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Markov chain Monte Carlo approach to parameter estimation in the FitzHugh-Nagumo model
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Excitability is observed in a variety of natural systems, such as neuronal dynamics, cardiovascular tissues, or
climate dynamics. The stochastic FitzHugh-Nagumo model is a prominent example representing an excitable
system. To validate the practical use of a model, the first step is to estimate model parameters from experimental
data. This is not an easy task because of the inherent nonlinearity necessary to produce the excitable dynamics,
and because the two coordinates of the model are moving on different time scales. Here we propose a Bayesian
framework for parameter estimation, which can handle multidimensional nonlinear diffusions with large time
scale separation. The estimation method is illustrated on simulated data.
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I. INTRODUCTION

An excitable system is characterized by a resting state
from which it only escapes if perturbed by a sufficiently large
stimulus. Weak stimuli only result in a small amplitude linear
response, whereas strong stimuli cause a highly nonlinear
response, where the system variables make a large excursion
through state space called firing, whereafter it returns to its
resting state after a refractory period. Under a continuous
stimulus, the system can enter into an oscillatory mode.
Thus, an excitable system operates close to a bifurcation
point, and is sensitive to small perturbations, e.g., caused
by noise. It is observed in many natural systems, such as
neuronal dynamics, ion channels, chemical reactions, climate
dynamics, or wildfires [1–3]. Noise can have a dramatic
effect on excitable systems, inducing stochastic limit cycles
on otherwise stable dynamics. A prototype of an excitable
system is the FitzHugh-Nagumo (FHN) model, a minimal
representation of more realistic excitable systems, such as
the Hodgkin-Huxley model, modeling the firing mechanisms
in a neuron [4–6]. It is a generalization of the van der Pol
equations. It allows for coordinates to evolve on different time
scales, and the time scale separation parameter is essential for
the understanding of the dynamical behavior of the system.
The larger the time scale separation, the more an all-or-nothing
response is observed to a perturbation, mimicking the response
of the simpler threshold models, such as leaky integrate-and-
fire models [7,8].

The FHN model is defined by two coupled differential
equations, representing the neuronal membrane potential and
a recovery variable, respectively, where the recovery variable
models the channel kinetics. Extending the model by adding
a noise term governed by Brownian motion results in a
diffusion process. The noise term in the FHN model accounts
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for various sources of noise affecting the neuronal behavior,
such as random opening and closing of ion channels or noisy
presynaptic currents [7].

Diffusions are defined through a stochastic differential
equation, and for all but a few models an explicit expres-
sion for the transition density is unattainable. This problem
complicates parameter estimation. Though many methods
deal with this problem (see Ref. [9] and also Refs. [10,11]),
they tend to be highly complicated to implement and apply
in practice, especially when the dimension of the diffusion
is larger than one. The Euler-Maruyama, the Milstein, and
other schemes offer easy-to-implement approximations to
the transition density. However, if the time step between
observations is too large, the approximation will be inaccurate.

Within the past decade, novel Bayesian methods have
been developed which can be used for statistical inference
(see Refs. [12–16]). We describe a Markov chain Monte
Carlo method and adapt it to the two-dimensional stochastic
FHN model for parameter inference. Our approach involves
imputation of data from the distribution of the underlying
diffusion process, and application of a Gibbs sampler to
iteratively update parameters and imputed data. We apply
an independent Metropolis-Hastings (MH) step to update
the imputed data conditional on parameters, and sample the
parameters conditional on the imputed data directly. Parameter
sampling relies on a Gaussian prior for the parameters, and
when this assumption is not met, a Gaussian random walk MH
step may be applied (see Appendix B for details).

Typically, in experimental settings only the slow variable
of the membrane potential is observed through intracellular
recordings in single neurons, whereas the channel kinetics are
unobserved. This largely complicates the statistical inference,
e.g., because the observed process is no longer Markovian.
One approach to this problem is to assume the channel
kinetics known [17,18]. We will not assume the channel
kinetics known, but instead assume that the recovery variable
is observed.
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Our methodology may be extended to the partially observed
case and this is work in progress. However, the first goal,
which is achieved in this paper, is to make the statisti-
cal procedure work in a computationally efficient manner
in the two-dimensional nonlinear model with time scale
separation.

The effects of noise on the FHN model have been exten-
sively studied (see, e.g., Refs. [1,3,19–21]), whereas papers
devoted to its comparison with experimental data are rare. In
this paper we use simulated data to estimate parameters of the
stochastic FHN model from discrete observations of the state
variables.

