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Rigorous elimination of fast stochastic variables from the linear noise approximation
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The linear noise approximation (LNA) offers a simple means by which one can study intrinsic noise in
monostable biochemical networks. Using simple physical arguments, we have recently introduced the slow-scale
LNA (ssLNA), which is a reduced version of the LNA under conditions of timescale separation. In this paper
we present the first rigorous derivation of the ssLNA using the projection operator technique and show that the
ssLNA follows uniquely from the standard LNA under the same conditions of timescale separation as those
required for the deterministic quasi-steady-state approximation. We also show that the large molecule number
limit of several common stochastic model reduction techniques under timescale separation conditions constitutes
a special case of the ssLNA.
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I. INTRODUCTION

In the study of complex systems, it is common to invoke as-
sumptions under which the dimension (and hence complexity)
of the system is reduced; such a strategy often leads to rela-
tively simple theories capable of exact analytical predictions,
which offer insights typically lost in numerical approaches.
This approach is particularly useful in the study of biochemical
pathway dynamics, which typically involves the interaction
of hundreds or thousands of different chemical species [1].
Deterministic models of such systems are frequently simplified
by invoking the presence of well-separated timescales [1,2],
in particular by means of the quasi-steady-state approximation
(QSSA) [3,4]. However, it is well appreciated nowadays that
a discrete stochastic approach in terms of chemical master
equations (CMEs) is more faithful in describing dynamics
inside living cells since the number of molecules of many
species is in the range of few tens to few thousands [5].
The development of reduced stochastic models consistently
coarse-grained over timescales presents a significantly larger
challenge than the reduction of deterministic models because
of the much larger number of differential equations which need
to be solved in the former compared to the latter.

Indeed, it has been shown that it is not possible to formulate
a reduced CME for the whole region of parameter space
in which the deterministic QSSA is valid but rather only
over a subset of this space [6–8]. For example, consider the
Michaelis-Menten mechanism in which substrate reversibly
binds with enzyme to form an enzyme-substrate complex
which then decays into product. We are interested in conditions
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such that the substrate species decays over a much longer
timescale than the enzyme and complex species. For this case,
a consistently reduced CME can be written provided only that
the complex decay rate into product is much less than its decay
rate into substrate and enzyme [8,9]. However, it is possible
to write down reduced deterministic rate equations (REs)
using the QSSA even when the aforementioned condition is
not satisfied [8].

Recently we have shown that a reduced stochastic descrip-
tion with the same range of validity as the deterministic QSSA
is possible. This reduction is achieved by first approximating
the CME by linear Langevin equations, an approximation
called the linear noise approximation (LNA) and then integrat-
ing out the fast fluctuations such that one obtains a reduced
set of linear Langevin equations for the fluctuations in the
slowly varying species only. The latter is the slow-scale LNA
(ssLNA) [10]. The advantage of the ssLNA over the reduced
CME approach is that the former is valid over the same range of
parameter space as the QSSA, a claim which has been numer-
ically verified for a number of biochemical circuits including
cooperative and noncooperative enzyme reactions and gene
networks with or without negative feedback regulation [10].
The ssLNA, as it currently stands, has been derived by means of
simple and intuitively clear physical arguments but is lacking a
formal and rigorous derivation. In this article we provide such
a derivation and also show the relationship of the ssLNA with
other common methods of stochastic model reduction based
on timescale separation assumptions.

The paper is divided as follows. In Sec. II we consider the
CME of a general system of elementary chemical reactions
with two characteristic and clearly separated timescales and
reformulate the conventional system size expansion of the
CME under such conditions. In Sec. III we use the leading
order terms of the expansion to show that the deterministic
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limit of the CME under timescale separation conditions is
formally the same as the conventional reduced rate equations
obtained from the QSSA. The next to leading order terms
of the expansion provide us with a Fokker-Planck equation
which we reduce to a simpler Fokker-Planck equation for the
slow fluctuations only, by means of the projection operator
formalism. The reduced Fokker-Planck equation is obtained
in closed-form for all monostable reaction networks and is the
same as the ssLNA obtained in Ref. [10]. Finally in Sec. IV
we show how the large molecule number limit of conventional
stochastic reduction methods leads to a special case of the
ssLNA and that hence these methods provide results in a more
restrictive range of parameter space than the ssLNA does. The
methodology of our approach is summarized in Fig. 1.

