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We study reaction-diffusion processes with concentration-dependent diffusivity. First, the decay of the
concentration in the single-species and two-species diffusion-controlled annihilation processes is determined. We
then consider two natural inhomogeneous realizations. The two-species annihilation process is investigated in
the situation when the reactants are initially separated, namely each species occupies a half space. In particular,
we establish the growth law of the width of the reaction zone. The single-species annihilation process is studied
in the situation when the spatially localized source drives the system toward the nonequilibrium steady state.
Finally, we investigate a dissolution process with a localized source of diffusing atoms which react with the
initially present immobile atoms forming immobile molecules.
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I. INTRODUCTION

Random walks and their continuum descriptions in terms
of convection-diffusion equations underlie numerous natu-
ral phenomena [1–3]. Our experience with these equations
strongly influences our intuition. For instance, an instan-
taneous propagation of perturbations is a key property of
the diffusion equation which appears puzzling when we
first learn it; eventually, we start to regard it as a general
feature of parabolic partial differential equations (PDEs) which
distinguishes them from hyperbolic PDEs. It then comes as a
surprise that the instantaneous propagation of perturbations
does not generally apply to nonlinear parabolic PDEs, so
that phenomenologically the predicted behaviors resemble the
behaviors of hyperbolic PDEs. Perhaps the simplest class of
such nonlinear parabolic PDEs is

∂c

∂t
= ∇ · (ca ∇c). (1)

According to Eq. (1), the spread of a localized initial profile
into a vacuum [that is, c(r,t = 0) = 0 when r = |r| > R for
some finite R] is not instantaneous whenever a > 0. More
precisely, the front advances as rf ∼ t1/(2+da) (here d is the
spatial dimension); for r > rf , the medium is in the vacuum
state [4–8]. Of course, there is no real contradiction with the
standard lore as Eq. (1) is nonlinear. This spectacular effect
occurs when we consider the spread into a vacuum (where the
diffusion coefficient D = ca vanishes).

Throughout this article we shall tacitly assume that D(c) =
0 only when c = 0. One should keep in mind, however, that
for some lattice gases the diffusion coefficient vanishes at a
certain positive critical density [9,10]. Near the critical density,
a power law asymptotic D ∼ |c − c∗|a usually holds [10].
Hence if initially c � c∗, we recover Eq. (1) by making a
shift, c → c − c∗.

Nonlinear parabolic PDEs form a fertile research area;
the behavior of solutions to nonlinear parabolic PDEs is still
poorly understood [8]. We emphasize that nonlinear parabolic
PDEs similar to Eq. (1) and their microscopic brethren are by
no means pathological. For instance, Navier-Stokes equations
are nonlinear parabolic PDEs with temperature-dependent
transport coefficients. Thus in describing heat conduction
in the simplest case when the fluid velocity vanishes (heat

conduction without convection) we must solve a nonlinear
parabolic PDE for the temperature T similar to Eq. (1) as
the coefficient of thermal conductivity χ depends on the
temperature [4,5]. For instance, for the hard-sphere gas χ ∝√

T indicating that heat conduction in the hard-sphere gas is
described by Eq. (1) with a = 1

2 . The concentration-dependent
diffusion effect has been observed in ionic crystals and oxides
[11–14], it is relevant in electrochemistry [15,16], and it has
many other applications [17]. The concentration-dependent
diffusion coefficients have been also derived in the realm of
some microscopic models [18].

Nonlinear parabolic PDEs often arise as mathematical
models of reaction-diffusion processes [7]. Almost all studies
of reaction-diffusion processes rely on the standard diffu-
sive transport. Reaction-diffusion processes with density-
dependent hopping rates have appeared in a few studies [19,20]
(e.g., annihilation processes have been investigated by the
authors of Ref. [20]). Here we examine basic reaction-diffusion
processes in the situation when the transport is described by
Eq. (1).

The rest of this article is organized as follows. In
Secs. II through III we study diffusion-controlled single-
species and two-species annihilation processes, respectively.
We examine the spatially homogeneous setting when particles
are distributed at random with uniform concentration for the
single-species annihilation process and with uniform and equal
concentrations for the two-species annihilation process. In
Sec. IV, we consider the two-species annihilation process in
the situation when the reactants are initially spatially separated,
viz. two half spaces are occupied by dissimilar species. In
Sec. V, we analyze the single-species annihilation process
driven by a localized steady source. In Sec. VI we study
a dissolution process. This process involves three distinct
species, viz. diffusing atoms which are injected into a localized
region and react with immobile atoms creating immobile
molecules. We summarize our results in Sec. VII.