In Sec. II we introduce the deterministic FHN model and
a stochastic extension, and Sec. III describes the estimation
procedure in the case where the diffusion coefficient is
assumed to be known. This approach simplifies the exposition
and speeds up the practical implementation considerably.
Section IV deals with the procedure when also the diffusion
coefficient is estimated, and Sec. V includes a small simulation
study.

II. THE FITZHUGH-NAGUMO MODEL

Consider the FHN model [19] (see also Refs. [4,5,7,22]),
d

dt
xt = 1

ε

(
xt − x3

t − yt + s
)
, (1)

d

dt
yt = γ xt − yt + β, (2)

with ε > 0. In the modeling of neuronal spike generation in
axons, x describes the membrane potential and y is a recovery
variable. The parameter ε is a time scale separator, typically
smaller than one, such that x is the fast and y is the slow
variable. Furthermore, s denotes the input current and γ and
β determine the locations of the fixed point(s).

For the model (1) and (2), the nullclines are cubic and linear,
respectively,

y = x − x3 + s, y = γ x + β,

and in general there exist at most three fixed points. For γ > 1
there is exactly one fixed point which is stable or unstable,
depending on the parameter values. Figure 1 shows phase
and time plots for two sets of parameter values, leading to
excitatory and oscillatory behavior, respectively. In both cases
there is only one fixed point. The parameters in the upper
panels are chosen such that the fixed point is stable and the
model spikes one time and then relaxes to the resting state and
stays there. In the lower panels the fixed point is unstable and
a limit cycle with spikes appears. A detailed exposition of the
dynamics of the model can be found in Refs. [7,22].

A. Stochastic extension

We include additive noise in both coordinates and obtain
the following stochastic model:

dXt = 1

ε

(
Xt − X3

t − Yt + s
)
dt + σ1 dB

(1)
t , (3)

dYt = (γXt − Yt + β) dt + σ2 dB
(2)
t , (4)

where (B(1)
t ,B

(2)
t )T is a two-dimensional standard Brow-

nian motion and t ∈ [0,T ],(X0,Y0) = (x0,y0). The param-
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FIG. 1. Deterministic FHN model. Left: Phase portraits with
x and y nullclines (gray) and simulated trajectory (black). Right:
Time plots of x (black) and y (gray). For all plots ε = 0.1, s =
0.5, γ = 1.5. Top: β = 1.4, excitatory behavior, the fixed point
is stable. Bottom: β = 0.6, oscillatory behavior, the fixed point is
unstable.

eters of the model are (θ,σ )T with the drift parameter
θ = (ε,s,γ,β)T ∈ R+ × R3 and diffusion parameter σ =
(σ1,σ2)T ∈ R2

+. The qualitative behavior of the stochastic
model is different from the deterministic model because
the random perturbations can affect the system and lead to
emergence of repeated spiking activity, also when the fixed
point is stable (see Fig. 2).
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FIG. 2. Stochastic FHN model. Left: Phase portraits with x and y

nullclines (gray) and simulated trajectory (black). Right: Time plots
of x (black) and y (gray). For all plots ε = 0.1, s = 0.5, γ = 1.5,
σ1 = 0.5, σ2 = 0.3. Top: β = 1.4, excitatory behavior, the fixed point
is stable. Bottom: β = 0.6, oscillatory behavior, the fixed point is
unstable.
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B. Statistical model

In the following we shall state the model in more general
terms, as

dVt = b(Vt ,θ )dt + �(σ )dBt , V0 = v0, (5)

with Vt = (Xt,Yt )T a two-dimensional stochastic process, Bt

a two-dimensional standard Brownian motion, and functions b

and � taking values in R2 and the set of two-by-two matrices,
respectively. We will assume that � := ��T is invertible and
that b is linear in the drift parameters θ :

b(Vt ,θ ) = f0(Vt ) +
k∑

i=1

θifi(Vt ), (6)

with fi a 2 × 1 vector.
We assume equidistant observations

Dn = {
Vt0 ,Vt1 , . . . ,Vtn

}
,

with ti − ti−1 = 	, and t0 = 0,tn = T , and aim to make
inference for the parameters θ and σ governing the diffusion
(5). The observation times are assumed equidistant only for
notational simplicity and because it is consistent with the type
of experimental design for which the analysis in this paper is
relevant for; it will be clear that our methodology does not
require this assumption.

Note that for the FHN model (3) and (4), the reparametriza-
tion

(ε̃,s̃,γ,β) = (1/ε,s/ε,γ,β) (7)

makes the model linear in the drift parameters. For models
where the drift is not linear in θ , the estimation procedure we
describe will still work, at the cost of an additional MH step,
and this approach is described in Appendix B.