II. THE SYSTEM SIZE EXPANSION UNDER TIMESCALE
SEPARATION CONDITIONS

We consider a system that comprises N chemical species
Xi (i = 1, . . . ,N ) confined in a compartment of volume �

FIG. 1. Schematic illustrating the derivation of deterministic and
stochastic quasi-steady-state approximations and rapid-equilibrium
approximations for a reaction network with slow and fast species.
The deterministic approach based on rate equations uses Tikhonov’s
theorem while the stochastic approach utilizes the projection operator
method applied to the system size expansion derived from a modified
van Kampen ansatz.

and assume that the species can interact via j = 1, . . . ,R

elementary chemical reactions

N∑
i=1

sijXi

kj−→
N∑

i=1

rijXi, (1)

where sij and rij are the stoichiometric coefficients [11] and kj

is the macroscopic reaction rate. The constraint
∑

i sij � 2 for
all j implies that the reactions are unimolecular or bimolecular
and hence elementary. The total number of species N is
assumed to comprise Ns slow and Nf = N − Ns fast species,
respectively. For convenience, we stick to the convention that
X1 to XNs

denote the slow species, while XNs+1 to XN are
reserved for the fast species.

In what follows, matrices are denoted by underlined
quantities, and all vectors are column vectors. Let ni denote the
number of molecules of species i, then the probability P (�n,t)
to find the system in a particular state �n = (n1, . . . ,nN )T is
determined by the CME [12,13]:

∂P (�n,t)

∂t
= �

R∑
j=1

(
N∏

i=1

E
−Sij

i − 1

)
f̂j (�n,�)P (�n,t), (2)

where Sij = ( S )ij = rij − sij is the stoichiometric matrix and
Ez

i is a step operator, the action of which on some function of
the absolute number of molecules results in the same function
but with ni replaced by ni + z, and f̂j (�n,�) are the entries of
the microscopic rate function vector. The product �f̂j (�n,�) dt

represents the propensity function, which has the meaning of
the probability that reaction j takes place in a small time
interval dt .

The CME is typically analytically intractable, and hence a
systematic approximation method is needed. The system size
expansion as developed by van Kampen is one such technique
[12]. The heart of the method is the ansatz that the molecular
concentration of the CME can be written as

�n
�

= �φ + �−1/2 �η, (3)

where �φ is vector of concentrations as given by the cor-
responding REs and the second term on the right-hand
side is a stochastic term describing fluctuations about the
concentrations of the REs.

We now impose timescale separation conditions, i.e., we
assume that the transients in concentrations of a group of
species decay much slower than those of the remaining group
of species. The first group of species we label as the slow
species while the second are the fast species. The characteristic
timescales of these two are τs and τf , respectively. The vectors
of molecular populations, of macroscopic concentrations, and
of fluctuations can be divided into subpopulations of slow
and fast species: �n = (�ns,�nf ), �φ = ( �φs, �φf ) = (τs �xs,τf �xf ) and
�η = (�ηs,�ηf ) = (τ 1/2

s �εs,τ
1/2
f �εf ). The ansatz Eq. (3) can then be

written as

1

τs

�ns

�
= �xs + (�τs)

−1/2 �εs,
1

τf

�nf

�
= �xf + (�τf )−1/2�εf .

(4)

We now use this ansatz to derive an expansion of the
CME in powers of the small parameter �−1/2 valid in
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the case of large volumes or, equivalently, for large copy
numbers of molecules. For convenience the components
of the various vectors will be denoted as follows: �xs =
(x1, . . . ,xNs

)T , �xf = (xNs+1, . . . ,xN )T , �εs = (ε1, . . . ,εNs
)T

and �εf = (εNs+1, . . . ,εN )T . The probability distribution of
molecular populations P (�n,t) is hence forth changed into the
distribution of slow and fast fluctuations �(�εs,�εf ,t). In what
follows we consider how the time derivative, the step operator,
and the microscopic rate function vector which compose the
CME Eq. (2) transform under the proposed ansatz Eq. (4).