II. SINGLE-SPECIES ANNIHILATION PROCESS

One of the simplest reaction-diffusion processes is the
diffusion-controlled single-species annihilation. Symbolically,
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this process is represented by the reaction scheme

A + A → ∅, (2)

where identical diffusing particles (say atoms) are denoted
by A. The process (2) postulates that when the two particles
collide they disappear. A true annihilation is occasionally
possible (e.g., the annihilation of domain walls in spin chains).
In most situations, however, a collision between two atoms will
lead to the formation of a diatomic molecule; if such molecules
are stable (that is, they do not break back to atoms) and if
molecules do not influence diffusing atoms, we can effectively
ignore the molecules and use the reaction scheme (2).

The diffusion-controlled single-species annihilation pro-
cess (2) with concentration-independent diffusivity is de-
scribed by the reaction-diffusion equation

∂c

∂t
= D∇2c − Kc2. (3)

The reaction rate K depends on the details of the process; in
the simplest case when spherical particles of equal radii R

diffuse independently and immediately react upon colliding,
the reaction rate theory expresses K through the diffusion
constant D and R, viz.

K = 16πDR. (4)

This well-known Smoluchowski formula [21–23] is valid
in three dimensions. More generally, in d dimensions
the reaction rate scales according to K ∼ DRd−2 [7]. In
the spatially homogeneous setting ċ = −Kc2, leading to the
c 	 (Kt)−1 large time decay of the concentration. This is
valid in d > 2 dimensions; for d � 2, the above formula
predicts c ∼ R2−d/(Dt), so the R dependence is certainly
wrong when d � 2. A heuristic way of understanding the
behavior in low dimensions relies on the basic properties of
random walks, particularly on the estimates for the average
number of distinct sites visited by a random walker [2]. In the
spatially homogeneous setting, one gets

dc

dt
∼ −

⎧⎪⎨
⎪⎩

DRc2 d = 3,

Dc2
[

ln 1
cR2

]−1
d = 2,

Dc3 d = 1,

(5)

from which we deduce the well-known asymptotic behaviors

c ∼

⎧⎪⎨
⎪⎩

t−1 d = 3,

t−1 ln t d = 2,

t−1/2 d = 1.

(6)

In Eq. (6) we have displayed only time dependence; using
parameters D and R one easily restores the dimensionally cor-
rect behavior [e.g., in two dimensions c ∼ (Dt)−1 ln(Dt/R2)].
The asymptotic behaviors (6) have been established through a
combination of simulations, heuristic arguments (as outlined
above), and exact solutions in one dimension; they have been
subsequently proven in Refs. [24,25].

The underlying microscopic process is simple to realize on
a lattice. Each site is occupied by at most one particle, and if
a particle hops to the occupied site both particles annihilate.
Particles undergo symmetric nearest-neighbor hopping. When
the hopping rates are constant, the density decays according
to Eq. (6).

The simplest way to mimic the D = ca hopping rate is
to postulate that the current hopping rate of each particle is
inversely proportional to the distance � between the particle
and its nearest neighbor, namely

hopping rate = �−a/d . (7)

The quantity �−1/d can be interpreted as a local concentration,
and hence the hopping rule (7) mimics the macroscopic D ∼
ca dependence.

For the single-species annihilation process (2) with
concentration-dependent hopping rate the generalization of
Eq. (5) is simple: one merely replaces the constant D by the
concentration-dependent D = ca . This yields

dc

dt
∼ −

⎧⎪⎨
⎪⎩

c2+a d = 3,

c2+a
[

ln 1
cR2

]−1
d = 2,

c3+a d = 1.

(8)

A heuristic derivation of Eq. (8) is equivalent to the
derivation of Eq. (5). In three dimensions, one writes ċ =
−Kc2, where the factor c2 merely reflects the binary nature
of the annihilation process; then the reaction rate theory
(see Refs. [7,23]) gives K ∼ DR ∝ ca thereby leading to
ċ ∼ −c2+a , as stated in Eq. (8). In one and two dimensions,
the recurrent nature of the random walks becomes crucial.
Generally we write ċ = −c/τ , so we need to estimate the
collision time τ . Such estimates follow from the known
expressions for the average number of distinct sites visited by a
random walker [2]. In one dimension we use � ∼ √

Dτ where
� ∼ c−1 is the typical separation between the nearest particles.
In two dimensions we need a slightly more complicated
formula Dτ [ln Dτ

R2 ]−1 ∼ c−1. The asymptotic behavior of the
solutions to Eq. (8) is

c ∼

⎧⎪⎨
⎪⎩

t−1/(1+a) d = 3,

t−1/(1+a) [ln t]1/(1+a) d = 2,

t−1/(2+a) d = 1.