III. ESTIMATION OF DRIFT PARAMETERS WITH
KNOWN DIFFUSION

The aim of this section is to estimate the parameter vector
θ governing the drift, while σ is assumed known. This
assumption simplifies the exposition, while at the same time it
provides the foundation of the methodology used in the setting
where also the diffusion is unknown. For notational simplicity
σ is neglected in this section.

Since the model is Markovian, the distribution of θ

conditional on the observed data Dn is

p(θ | Dn) ∝ p(θ )p(Dn | θ ) = p(θ )
n∏

i=1

p
(
Vti

∣∣Vti−1 ,θ
)
, (8)

where p(θ ) is the prior distribution of θ , p(Dn | θ ) is the
distribution of the observed data given θ , and p(Vti | Vti−1 ,θ )
is the transition density of the process V , from Vti−1 to Vti ,
conditional on θ . Following standard convention in Bayesian
statistics, proportionality is understood with respect to the
argument of the density on the left hand side of the equation,
i.e., θ in the above equation. For all but a few models, the
transition density is not explicitly known and this is indeed
a problem in the FHN model. To overcome this difficulty,
consider a theoretical data augmentation step that imputes
a latent data path V̄i on each interval (ti ,ti+1), distributed

TABLE I. Gibbs sampler for p(θ,V̄ | Dn).

Initialize
(1) Initialize θ (0) and imputed data V̄ (0).

Iterate
At iteration k:
(2a) Sample V̄ (k) from p(V | θ (k−1),Dn).
(2b) Sample θ (k) from p(θ | V̄ (k),Dn).

according to the underlying model (5). Denote the collection
of latent paths V̄ := ∪n−1

i=0 V̄i , and change focus to the posterior
of θ and the imputed data conditional on the observed data:

p(θ,V̄ | Dn). (9)

A Gibbs sampler can be applied to obtain a sample from
(9) from which marginal inference about the posterior of θ

can be drawn. The algorithm alternates between updating
the parameter and the latent data while keeping the other
fixed. After a suitable burn-in period, the result is a sample
(θ (k),V̄ (k))k from the distribution p(θ,V̄ | Dn), from which a
summarized inference about the posterior of θ can be drawn,
e.g., mean, variance, and tail probabilities. The algorithm is
given in Table I.

A few remarks are in order: On the theoretical level the
imputed paths V̄ are infinite dimensional. Therefore, each path
is projected onto a discrete subset of the continuous path,
and the accuracy of the algorithm depends to some extent
on the accuracy of this approximation. The paths sampled
from step (2a) in Table I are conditioned on the observed
data Dn, and therefore a method for simulation of processes
conditional on both start and endpoint (diffusion bridges) is
needed. Simulating a diffusion bridge is in general not an easy
task though much progress in this area has been achieved in
the past decade; see Refs. [13,14].

A. Sampling from p(V̄ | θ,Dn)

Due to the Markovian property, the following relation holds,

p(V̄ | θ,Dn) =
n∏

i=1

p
(
V̄i

∣∣Vti−1 ,Vti ,θ
)
, (10)

implying that paths V̄i may be sampled independently. Direct
simulation of these bridges (or the projection thereof) is
not feasible. Instead, we follow Ref. [12] and use an MH
step for this simulation, whereby we propose paths from an
alternative simpler model and accept them with the appropriate
probability. Without loss of generality, focus on a single term
of the form

p(V̄ | V0,VT ,θ ) (11)

from (10). This is a diffusion bridge, and in Ref. [12] it is
shown that one can simulate these bridges with an MH step,
using proposals from a Brownian bridge. Samples from the
latter are easily generated, since the transition density of a
Brownian bridge is for t > s,

p(Vt | Vs = vs,V0 = v0,VT = vT )

∼ ϕ

(
Vt

∣∣∣∣ vs + t − s

T − s
(vT − vs);

(T − t)(t − s)

T − s
�

)
,

(12)
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TABLE II. MH step for sampling from the diffusion bridge (11).

Initialize
(1) Initialize a skeleton path (V̄ M )0 according to (12),
and compute the weight ψ0 = ψ((V̄ M )0,θ ), using (13).

Iterate
(2) Generate a proposal skeleton path, Ṽ M according to
(12), and compute the weight ψ̃ = ψ(Ṽ M,θ ),
using (13).

