
ϕ̂ν cease to contribute to Green’s function when �νT � 1,
and their contributions to the above sum die out exponentially
as T grows. Eventually, only the lowest energy mode θ0(k)
remains, and the solution tends to

fT (z; k) = A(k) e− z2

4 ϕ̂0(z; k) e−θ0(k)T ,

when T � (�1)−1, with

A(k) =
∫ k

−k

e
z2
i
4 ϕ̂0(zi ; k)f0(zi)dzi. (8)

Let us come back to the initial problem of the weighted
Brownian bridge reaching its extremal value in [a,b]. If we
are interested in the limit case where a is arbitrarily close to 0
and b close to 1, then T → ∞ and the solution is thus given
by

P<(k|T ) = A(k) e−θ0(k)T
∫ k

−k

e− z2

4 ϕ̂0(z; k)dz

= Ã(k) e−θ0(k)T ,

with Ã(k) ≡ √
2πA(k)2.

We now compute explicitly the limit behavior of both θ0(k)
and Ã(k).

1. k → ∞
As k goes to infinity, the absorption rate θ0(k) is expected

to converge toward 0: intuitively, an infinitely far barrier will
not absorb anything. At the same time, P<(k|T ) must tend
to 1 in that limit. So Ã(k) necessarily tends to unity. Indeed,

θ0(k)
k→∞−→

√
2

π
k e− k2

2 → 0, (9)

Ã(k)
k→∞−→

(∫ ∞

−∞
ϕ̂0(z; ∞)2dz

)2

= 1.

In principle, we see from Eq. (8) that corrections to the latter
arise both (and jointly) from the functional relative difference
of the solution ε(z; k) = y+(θ0(k); z)/y+(0; z) − 1, and from
the finite integration limits (±k instead of ±∞). However, it
turns out that the correction of the first kind is of second order
in ε.4 The correction to A(k) is thus dominated by the finite
integration limits ±k, so that

Ã(k → ∞) ≈ erf

(
k√
2

)2

. (10)

4From Eq. (8) we have, when k → ∞,

A(k) = (2π )−1/2

∫ k

−k
e−z2/2[1 + ε(z; k)] dz√∫ k

−k
e−z2/2[1 + ε(z; k)]2 dz

.

The result follows by keeping only the dominant terms in the
expansion in powers of ε(z; k). A similar computation for the
asymptotic analysis by expanding the wave function in θ was
performed in Ref. [14]. Alternatively, algebraic arguments allow us to
understand that to first order in the energy correction θ0(k) − θ0(∞),
the perturbation of the wave function is orthogonal to ϕ̂0(z; ∞).

2. k → 0

For small k, the system behaves like a free particle in a
sharp and infinitely deep well, since the quadratic potential is
almost flat around 0. The fundamental mode becomes then

ϕ̂0(z; k → 0) = 1√
k

cos
(πz

2k

)
,

and consequently

θ0(k)
k→∞−→ π2

4k2
− 1

2
, (11)

Ã(k)
k→∞−→

(∫ k

−k

e− z2

4

(2π )
1
4

1√
k

cos
(πz

2k

)
dz

)2

≈ 1√
2πk

(
4k

π

)2

= 16

π2
√

2π
k. (12)

We show in Fig. 1 the functions θ0(k) and Ã(k) computed
numerically from the exact solution, together with their
asymptotic analytic expressions. In intermediate values of k

(roughly between 0.5 and 3) these limit expressions fail to
reproduce the exact solution.

D. Higher modes and validity of the asymptotic
(N � 1) solution

Higher modes ν > 0 with energy gaps �ν � 1/T must
in principle be kept in the preasymptotic computation. This,
however, is irrelevant in practice since the gap θ1 − θ0 is
never small. Indeed, ϕ̂1(z; k) is proportional to the asymmetric
solution y−(θ1(k); z) and its energy

θ1(k) = inf
θ>θ0(k)

{θ : y−(θ ; k) = 0}

is found numerically to be very close to 1 + 4θ0(k). In par-
ticular, �1 > 1 (as we illustrate in Fig. 2) and thus T �1 � 1
will always be satisfied in cases of interest.