(9)

For diffusion-controlled single-species annihilation pro-
cesses with concentration-independent diffusivity there is a
large body of knowledge (ranging from exact solutions in one
dimension to proofs in all dimensions [24,25]) corroborating
the asymptotic behaviors (6) and similar results for more
complicated processes including aggregation, two-species
annihilation, and so on, see Refs. [26–32]. This supports
the validity of Eq. (9) since the above (admittedly heuristic)
arguments directly extend the well-established results (5) to
(6) to the concentration-dependent case.

The generalization of rigorous work [24,25] to the
concentration-dependent hopping rates appears feasible, al-
though it may require substantial effort. There is little hope
of solving the model (even in one dimension in the simplest
case of a = 1). Finally, we note that for a ferromagnetic Ising
spin chain supplemented with (conservative) spin-exchange
Kawasaki dynamics, the low-temperature behavior is well
represented in terms of domain walls undergoing single-
species annihilation with a diffusion coefficient proportional to
their density [33–35]. This corresponds to a = 1 and therefore
according to Eq. (9) the density of the domain walls should
decay as t−1/3 in one dimension. The celebrated t−1/3 decay

041113-2



REACTION-DIFFUSION PROCESSES WITH NONLINEAR . . . PHYSICAL REVIEW E 86, 041113 (2012)

law is very well confirmed, both generally for conservative
dynamics and specifically for the Kawasaki dynamics [33–35].

III. TWO-SPECIES ANNIHILATION PROCESS

The two-species annihilation process is represented by the
reaction scheme

A + B → ∅. (10)

Here A and B denote diffusing particles of different types and
the process (10) postulates that when the two dissimilar parti-
cles occupy the same lattice site they immediately annihilate.
The interesting situation arises when the initial densities are
equal. (Otherwise, the minority species quickly disappears.)
The critical dimension for this two-species annihilation pro-
cess is not affected by the dependence of the hopping rates on
concentration, and therefore dc = 4 as in the case of constant
hopping rates [28–32].

For d � dc, the mean-field description is applicable: ċ ∼
−DRc2 ∼ −c2+a , and we recover the c ∼ t−1/(1+a) decay.
Below the critical dimension, the densities decay slower with
time, namely as (Dt)−d/4. This slow kinetics arises because
opposite-species reactants organize into a coarsening domain
mosaic (Fig. 1) and annihilation can occur only along domain
boundaries rather than throughout the system [28–32]. A
heuristic explanation of the density decay is well known and
has already appeared in textbooks [7]. This explanation is
based on the domain picture. Namely, one argues that in a
domain of size L ∼ √

Dt one species was in the majority
(due to fluctuations in the particle numbers), so the surplus
survives and since it scales as

√
c0Ld , the resulting density is

c ∼ L−d
√

c0Ld ∼ √
c0 (Dt)−d/4.

Replacing the hopping rate by its average value D = ca , we
obtain c ∼ √

c0 (cat)−d/4 for d < 4. Therefore c ∼ t−1/(a+4/d),
while the mean-field c ∼ t−1/(1+a) decay is restored when d >

dc = 4.

FIG. 1. (Color online) Snapshot of the particle positions in two-
species annihilation in two dimensions (the particle radii are enlarged
for visibility).

AA

A AA A BBB AA A BBB B A A ABA

L

A

l l AB

FIG. 2. Illustration of the three length scales in two-species
annihilation in one dimension.

In the physically relevant dimensions, the asymptotic decay
of the concentration is therefore

c ∼

⎧⎪⎨
⎪⎩

c
2/(3a+4)
0 t−1/(a+4/3) d = 3,

c
1/(a+2)
0 t−1/(a+2) d = 2,

c
2/(a+4)
0 t−1/(a+4) d = 1.

(11)

Interestingly, in one and two spatial dimensions the coars-
ening domain mosaic (Fig. 1) is characterized by three length
scales [36]. This is particularly obvious in one dimension
(Fig. 2) where one can identify the domain size L ∼ √

Dt ,
the average spacing between adjacent particles in the same
domain �AA = �BB ∼ c−1, and the depletion zone between the
domains. This last quantity scales as �AB ∼ c

−1/4
0 (Dt)3/8, see

Refs. [7,36]. In the present case of the concentration-dependent
hopping rate the three length scales characterizing the two-
species annihilation process in one dimension are

L ∼ c
a

a+4
0 t

2
a+4 ,

�AB ∼ c
− 2−a

2(a+4)

0 t
3

2(a+4) , (12)

�AA = �BB ∼ c
− 2

a+4
0 t

1
a+4 .