(3) Let (V̄ M )k+1 =
{

Ṽ M with prob. min
(
1,

ψ̃

ψk

)
,

(V̄ M )k otherwise.

where ϕ(· | μ; �) denotes the Gaussian density with mean
μ and covariance matrix �. To each proposal a weight is
assigned, the logarithm of which is given by

log[ψ(V̄ ,θ )]

=
∫ T

0
b(V̄u,θ )T �−1dV̄u − 1

2

∫ T

0
b(V̄u,θ )T �−1b(V̄u,θ )du.

(13)

This is precisely (proportional to) the Radon-Nikodym deriva-
tive between the target diffusion bridge measure and the pro-
posal Brownian bridge measure. The algorithm for simulating
the bridge V̄ is given in Table II. Note that step (2) in Table
II involves an approximation of the integral in Eq. (13). More
details on diffusion bridge simulation can be found in Ref. [13].

B. Sampling from p(θ | V̄ ,Dn)

After the reparametrization (7), the FHN model is linear in
the drift parameter, and it can be written on the form (6). In
this case, taking a Gaussian prior, the prior and the posterior
distribution will be conjugate, i.e., the prior and the posterior
belong to the same family of distributions. To see this, note
that

p(θ | V̄ ,Dn) ∝ p(θ )p(V | θ ),

where V denotes the union of observed and imputed data. It
follows directly from the Cameron-Martin-Girsanov theorem
(see, e.g., Ref. [13]) that p(V | θ ) = ψ(V,θ ), which, when the
drift is as in Eq. (6), is exponentially quadratic in θ . We have

log[ψ(θ,V )] = − 1
2 (θT Rθ + 2θT F + R00 − 2I0),

where R = (Rij )i,j�1, F = (Fi)i�1 and

Rij =
∫ T

0
fi(Vu)T �−1fj (Vu)du, (14)

Ii =
∫ T

0
fi(Vu)T �−1 dVu, Fi = Ii − Ri0, i,j � 0 (15)

Thus p(θ | V̄ ,Dn) must be Gaussian. Assume that p(θ ) =
ϕ(θ | μ; ) with  diagonal, such that the individual θ

parameters a priori are independent. Then the posterior
distribution of θ is Gaussian:

p(θ | V̄ ,Dn)

∼ϕ(θ | (R + −1)−1(F + −1μ); (R+−1)−1).

(16)

Having identified (16) is highly appealing, since it allows
for direct sampling from p(θ | V̄ ,Dn). In practice, the integrals
in Eqs. (14) and (15) are approximated by Riemann sums, and
the accuracy will depend on the sparsity of the imputed data.

In models where the assumptions of a Gaussian prior or
linearity in the drift parameters are not met, the distribution
p(θ | V̄ ,Dn) could be approximated by an MH step. This
approach is described in Appendix B.

Note that ε is assumed positive, therefore in principle the
Gaussian prior should be truncated at 0. However, for small ε

the effect of the truncation is negligible and can be omitted.

IV. ESTIMATION OF BOTH DRIFT AND
DIFFUSION PARAMETERS

When estimating diffusion parameters an important point
related to the dependence between parameters and imputed
data must be made. The quadratic variation identity implies
that for any t > 0,

lim
M→∞

M∑
i=1

(Vti/M − Vt(i−1)/M )(Vti/M − Vt(i−1)/M )T

= t �(σ )�(σ )T in probability.

Thus, an observed path of V completely identifies σ . When
dealing with discrete-time observations Dn, there is only finite
information about σ , hence there will be statistical errors
associated with its estimation. However, the identity implies
that we cannot hope to apply a Gibbs sampler which iteratively
would update paths and σ . Any value of σ would generate a
path whose quadratic variation would return exactly the same
value for σ , hence it will be impossible to explore the posterior
distribution of σ in this way. Of course, in practice we only
generate finite-dimensional projections of the paths, hence we
would not observe this reducible behavior. Nevertheless, it
is obvious, and actually proved in Ref. [12], that the Gibbs
sampler which updates σ and a projection of the path based
on M intermediate values for each pair of observations has a
mixing time which is O(M). Therefore it becomes worse as
we reduce the approximation bias.