A. Transformation of the time derivative

Using the change of variable theorem the time derivative
can be written as

∂

∂t
P (�n,t) =

(
∂

∂t
+ ∇T

s

d�εs

dt

∣∣∣∣
�n
+ ∇T

f

d�εf

dt

∣∣∣∣
�n

)
�(�εs,�εf ,t),

(5)

where ∇s = (∂/∂ε1, . . . ,∂/∂εNs
)T and ∇f = (∂/∂εNs+1, . . . ,

∂/∂εN )T . The time derivatives at constant �n, denoted by ·|�n,
can be computed from the ansatz Eq. (4), leading to

∂

∂t
P (�n,t) =

(
∂

∂t
−

√
�τs∇T

s

d �xs

dt
− √

�τf ∇T
f

d �xf

dt

)
×�(�εs,�εf ,t). (6)

B. Transformation of the step operator

By the definition of the step operator we have

N∏
i=1

E
−Sij

i g(n1, . . . ,nN )

= g(n1 − ( S s)1,j , . . . ,nNs
− ( S s)Ns,j ,

nNs+1 − ( S f )1,j , . . . ,nN − ( S f )Nf ,j ), (7)

where we have partitioned the stoichiometric matrix into
two parts: ( S s)ij = ( S )ij for 1 � i � Ns (the stoichiometric
matrix for the slow species) and ( S f )ij = ( S )i+Ns,j for
1 � i � Nf (the stoichiometric matrix for the fast species).
Note that g denotes some general function of the molecule
numbers. Applying the ansatz Eq. (4) it follows that the above
equation can be written as

N∏
i=1

E
−Sij

i g(ε1, . . . ,εN )

= g(ε1 − (�τs)
−1/2( S s)1,j , . . . ,εNs

− (�τs)
−1/2( S s)Ns,j ,

εNs+1 − (�τf )−1/2(Sf )1,j , . . . ,εN−(�τf )−1/2(Sf )N,j ).

(8)

The right-hand side of the above equation can be Taylor
expanded from which it follows that the step operator for the
j th reaction has the following formal expansion in powers of
the inverse square root of the system volume:

N∏
i=1

E
−Sij

i − 1

=
∞∑

k=1

(−1)k�−k/2

k!

[(
τ−1/2
s ∇T

s S s + τ
−1/2
f ∇T

f S f

)
j

]k
. (9)

C. Transformation of the microscopic rate function vector

We consider four general types of elementary reactions
depending on the order j of the reaction, for which the
microscopic rate functions have been rigorously derived from
microscopic considerations [14,15]: (1) f̂j (�n,�) = kj , for
a zeroth-order reaction by which a species is input into a
compartment; (2) f̂j (�n,�) = kjnu�

−1, for a first-order uni-
molecular reaction describing the decay of some species u; (3)
f̂j (�n,�) = kjnu(nu − 1)�−2 for a second-order bimolecular
reaction between two molecules of the same species u; and
(4) f̂j (�n,�) = kjnunv�

−2, for a second-order bimolecular
reaction between two molecules of different species, u and v.

With each of these cases one can also associate a macro-
scopic rate function �f , i.e., the rate of reaction as given by
the corresponding rate equations. For the four cases discussed
above these are (1)fj (�xs,�xf ) = kj ; (2) fj (�xs,�xf ) = kjφu; (3)
fj (�xs,�xf ) = kjφ

2
u; and (4) fj (�xs,�xf ) = kjφuφv , where φi =

τsxi if 1 � i � Ns and φi = τf xi if Ns + 1 � i � N .
Given the microscopic and macroscopic rate functions for

the four elementary reactions, one can write the former in
terms of the latter, leading to the general result

f̂j (�n,�) = fj (�xs,�xf ) + (�τs)
−1/2∇T

�xs
fj (�xs,�xf )�εs

+ (�τf )−1/2∇T
�xf

fj (�xs,�xf )�εf + O(�−1), (10)

where ∇�xs
and ∇�xf

denote the vectors of derivatives with re-
spect to the components of the vectors �xs and �xf , respectively.

This formula can be easily verified by considering each of
the four elementary reactions discussed above. For example for
case of a second-order j th reaction involving a slow species u

and a fast species v, we have

f̂j (nu,nv,�) = kj

nu

�

nv

�
= kj [τsτf xuxv + (�τs)

−1/2τs

× τf xvεu + (�τf )−1/2τsτf xuεv] + O(�−1)

= fj (xu,xv) + (�τs)
−1/2 ∂fj (xu,xv)

∂xu

εu

+ (�τf )−1/2 ∂fj (xu,xv)

∂xv

εv + O(�−1), (11)

where we used the definitions of the microscopic and macro-
scopic rate functions given above and the ansatz Eq. (4).