Similarly, generalizing the two-dimensional result [36] one
gets

L ∝ t
1

a+2 , �AB ∝ t
2

3(a+2) , �AA = �BB ∝ t
1

2(a+2) . (13)

Numerical verifications of these results could be very chal-
lenging even in one dimension. Indeed, if the hopping rate is
proportional to the concentration (a = 1), the length scales
(12) become L ∝ t2/5,�AB ∝ t3/10, and �AA ∝ t1/5, so the
exponents differ only by 0.1, which is hard to accurately
measure.

IV. INHOMOGENEOUS TWO-SPECIES ANNIHILATION

In this section we return to the two-species annihilation
process from Sec. III, but instead of uniform initial densities
we assume that the reactants are initially spatially separated.
Specifically, we assume that the right (left) half space is
initially occupied by A (B) particles (Fig. 3). Physically it
may be realized by having a membrane at x = 0 separating
the reactants, removing the membrane at time t = 0, and
observing the subsequent reaction kinetics. The governing
reaction-diffusion equations read

∂cA

∂t
= ∂

∂x

(
D

∂cA

∂x

)
− KcAcB, (14a)

∂cB

∂t
= ∂

∂x

(
D

∂cB

∂x

)
− KcAcB, (14b)
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FIG. 3. Sketch of the concentration profiles (solid curves) and
the reaction rate KcAcB (dashed curve, and considerably magnified)
in two-species annihilation with initially separated components. The
depletion zone width is � ∼ √

t , while the reaction zone width is
w ∼ t1/(4a+6).

where cA = cA(x,t) and cB = cB(x,t) denote the concentra-
tion of each species at position x at time t . We assume that the
diffusion coefficients of both species are equal and depend on
the total concentration cA + cB .

The initial densities are

cA(x,t = 0) =
{

c0, x > 0;

0, x < 0;

and cB(x,t = 0) = cA(−x,t = 0). In the constant-diffusion
case, this problem has been originally investigated by the
authors of Refs. [37,38]; various generalizations have been
treated later, see Refs. [39–45] and references therein.

We apply the same reasoning to the concentration-
dependent case. Subtracting Eq. (14b) from Eq. (14a) we find
that c = cA − cB satisfies a diffusion equation

∂c

∂t
= ∂

∂x

(
D

∂c

∂x

)
. (15)

The domain of one species acts as a nearly fixed absorbing
boundary condition for the opposite species. Indeed, the ratio
w/� of the width of the reaction zone w to the width of the
depletion zone � asymptotically approaches zero as we shall
see below, and therefore in the analysis of Eq. (15) we can treat
the reaction zone as an interface and summarize its influence
by using the absorbing boundary condition. Thus the density
profile of each particle species, namely A particles in the half
space x > 0 and B particles in the half space x < 0, is close
to that of the independent diffusing particles in the presence
of an absorbing boundary at x = 0. The diffusion coefficient
depends on both concentrations D = (cA + cB)a , so Eq. (15) is
not a closed equation. Away from the reaction zone, however,
one of the species dominates. Thus for x 
 w we can rewrite
Eq. (15) as

ct = (cacx)x. (16)

We want to solve Eq. (16) in the half space x > 0 subject to
the initial condition

c(x > 0,t = 0) = c0 (17)

and the absorbing boundary condition

c(x = 0,t > 0) = 0. (18)

The problem (16)–(18) admits a self-similar solution [46]

c(x,t) = c0F (ξ ), ξ = x√
ca

0 t
. (19)

The scaling function F (ξ ) is a solution of the differential
equation

(FaF ′)′ + 1
2ξF ′ = 0 (20)

subject to the boundary conditions

F (0) = 0, F (∞) = 1. (21)

The boundary-value problem (20)–(21) does not admits an
analytical solution, but we are interested in the small ξ behavior
which can be extracted analytically (up to numerical factors).
Indeed, an asymptotic analysis gives

F ∼ ξ 1/(a+1) when ξ → 0. (22)

We now estimate the width w of the reaction zone by
balancing the diffusive flux into this zone with the total rate
at which the particles are annihilated. The flux is given by
2|cacx | and using Eqs. (19) and (22) we find that the flux scales
as ca+1