However, this problem is easy to overcome by a simple
transformation as in Ref. [12]. The original article describes it
for one-dimensional diffusions, but the extension is immediate
for the multidimensional setting we consider here: We apply
the one-to-one transformation

x �→ �−1(σ )x

to the process V , and obtain a new diffusion Z which has the
form

dZt = α(Zt,θ,σ )dt + dBt , Z0 = �−1(σ )V0, (17)

where α(Zt,θ,σ ) = �−1(σ )b(�(σ )Zt,θ ).
Sampling V̄ is equivalent to sampling Z conditionally on

Zti−1 = �−1(σ )Vti−1 and Zti = �−1(σ )Vti , and the quadratic
variation of Z is now independent of σ . However, there is
again a perfect dependence between Z and σ via the endpoints
of Z: For given σ , Z has σ -dependent endpoints, which then
perfectly determine σ in the following iteration. Therefore we
need to remove the dependence on the endpoints as well.
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Define Ṽ as

Ṽt = Zt −
(

1 − t − ti−1

	

)
Zti−1 − t − ti−1

	
Zti (18)

for ti−1 � t � ti . Note that Ṽti−1 = Ṽti = 0, and V̄ can be
reconstructed from Ṽ and σ by inverting the two transfor-
mations: adding first the endpoints to obtain Z and scaling
by �(σ ) to obtain V̄ . To understand the intuition behind this
transformation, consider the measure of the process in Eq. (17),
without the drift α, but conditional on Zti−1 and Zti . Under this
measure, Z is a Brownian bridge starting and ending at Zti−1

and Zti , respectively. Tilting it linearly as in Eq. (18) makes Ṽ a
standard Brownian bridge. This construction effectively allows
us to sample Z from (17), using proposals from a Brownian
bridge.

Next we describe the individual steps for the Gibbs sampler.
We apply it to (θ,σ,Ṽ ) and not (θ,σ,V̄ ). This approach will
ensure that Ṽ and (θ,σ ) are independent under the proposal
for updating Ṽ , and circumvent the problem with reducible
behavior of the Gibbs sampler. The parameters θ and σ are
updated separately in order to take advantage of the simple
Gaussian conditional posterior for θ .

A. Sampling from p(Ṽ | θ,σ,Dn)

As in Sec. III A we write p(Ṽ | θ,Dn) as a product of
densities and for simplicity we focus on a single term of
the form p(Ṽ | V0,VT ,θ,σ ). Continuing along the lines of
Sec. III A we note that p(Ṽ | V0,VT ,θ,σ ) can be simulated
using an MH step with proposals from a Brownian bridge.
Thus for each proposal Ṽ we assign a weight φ given by

log[φ(Ṽ ,θ,σ )]

=
∫ T

0
α(Zs,θ,σ )T dZs − 1

2

∫ T

0
α(Zs,θ,σ )T α(Zs,θ,σ )ds,

(19)

where Ṽ and Z are linked by the relation (18).
The algorithm for updating the bridge Ṽ is given in

Table III.

B. Sampling from p(θ | Ṽ ,Dn,σ )

Sampling from p(θ | Ṽ ,Dn,σ ) is carried out in complete
analogy to Sec. III B and (16), using the process �(σ )Zt

instead of V̄t .

TABLE III. MH step for sampling from the diffusion bridge (17).

Initialize
(1) Initialize a skeleton path (Ṽ M )0, sampled as a
standard Brownian bridge starting and ending at 0.
Compute Z according to (18) and approximate
the weight φ in Eq. (19), w0.

Iterate
(2) Generate a proposal skeleton path, Ṽ M

P sampled as a
standard Brownian bridge starting and ending at 0.
Compute Z̃ according to (18) and approximate the
weight φ in Eq. (19), w̃.

(3) Let (Ṽ M )k+1 =
{

Ṽ M
P with prob. min

(
1, w̃

wk

)
,

(Ṽ M )k otherwise.

TABLE IV. MH step for sampling from p(σ | Ṽ ,Dn,θ ).

Initialize
(1) Initialize σ̄ (0).

Iterate
(2a) Generate a proposal σ̃ from ϕ(· | σ̄ (k); �).

(2b) Let σ̄ (k+1) =
{

σ̃ with prob. min
(
1, s(σ̃ )

s(σ̄ (k))

)
,

σ̄ (k) otherwise.

C. Sampling from p(σ | Ṽ ,Dn,θ )

The priors of θ and σ are assumed to be independent, and
therefore

p(σ | Ṽ ,Dn,θ ) ∝ p(Ṽ | θ,σ,Dn)p(Dn | θ,σ )p(σ ). (20)

Now define

log[φi(Ṽ ,θ,σ )]

=
∫ ti

ti−1

α(Zs,θ,σ )T dZs − 1

2

∫ ti

ti−1

α(Zs,θ,σ )T α(Zs,θ,σ )ds.