D. The transformed CME

Substituting Eqs. (6), (9), and (10) in the CME [Eq. (2)]
and rescaling time by the slow timescale τ = t/τs , we obtain
the transformed CME:

∂

∂τ
�(�εs,�εf ,τ ) − (�τs)

1/2∇T
s

[
∂ �xs

∂τ
− Ss

�f (�xs,�xf )

]
�(�εs,�εf ,τ )

− (�τf )1/2∇T
f

[
∂ �xf

∂τ
− γ Sf

�f (�xs,�xf )

]
�(�εs,�εf ,τ )

= �0(γLf + γ 1/2Lint + Ls)�(�εs,�εf ,τ ) + O(�−1/2),

(12)

where we have introduced the nondimensional ratio of slow
and fast timescales

γ = τs

τf

. (13)
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Note that the order �0 is defined by the operators

Ls = −∇T
s J̃ s�εs + 1

2∇T
s D̃ s∇s , (14a)

Lf = −∇T
f J̃ f �εf + 1

2∇T
f D̃ f ∇f , (14b)

Lint = −∇T
f J̃ f s�εs + 1

2∇T
s D̃ sf ∇f

−∇T
s J̃ sf �εf + 1

2∇T
f D̃ f s∇s , (14c)

where J̃s=Ss(∇�xs
�f T )T , J̃f =Sf (∇�xf

�f T )T , J̃sf =S s(∇�xf
�f T )T ,

and J̃f s = S f (∇�xs
�f T )T as well as D̃ s = S sdiag( �f ) S T

s ,

D̃ f = S f diag( �f ) S T
f and D̃ sf = D̃

T

f s = S sdiag( �f ) S T
f .

III. DERIVATION OF THE SLOW-SCALE LINEAR
NOISE APPROXIMATION

A. Deterministic QSSA

The leading order terms, O(�1/2), of Eq. (12) describe the
dynamics of macroscopic concentrations and is given by the
coupled set of REs:

d �xs

dτ
= S s

�f (�xs,�xf ), (15a)

1

γ

d �xf

dτ
= S f

�f (�xs,�xf ). (15b)

The presence of timescale separation is reflected by the large
parameter γ diminishing the time derivative in Eq. (15b).
Such a set of equations present a special case in singular
perturbation theory, where Eqs. (15a) and (15b) for the slow
and fast variables are typically referred to as the degenerate and
adjoined systems, respectively [11]. Tikhonov’s first theorem
[16,17] states that a simplification of the above equations
under timescale separation conditions is possible whenever
certain requirements are met: (1) the solutions of both the
degenerate and adjoined systems [Eqs. (15)] are unique and
their right-hand sides are continuous functions; (2) the root
�xf = h(�xs,τ ) is the stable solution of the adjoined system; and
(3) the initial values �xf (τ = 0) are in the domain of influence
of the solution as in (2). Whenever these prerequisites are met,
the solution of the full system (15) for �xs tends to the solution
of the reduced system

d �xs

dτ
= S s

�f (�xs,h(�xs)), (16)

in the limit of timescale separation, i.e., γ −1 → 0. Note that
�xf = h(�xs) is the solution of S f

�f (�xs,�xf ) = 0.
These requirements are typically fulfilled for the biochemi-

cal networks of interest. This is since the chemical transforma-
tion scheme (1) is formulated for elementary reactions, which
are bimolecular or simpler, the right-hand sides of Eqs. (15) are
continuous polynomial functions of the second order at most.
For monostable networks, the rate equations admit a single
steady state which is the same for the full and the reduced
REs, i.e., Eqs. (15) and (16). It is therefore clear that all the
solutions will tend to this state with time, quicker for fast
variables and slower for the slow ones.

B. Adiabatic elimination of stochastic variables using the
projection operator formalism

In the previous subsection, we reviewed how imposing
timescale separation on the deterministic level leads to reduced
time evolution equations for the concentrations of the slow
species. A related question which is the main issue of
this article is: What is the reduced Fokker-Planck equation
describing the fluctuations about the concentrations predicted
by the deterministic QSSA?