IV. BACK TO GoF TESTING AND CONCLUSION

Let us now come back to GoF testing. In the case of a
constant weight, corresponding to the classical KS test, the
probability P<(k|a=0,b=1) is well defined and has the well-
known KS form [1]

P<(k|a = 0,b = 1) = 1 − 2
∞∑

n=1

(−1)n−1e−2n2k2
,

which, as expected, grows from 0 to 1 as k increases. The
value k∗ such that this probability is 95% is k∗ ≈ 1.358 [2].
This can be interpreted as follows: if, for a data set of size N ,
the maximum value of Y(u) is larger than ≈1.358/

√
N , then

the hypothesis that the proposed distribution is a “good fit”
can be rejected with 95% confidence.

To convert the above calculations into a meaningful test,
one must specify values of a and b. The natural choice is
a = 1/N and b = 1 − a, corresponding to the min
and max of the sample series. Indeed, a = F (min z) ≈
1
N

∑N
n=1 1{zn�min z} = 1

N
, and similarly for b. Correspondingly,
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FIG. 1. (Color online) Top: Dependence of the exponent θ0 on k;
similar to Fig. 2 in Ref. [14], but in linear-log10 scale; see in particular
Eqs. (9b) and (12) there. Bottom: Dependence of the prefactor Ã on
k. The red solid lines illustrate the analytical behavior in the limiting
cases k → 0 and k → ∞.

the relevant value of T is given, according to Eq. (4) above, by

T = ln

√
b(1 − a)

a(1 − b)
≈ ln N, N � 1.

This leads to our central result for the cdf of the weighted max-
imal Kolmogorov distance K( 1

N+1 , N
N+1 ) under the hypothesis

that the tested and the true distributions coincide:

S(N ; k) = P<(k| ln N ) = Ã(k)N−θ0(k), (13)

0 1 2 3 4
0.0

0.2

0.4

0.6

0.8

1.0

k

1 1 k

FIG. 2. 1/�1(k) saturates to 1, so that the condition N �
exp[1/�1(k)] is virtually always satisfied.

which is valid whenever N � 1 since, as we discussed above,
the energy gap �1 is greater than unity.

The final cumulative distribution function (the test law) is
depicted in Fig. 3 for different values of the sample size N .
Contrary to the standard KS case, this distribution still depends
on N . In particular, the threshold value k∗ corresponding to
a 95% confidence level increases with N . Since for large N ,
k∗ � 1 one can use the asymptotic expansion above, which

0 1 2 3 4 5
0.0

0.2

0.4

0.6

0.8

1.0

k

S N;k

FIG. 3. (Color online) Dependence of S(N ; k) on k for N =
103,104,105,106 (from left to right). As N grows toward infinity, the
curve is shifted to the right, and eventually S(∞; k) is zero for any
k. The red solid lines illustrate the analytical behavior in the limiting
cases k → 0 and k → ∞. The horizontal grey line corresponds to a
95% confidence level.
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soon becomes quite accurate, as shown in Fig. 3. This leads to

θ0(k∗) ≈ − ln 0.95

ln N
≈

√
2

π
k∗ e− k∗2

2 ,

which gives k∗ ≈ 3.439,3.529,3.597,3.651 for, respectively,
N = 103,104,105,106. For exponentially large N and to
logarithmic accuracy, one has k∗ ∼ √

2 ln(ln N ). This variation
is very slow, but one sees that as a matter of principle, the
“acceptable” maximal value of the weighted distance is much
larger (for large N ) than in the KS case.

In conclusion, we believe that accurate GoF tests for the
extreme tails of empirical distributions is a very important
issue, relevant in many contexts. We have derived exact
asymptotic results for a generalization of the Kolmogorov-
Smirnov test, well suited to testing the whole domain up to

these extreme tails. Our final results are summarized in Eq. (13)
and Fig. 3. In passing, we have rederived and made more
precise the result of Krapivsky and Redner [14] concerning
the survival probability of a diffusive particle in an expanding
cage. It would be interesting to exhibit other choices of weight
functions that lead to soluble survival probabilities. It would
also be interesting to extend the present results to multivariate
distributions and to dependent observations, along the lines of
Ref. [7].
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