Using the identity (4.22) from Ref. [13] yields

p(Ṽ | θ,σ,Dn)

=
n∏

i=1

ϕ
(
�−1(σ )Vti | �−1(σ )Vti−1 ; 	I2

)
pti−1,ti

(
�−1(σ )Vti−1 ,�

−1(σ )Vti

) φi(Ṽ ,θ,σ ), (21)

where p is the transition density of (5), and I2 is the two-
dimensional identity matrix. Furthermore, with a change of
variables,

p(Dn | θ,σ )

= | det[�−1(σ )]|n
n∏

i=1

pti−1,ti

(
�−1(σ )Vti−1 ,�

−1(σ )Vti

)
,

so we obtain

p(σ | Ṽ ,Dn,θ ) ∝ p(σ )| det[�−1(σ )]|n

·
n∏

i=1

ϕ
(
�−1(σ )Vti | �−1(σ )Vti−1 ; 	I2

)
×φi(Ṽ ,θ,σ ), (22)

which can be evaluated using a Riemann approximation of φi .
Applying an MH step to a sample from the distribution propor-
tional to (22) is straightforward. We use a Gaussian random
walk, on the transformed diffusion parameter σ̄ = log(σ ), in
order to account for the restriction to positive values in the
original parametrization. Therefore, define the proportional
target function s( log(σ )) as the right hand side of (22), and
let ϕ(· | σ̄ (k); �) be the Gaussian proposal distribution, used to
propose an update of σ̄ from σ̄ (k) to σ̄ (k+1). The MH step is
summarized in Table IV.

V. SIMULATION STUDY FOR THE FHN MODEL

Six data sets were generated, with parameter values
resembling the situation in Fig. 2 with excitatory (β = 1.4)
and oscillatory (β = 0.6) behavior, respectively. The choice
of parameter values for the excitatory data is inspired by the
values used in Ref. [19]. Parameters are given in Table V.
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TABLE V. Parameter values for simulation study.

ε s γ β σ1 σ2

Oscillatory 0.1 0.5 1.5 0.6 0.5 0.3
Excitatory 0.1 0.5 1.5 1.4 0.5 0.3

Data was generated by thinning simulations from an Euler-
Maruyama scheme of the FHN model (3) and (4), with 20 000
observations and a time step of 0.001.

Two data sets were generated using subsamples from the
FHN data for every 100th observation such that the sample
size was n = 200 and the time step between consecutive
observations was 	 = 0.1, implying a sample interval length
of 20 time units. To investigate large sample properties, an
additional data set was created for the excitatory setting, using
subsamples for every tenth observation, leading to a step size
of 	 = 0.01.

Finally, three data sets were generated to evaluate the
estimation procedure for different values of ε. We used ε equal
to 0.5, 0.05, 0.01 and sample size n = 200 and 	 = 0.1. All
other parameters were as in the excitatory data.

For all six data sets, four data points were imputed between
consecutive observations (M = 5) and we used 100 000
iterations of the Gibbs sampler. In all settings, the prior for
θ = (ε̃,s̃,γ,β) was taken to be independent Gaussian. In the
estimation procedure, the prior of θ enters only in the posterior
distribution of (θ | V̄ ,Dn), and with the variance of the prior
taken to be infinite, the prior contributes no information to the
posterior. The prior for log(σ ) was taken to be independent
Gaussian with mean [log(0.3) + 2, log(0.5) + 1] and variance
(5,5).

For the MH step, the variance of the random walk
proposal was set to (0.03,0.0075) for the data sets with
sample size n = 200. For each iteration a proposal param-
eter is either accepted or rejected, and acceptance rates
were 20% and 21% for oscillatory and excitatory data,
respectively.

A. Estimation of the drift parameters

Figure 3 shows density plots of the marginal posterior of
each of the four drift parameters, for the setting from Table V,
with n = 200. The black curves represent the excitatory data,
and the gray curves represent oscillatory data. The vertical
lines denote the parameter values used to generate data. For the
oscillatory data the posterior distribution is more narrow and
the modes are closer to the true parameter values, indicating
that the estimation procedure performs better for the oscillatory
data. In the lower right panel the dashed gray line separates
the domain of β that leads to either excitatory or oscillatory
behavior.

Figure 4 shows trace plots of the posterior for θ for
the oscillatory data (n = 200). The plot was thinned before
plotting and contains only every 50th iteration of the Gibbs
sampler. For all four parameters the chain quickly reaches a
stable regime, and trace plots for the excitatory data show
similar characteristics.