0 /
√

ca
0 t . Using the reaction-diffusion equations (14a)

and (14b), the number of reactions per unit time equals the
integral of KcAcB over the extent of the reaction zone. We
estimate this integral as ca+2w (since K ∼ ca) and use c =
c(x =w,t) as the typical concentration. We simplify ca+2w

using Eqs. (19) and (22) and equate the result with the flux to
yield

wca+2
0

(
w√
ca

0 t

) a+2
a+1

∼ ca+1
0√
ca

0 t

from which

w ∼ c
−(a+2)/(4a+6)
0 t1/(4a+6). (23)

We see that the width of the reaction reaction zone exhibits
a rather slow growth w ∼ t1/(4a+6), while the width of the
depletion zone grows diffusively, � ∼ √

t . Hence the ratio
w/� ∼ t−(a+1)/(2a+3) asymptotically vanishes and this provides
an a posteriori justification of the usage of the absorbing
boundary condition (18).

The above analysis applies when the annihilation process
is happening in three (or higher) dimensions. We now show
how to handle the one- and two-dimensional cases. (See
Refs. [40–42] for the analysis of such low-dimensional settings
in the case of a constant diffusion coefficient.) In these
situations, we can use Eqs. (16) to (22), so the flux still scales as
ca+1

0 /
√

ca
0 t . The reaction rate ca+2 should be replaced by ca+3

in one dimension, and by ca+2[ln 1
cR2 ]−1 in two dimensions, see

Eq. (8). Using these results we estimate the total rate at which
the particles are annihilated and balance the corresponding
estimates with the flux. This yields

w ∼ c
−1/2
0 t1/(2a+4) (24)

in one dimension and

w ∼ c
−(a+2)/(4a+6)
0 t1/(4a+6) (ln t)(a+1)/(2a+3) (25)

in two dimensions. Combining Eqs. (23) to (25) and ignoring
the dependence on the initial concentration we conclude that
the width of the reaction reaction zone grows as

w ∼

⎧⎪⎨
⎪⎩

t1/(4a+6) d = 3,

t1/(4a+6) (ln t)(a+1)/(2a+3) d = 2,

t1/(2a+4) d = 1.

(26)

041113-4



REACTION-DIFFUSION PROCESSES WITH NONLINEAR . . . PHYSICAL REVIEW E 86, 041113 (2012)

V. ANNIHILATION PROCESS DRIVEN BY
A LOCALIZED SOURCE

We now return to the single-species annihilation process
and consider the system which is initially empty and is driven
by a localized source, say at the origin, which is turned
on at time t = 0. In the case of classical (concentration-
independent) diffusion, the qualitative behaviors are largely
understood [47,48]; we now review the approach and then
apply it to nonlinear diffusion.

A. Constant diffusion

The corresponding reaction-diffusion equation reads

∂c

∂t
= D∇2c − Kc2 + J δ(r) θ (t). (27)

Here D is the diffusion coefficient which is assumed to be
constant in this section, J the strength of the source, and θ (t)
the Heaviside step function assuring that the source is turned
on at t = 0. Equation (27) is applicable when d > 2; for d = 2
and d = 1, the reaction term must be modified according to
the right-hand side of Eq. (5).

Assuming the emergence of the stationary concentration
profile one gets

0 = D∇2c − Kc2 + J δ(r). (28)

Balancing the first two terms, D∇2c = Kc2 leads to

c = (4 − d)
2D

K

1

r2
. (29)

Thus we see the emergence of the upper critical dimension
dc = 4. Indeed, the result of Eq. (29) clearly holds only
when d < dc = 4. For d > dc = 4 the reaction term becomes
irrelevant far away from the source. Hence one must solve the
Laplace equation D∇2c + J δ(r) = 0. The solution is

c ∼ J

D

1

rd−2
. (30)

At d = dc it is natural to expect logarithmic corrections.
Indeed, one finds [7,47,48]

c = 2D

K

1

r2 ln r
. (31)

The behavior (29) is actually valid as long as the dimension
exceeds the critical dc = 2. At d = dc we must use a modified
reaction term, so we balance ∇2c ∼ c2/ ln(1/c) to yield c ∼
r−2 ln r . For d = 1 we balance ∇2c ∼ c3 and get c ∼ r−1.
Combing these results with Eqs. (29) to (31) we arrive at
[7,47,48]

c(r) ∼

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

r−(d−2) d > 4,

r−2(ln r)−1 d = 4,

r−2 d = 3,

r−2 ln r d = 2,

r−1 d = 1.

(32)

It is interesting to estimate the asymptotic growth of the
total number of particles in the system. In principle,

N (t) =
∫ ∞

0
dr 
dr

d−1c(r,t),

where 
d is the surface area of unit sphere in the d-dimensional
space: 
1 = 2, 
2 = 2π , 
3 = 4π , and so on.

After the source is turned on at time t = 0, the concentration
advances diffusively, that is, as

√
Dt . Inside the sphere of

radius

R(t) ∼
√

Dt (33)

the concentration is close to the steady-state distribution (32),
while the region outside this sphere is essentially empty.
Therefore

N (t) ∼
∫ R(t)

0
dr 
dr

d−1c(r). (34)

Inserting Eqs. (32) and (33) into Eq. (34) one finds [7,47,48]

N (t) ∼

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

t d > 4,

t(ln t)−1 d = 4,

t1/2 d = 3,

(ln t)2 d = 2,

ln t d = 1.

(35)

For d > 4, there is so much room that particles do not “see”
each other once they are sufficiently far from the origin. Overall
the finite fraction of particles survive; the total number of
surviving particles is, of course, smaller than the total number
of introduced particles J t , but it still grows linearly. For d � 4,
the vanishing fraction of the introduced particles survives.

B. Concentration-dependent diffusion

In the case of concentration-dependent diffusion, the
governing equation reads

∂c

∂t
= ∇ · (ca ∇c) − c2+a + J δ(r) θ (t), (36)

when d > 2, while for d = 2 and d = 1 the reaction term
must be modified according to the right-hand side of Eq. (8).
We again assume the emergence of the stationary concen-
tration profile. Balancing the reaction and diffusion terms
∇ · (ca ∇c) = c2+a one finds c = 2(4 + 2a − d)r−2, which
tells us that the upper critical dimension is now given by
dc = 4 + 2a and the above expression for the steady-state
concentration is valid when 2 < d < dc. Repeating the same
arguments as above we determine the concentration in every
dimension to yield

c(r) ∼

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

r−(d−2)/(1+a), d > dc = 4 + 2a,

r−2(ln r)−1, d = dc,

r−2, 2 < d < dc,

r−2 ln r, d = 2,

r−1, d = 1.

(37)

In the classical case, the position of the front (33) was
universal (independent on the spatial dimensionality). Now
the situation is different. To determine the time dependence of
the front position we use the chief formula R ∼ √

Dt together
with D ∼ [c(R)]a . Thus we have R2 ∼ [c(R)]a t , and using
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Eq. (37) to estimate c(R) we conclude that

R(t) ∼

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

t (1+a)/(2+da), d > dc,

t1/(2+2a)(ln t)−a/(2+2a), d = dc,

t1/(2+2a), 2 < d < dc,

t1/(2+2a)(ln t)a/(2+2a), d = 2,

t1/(2+a), d = 1.

(38)

Finally plugging Eq. (37) into Eq. (34) and using Eq. (38) we
obtain

N (t) ∼

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

t, d > dc,

t(ln t)−1−a, d = dc,

t (d−2)/(2+2a), 2 < d < dc,

(ln t)2, d = 2,

ln t, d = 1.

(39)

In particular, in the most relevant case of d = 3 the total
number of particles grows according to

N (t) ∼ t1/(2+2a). (40)

Note also that for d = 1,2 the growth of the total number of
particles is very slow, namely logarithmic; interestingly, the
asymptotic growth laws for the total number of particles are
independent on a in one and two dimensions.

C. Examples

The simplest example of the concentration-dependent
diffusion is D = c. This is relevant for the heat transfer in
the so-called Maxwell gas [49–51] since the coefficient of the
thermal conductivity (and generally transport coefficients in
the Maxwell gas) is proportional to temperature. In this case
Eq. (38) shows that in the physically interesting dimensions
d = 1,2,3 the front propagates as

R(t) ∼

⎧⎪⎨
⎪⎩

t1/4, d = 3,

t1/4(ln t)1/4, d = 2,

t1/3, d = 1.

(41)

Another interesting example corresponds to D = √
c. (For

the hard-sphere gas, the transport coefficients are proportional
to the square root of the temperature.) In this case the front
propagates as

R(t) ∼

⎧⎪⎨
⎪⎩

t1/3, d = 3,

t1/3(ln t)1/6, d = 2,

t2/5, d = 1.

(42)

D. Exact solution of the mean-field equations in one dimension

Reaction-diffusion equations (3), (27), and (36) for the
single-species annihilation are mean field in nature. These
equations presumably provide asymptotically exact descrip-
tions in three dimensions. In two dimensions, the mean-field
treatment of the annihilation process is slightly wrong (the
discrepancy is logarithmic), and in one dimension the mean-
field approach is flawed. Even when reaction terms are chosen
to assure the correct qualitative behaviors there is no closed
equation for the density when the spatial dimension is below

critical. In one dimension an exact description is feasible
only in the case of a constant diffusion coefficient [47,52].
It seems impossible to generalize these results to the case of
the concentration-dependent diffusion.