Figure 5 shows autocorrelation plots of the posterior for
θ for the oscillatory data (n = 200). It is desirable that the
autocorrelations die out quickly to obtain a variance close
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FIG. 3. Density plots of the sample posterior of the drift param-
eters (n = 200). The black and gray curves represent excitatory and
oscillatory data and vertical lines denotes parameter values used to
generate simulated data. The dashed line represents the parameter
value where the regime changes between oscillatory and excitatory
behavior. The burn-in period was 1000 iterations.

to that provided by independent sampling from the target.
For γ and β the autocorrelation goes to zero very fast, but
less so for ε̃ and s̃. The mixing of all parameters is much
improved in the higher frequency dataset (not shown). For the
excitatory data, the conclusions remain the same. Increasing
the frequency of data (n = 2000) while keeping the sample
length constant has little effect on the precision of the estimates
of θ , as we expect from the theory anyway. Improved statistical
precision for θ is achieved by increasing the time period of
observation.

B. Estimation of the diffusion parameters

Figure 6 shows density plots of the posterior for σ for
both oscillatory and excitatory data (n = 200). Also included
is the situation where sampling frequency is increased to
n = 2000 in the excitatory regime. The black and gray solid
lines represent excitatory and oscillatory data, respectively,
with n = 200. The black dashed line denotes excitatory data
with n = 2000. For both data sets with n = 200, σ2 is poorly
estimated while for the oscillatory data the true parameter
values are in the central part of the support of the posterior
for σ1. For increased sampling frequency (n = 2000) the
posterior variance decreases and the generating parameter
values are well within the support of the posterior for both
σ1 and σ2.
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FIG. 4. Trace plot for the four drift parameters. The horizontal
lines denote parameter values used to generate simulated data. Data
was thinned before plotting.

C. Changing the time scale parameter ε

The performance of the algorithm depends strongly on
the size of the time scale separation. If the separation is
large, it may become difficult to extract information from
both coordinates in the system. Figure 7 shows four density
plots based on data sets with ε̃ = 2, 10, 50, and 100, and all
other parameters as in the excitatory setting from Table V and
n = 200. Clearly the estimates get worse for large values of ε̃.

D. Practical comments

All computations were done using R version 2.14.2, and
an R-package focusing on parameter estimation in the FHN
model is currently in development.
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FIG. 5. Marginal autocorrelation plot for output of the Gibbs
sampler. The burn-in period was 1000 iterations.
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FIG. 6. Density plots of the sample posterior of the diffusion
parameters. The solid and gray curves represent excitatory and
oscillatory data, respectively, for n = 200. The black dashed curve
represents excitatory data for n = 2000. The vertical lines denote true
parameter values.

A Gaussian random walk was used as the proposal for
updating the diffusion parameters. In order to tune the
covariance matrix for the proposal, the Gibbs sampler ran
for 10 000 iterations, with a unit proposal variance, leading
to a very low acceptance rate for the parameters. Taking
the diagonal of the empirical correlation matrix, �̂, after a
suitable burn-in period, we obtained a rough relation between
the diagonal elements of the covariance matrix. Thus, the
covariance matrix was taken to be on the form λ · diag(�̂)
for some λ > 0. Finally λ was tuned until the acceptance rate
was relatively close to 0.23, as suggested in Ref. [23].
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FIG. 7. Density plots for output of the Gibbs sampler for different
values of ε̃. The vertical lines denote true values of ε̃.
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VI. DISCUSSION

We have introduced a Bayesian approach to parameter
estimation in multivariate diffusion models and the method
has been applied to the FHN model for estimation of both drift
and diffusion parameters. To the best of our knowledge, not
many papers have previously focused on parameter estimation
in the FHN model or other excitatory models.

A few comments regarding the performance of the algo-
rithm must be made. First, it is sensitive to the size of the
time scale separation, but it is expected that performance will
improve further if the latent paths are updated using proposals
that resemble true paths “better” than the Brownian bridge.
Second, Fig. 3 suggests that the estimation procedure performs
better for data in the oscillatory regime than data in the
excitatory regime with respect to all four drift parameters. This
may intuitively be explained by the fact that in the oscillatory
setting, in the limit of no noise, the drift is observable, whereas
in the excitatory regime, only the location of the steady state
can be observed. Thus, less information about the drift is
available in the latter case, even if the noise makes some
inference possible.

In this paper we have focused on the setting where all
coordinates are discretely observed without measurement
noise, and the diffusion matrix � is of full rank. In some
applications this is not the case. The methodology described
here can be extended without too many difficulties to work
when not all coordinates are observed, or the observations
are contaminated by measurement noise, and this is work
in progress. If only a subset of the coordinates includes
noise (the hypoelliptic setting) the problem becomes much
harder. The methodology breaks down, as it relies on the
equivalence of (Gaussian) measures. To solve this problem,
one could make an approximation that includes a small amount
of noise, however, this may result in numerical instabilities
when inverting the diffusion matrix �. To effectively deal with
the hypoelliptic case, more sophisticated methods are required.
See, for instance, Refs. [24,25].
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APPENDIX A: THE CONTINUOUS TIME LIKELIHOOD

The continuous time likelihood function is central to the
described method of inference and it is therefore an important
object to identify. It is defined as the Radon-Nikodym deriva-
tive between two equivalent measures, and for our purpose the
Cameron-Martin-Girsanov theorem explicitly describes the
Radon-Nikodym derivative between two equivalent Gaussian
measures:

Theorem A.1. Let (�,F ,Ft�0,P0) be a filtered probability
space and define the Itô process

dVt = �dBt , 0 � t � T .