Nevertheless, it is methodologically interesting to solve
the corrected mean-field equation, namely the one with the
reaction term taken from Eq. (8) at d = 1, in the one-
dimensional setting. Thus we want to solve an equation

∂c

∂t
= ∂

∂x

(
ca ∂c

∂x

)
− c3+a + J δ(x) θ (t). (43)

This is a rather complicated initial-value problem. We limit
ourselves to the steady-state solution. The governing ordinary
differential equation

d

dx

(
ca dc

dx

)
− c3+a + J δ(x) = 0 (44)

is solvable. Equation (cac′)′ = c3+a , where the prime denotes
the derivative with respect to x, admits an exact solution c =
A/x with A = √

dc = √
4 + 2a. The translational invariance

of equation (cac′)′ = c3+a implies that its general solution is
given by c = A/(x + x0), where x0 is an arbitrary constant.
Returning to Eq. (44) and invoking the x ↔ −x symmetry we
see that the solution must be

c = A

|x| + x0
, x0 =

(
2A1+a

J

)1/(2+a)

. (45)

The constant x0 in Eq. (45) was fixed by integrating Eq. (44)
over a small region around the origin, which gives

ca dc

dx

∣∣∣∣
x=+0

x=−0

= −J

and allows to express x0 via the strength of the source.
Solutions similar to Eq. (45) have been obtained by the

authors of Refs. [7,47]. A general case with the reaction term cn

has been recently investigated by the authors of Ref. [20] where
it was additionally demonstrated that some of these solutions fit
the experimental data [53] for morphogen gradient formation.
(Morphogen gradients play a crucial role in developmental
biology [54,55], e.g., they appear to be precursors to cell
differentiation [56,57].)

VI. DISSOLUTION PROCESS

Here we consider another reaction-diffusion process, a
dissolution process. This process involves three distinct
species. One species is composed of diffusing particles, while
the particles constituting two other species are immobile.
Diffusing atoms (species A) are injected into a small localized
region of a d-dimensional lattice. The entire lattice is initially
occupied by immobile atoms (species B), one B atom per
lattice site. Whenever an A atom hops to a lattice site occupied
by a B atom, two atoms react to form an inert stable molecule
(species B∗). This dissolution process is described by the
reaction scheme

A(diffusing) + B(substrate) → B∗(stable). (46)

This model mimics a number of important industrial chemical
processes including the dissolution of solids [58], electropol-
ishing [59], corrosion and etching [60–62], and erosion [63].
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Here we consider the dissolution process with a concentration-
dependent diffusion coefficient.

The reaction (46) proceeds at a certain finite rate. In many
applications this rate greatly exceeds the hopping rate. Thus
we shall assume that the reaction proceeds instantaneously, so
each site contains either a B atom or a B∗ molecule. As the
process develops, the system can be separated into two parts:
The droplet that contains no B atoms (every lattice site inside
the droplet is occupied by a B∗ molecule and can contain an
arbitrary number of A atoms) and the rest of the system that
contains only B atoms.

The droplet is a growing random set (Fig. 4). In the large
time limit, the droplet becomes relatively closer to the ball.
This is not obvious, yet it has been proven in the case
of constant diffusivity [64,65]. (Even the magnitude of the
fluctuations in this situation has been recently established,
see Refs. [66,67] and references therein.) In the following we
assume that the same qualitative behavior continues to hold
in the concentration-dependent case. The droplet is therefore
asymptotically a ball of radius R(t) which is determined in the
process of solving the problem. We ignore the fluctuations so
the results should be applicable fora sufficiently large time.

The concentration c(r,t) of A atoms (that is, the average
number of A atoms per lattice site) satisfies a nonlinear
diffusion equation

∂c

∂t
= D

(
∂2

∂r2
+ d − 1

r

∂

∂r

)
c1+a

1 + a
+ Jδ(r) θ (t) (47)

inside the droplet 0 � r � R(t). The diffusion Eq. (47) should
be supplemented by the adsorbing condition

c(r = R(t), t > 0) = 0 (48)

FIG. 4. (Color online) A growing droplet of B∗ molecules
depicted as filled circles. The droplet is still rather small and hence
the deviations from the round shape are visible. Each site with a B∗

molecule can contain A atoms (depicted as squares) diffusing on the
lattice and reacting with B atoms (not displayed) which occupy sites
outside the droplet.

and the Stefan boundary condition

dR

dt
= −Dca ∂c

∂r

∣∣∣∣
r=R

. (49)

The boundary moves and its position have to be determined
in the process of solution. Therefore mathematically we arrive
at the Stefan problem [68,69]. We analyze Eqs. (47) to
(49) using the same approach [61,70] as in the case of the
concentration-independent diffusion coefficient.