Suppose there exist “suitable” processes h(Vt ,θ ),b(Vt ,θ ) such
that

�h(Vt ,θ ) = −b(Vt ,θ ).

Define for 0 � t � T ,

Mt = e− ∫ t

0 h(Vs,θ)T dBs− 1
2

∫ t

0 (hT h)(Vs,θ)ds,

and let

dPb := MT dP0, on FT .

If Mt is a martingale with regard to P0 and Ft , then Pb is a
probability measure on FT , and

dVt = b(Vt ,θ )dt + �dB̃t , (A1)

where B̃t is a Brownian motion with regard to Pb.
Proof. See Ref. [26], Theorem 8.6.6. �
For a formal definition of “suitable” processes, see Def-

inition 3.3.2, Ref. [26]. Note that the functions used here
are “suitable” functions and that Mt is the continuous time
likelihood relative to the measures Pb and P0.

APPENDIX B: SAMPLING FROM p(θ | V̄ ,Dn) WHEN
DRIFT IS NOT LINEAR

If a reparametrization to obtain linearity in the drift
parameters is not feasible, one can still obtain approximate
samples from the distribution p(θ | V̄ ,Dn). One approach is
to use an MH step, though it requires additional computational
time. We suppress σ in this section.

The interval [ti ,ti+1] is split into M subintervals defined by
the time points tmi := ti + m	/M,m = 0, . . . ,M , such that
t0
i = ti and tMi = ti+1. Assume the imputation of M − 1 data

points between each pair of successive observations and denote
the collection of imputed data in the interval (ti ,ti+1) by V̄ M

i .
Thus we have n + 1 observations, with M − 1 imputed values
in each of the n intervals. By the Markov property it follows
that

p(θ | V̄ ,Dn) ≈ p
(
θ

∣∣ ∪n−1
i=0 V̄ M

i ,Dn

)
∝ p(θ )p

( ∪n−1
i=0 V̄ M

i

∣∣Dn,θ
)

= p(θ )
n−1∏
i=0

M∏
j=1

p
(
V

t
j

i

∣∣V
t
j−1
i

,θ
)
. (B1)

Compared to (8), each transition now occurs on the time scale
of 	/M instead of 	 and therefore, when M is large enough,

TABLE VI. MH step for sampling from p(θ | V̄ ,Dn).

Initialize
(1) Initialize θ (0).

Iterate
(2a) Generate a proposal θ̃ from ϕ(θ̃ | θ (k); �2).

(2b) Let θ (k+1) =
{

θ̃ with prob. min
(
1,

f (θ̃1)
f (θ (k))

)
,

θ (k) otherwise.
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an Euler-Maruyama approximation is reasonable:

V
t
j

i
≈ V

t
j−1
i

+ b
(
V

t
j−1
i

,θ
)
	 + �	B

t
j

i
,

where 	B
t
j

i
= B

t
j

i
− B

t
j−1
i

∼ ϕ(· | 0; I2	). Therefore

p
(
V

t
j

i

∣∣V
t
j−1
i

,θ
) ≈ ϕ

(
V

t
j

i

∣∣μi ; ��T 	
)
,

where μi = V
t
j−1
i

+ b(V
t
j−1
i

,θ )	.

The density p(θ | V̄ ,Dn) is approximately known up to a
proportionality constant, and for simulations it is thus natural
to use an MH step. Motivated by (B1) define the proportional

target distribution f by

f (θ ) = p(θ )
n−1∏
i=0

M∏
j=1

ϕ
(
V

t
j

i

∣∣V
t
j−1
i

; θ
)
.

We suggest a Gaussian random walk for the proposal
distribution ϕ(· | θ (k−1); �2), to propose a new θ . Note that for
this approach, parameters which are restricted to a true subset
of R requires a reparameterization. This is indeed the case for
the time scale separator ε, and since it is also smaller than
1, a logit transformation x �→ log[x/(1 − x)] would allow for
values on the entire real line. The MH step is given in Table VI.
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