The original process occurs on the lattice and therefore we
set the lattice spacing to unity; this implies that the spatial
coordinates r, the droplet radius R(t), and the concentration
c(r,t) are all dimensionless quantities, while the hopping rate
D and the strength of the source have the dimension of inverse
time: [D] = [J ] = 1/(time). The ratio J/D, the dimensionless
flux, plays an important role in the problem.

We limit ourselves with the two-dimensional case which is
most important in applications [58,59,63]. Seeking a solution
in the scaling form

c(r,t) = c(ξ ), ξ = r

R
(50)

we reduce the diffusion Equation (47) to

c′′ + 1

ξ
c′ + a

c
(c′)2 = −RṘ

D

ξc′

ca
, (51)

where (·)′ ≡ d(·)/dξ and Ṙ = dR/dt . Equation (51) is con-
sistent if RṘ/D, which is in principle a function of time, is
actually a constant. Hence we write

R2 = 2βDt, (52)

and recast Eq. (51) into

c′′ + ξ−1c′ + a

c
(c′)2 + βξc′

ca
= 0, (53)

which must be solved subject to

c = 0, cac′ + β = 0, when ξ = 1. (54)

Equation (54) implies that c 	 [β(1 + a)(1 − ξ )]1/(1+a) in the
ξ → 1 limit. The conservation of the total number of A atoms
gives

J t =
∫ R

0
c(r,t) 2πr dr + πR2. (55)

Using Eqs. (50) and (52), we rewrite Eq. (55) in the form

J

4πDβ
=

∫ 1

0
dξ ξc(ξ ) + 1

2
, (56)

which implicitly determines β in terms of the dimensionless
flux J/D. The right-hand side of Eq. (56) depends, of course,
on β since the concentration c(ξ ) is determined by solving
Eqs. (53) to (54) which contain β.

VII. SUMMARY

In annihilation processes the concentration decays to zero,
and even in annihilation processes driven by a localized
source the concentration asymptotically vanishes when the
distance from the source increases to infinity. Hence it is vitally
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important to know the behavior of D(c) in the c → 0 limit. If
D(0) = 0, the behaviors qualitatively differ from the classical
case of constant diffusivity.

We studied single-species and two-species diffusion-
controlled annihilation processes in the situation when the
diffusion coefficient vanishes algebraically D ∼ ca in the
c → 0 limit. In the homogeneous case, the critical dimensions
are dc = 2 (for the single-species annihilation) and dc = 4 (for
the two-species annihilation), and in the physically interesting
dimensions the long-time asymptotics are, respectively, given
by Eqs. (9) and (11). For the two-species annihilation we
also investigated the width of the reaction zones, both in
the homogeneous setting (the width of the zone between
adjacent domains) and the inhomogeneous setting (when
initially the reactants occupy complimentary half spaces);
the chief results are given by Eqs. (12), (13), and (26).
We then studied the single-species annihilation process in
the situation when the spatially localized source drives the
system toward the nonequilibrium steady state. We showed
that two critical dimensions demarcate different behaviors:
dc = 2 which coincides with the critical dimension of the
homogeneous process and dc = 4 + 2a which depends on the
exponent a. Our main results are given by Eqs. (37) to (39).

We also investigated the dissolution process involving
diffusing atoms injected into a localized region, an immobile
species initially fully occupying the lattice, and another
immobile species formed as the reaction product between
them, Eq. (46). An asymptotically spherical growing droplet
that contains no original immobile atoms is formed as the
process develops. Mathematically, one needs to solve the
Stefan problem as the radius of the droplet is determined in
the process of solution. In the most important applications in
a two-dimensional setting, the solution is self-similar and this
allowed us to reduce the problem to an ordinary differential
equation. This equation is analytically soluble only in the case
of concentration-independent diffusivity when the governing
equation is linear [61]. In this classical case, the probability that
a diffusing atom has not become a part of a molecule has been
recently determined [70]. It appears possible to generalize the
analysis of Ref. [70] and probe the first passage characteristics
in the case of concentration-dependent diffusivity.

Finally, we mention recent studies [71,72] of fluctuations in
diffusion processes with concentration-dependent diffusivity.
An interesting challenge is to probe the role of fluctua-
tions for annihilation processes with concentration-dependent
diffusivity.
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