The Fokker-Planck equation describing the fluctuations in
the concentrations of both fast and slow species is given by the
O(�0) terms in Eq. (12); this has the form

∂

∂τ
�(�εs,�εf ,τ ) = (γLf + γ 1/2Lint + Ls)�(�εs,�εf ,τ ). (17)

From the definitions of the operators Eq. (14), it can be seen
that Lf acts only on the fast variables, Ls acts only on the slow
variables and Lint acts only on both slow and fast variables.
Hence the three operators describe processes evolving on fast,
slow, and intermediate timescales, respectively. The dimen-
sionless parameter γ here weights the degree of timescale
separation in the system. The fact that γ is the same as for the
deterministic QSSA implies that the conditions for timescale
separation of the stochastic variables, in the limit of large �,
are exactly the same as those for the REs.

For well-separated timescales, i.e., the case γ � 1, we
are typically interested in the probability distribution of slow
variables, �(�εs,τ ) = ∫

d�εf �(�εs,�εf ,τ ). Projection operator
methods have been found useful in facilitating the adiabatic
elimination of fast variables from stochastic descriptions
[18,19]. Here we use one such method to rigorously obtain
a reduced Fokker-Planck equation for the fluctuations in the
concentrations of the slow variables.

The main idea behind the projection operator method is that
one specifies the quasi-steady-state probability distribution
π (�εf ) of fast fluctuations, which is determined by the infinite
γ -limit of Eq. (17):

Lf π (�εf ) = 0. (18)

The reduction is then carried out defining the operator

(P�)(�εs,�εf ,τ ) = π (�εf )
∫

d�εf �(�εs,�εf ,τ ) = π (�εf )�(�εs,τ ),

(19)

projecting the probability distribution �(�εs,�εf ,τ ) onto the
distribution of fast fluctuations evaluated at steady state. Note
that the above definition satisfies the relation P2 = P and
hence P is indeed a projector.

In what follows we use the forms we have derived for the
operators in the Fokker-Planck Eq. (17), i.e., those given by
Eq. (14), to deduce three properties of the projection operator.
Given these properties we then show how the projection
operator applied to Eq. (17) leads to a reduced Fokker-Planck
equation in the slow variables only.

1. Properties of the projection operator

In this subsection we will show that the following properties
hold:

PLs = LsP, (20a)
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PLf = LfP = 0, (20b)

PLint P = 0. (20c)

First, property (20a) follows from the fact that the projection
operator P , as defined by Eq. (19), acts only on the fast
variables �εf , whereas Ls , see Eq. (14a), acts only on the slow
variables �εs , and hence the two operators P and Ls commute.

Second, we show that both equalities of property (20b) are
satisfied. Considering the left-hand side, we obtain

PLf = π (�εf )
∫

d�εf ∇f
T (· · · ) = 0, (21)

sinceLf , as given by Eq. (14b), has the form of a divergence in
the fast variables and hence by the partial integration lemma,
its integral vanishes in the absence of boundary terms. By
considering the right-hand side, we have

LfP = (Lf π (�εf ))
∫

d�εf = 0, (22)

by the quasi-steady-state condition, Lf π = 0.
The third property (20c) can be obtained as follows. The

first, second, and fourth terms of Lint as given by Eq. (14c)
have the form of a divergence in the fast variables, and hence
by the partial integration lemma they give no contribution to
PLintP . The third term of Eq. (14c) also does not contribute
albeit for a different reason than for the three other terms just
discussed:

PLintP = π (�εf )
∫

d�εf

( − ∇T
s J̃ sf �εf

)
π (�εf )

∫
d�εf

= −π (�εf )∇T
s J̃ sf 〈�εf 〉π

∫
d�εf = 0. (23)

Here we have applied the partial integration lemma and then
used the fact that 〈�εf 〉π = 0. The latter follows from the
explicit form of Lf [see Eq. (14)], which implies that the
solution of the Fokker-Planck equation for the fast fluctuations
Lf π (�εf ) = 0 is a Gaussian distribution centered about zero.

2. Derivation of the projection operator method

We will now use the three properties of the projection
operator just derived to obtain a reduced Fokker-Planck
equation. Our approach in this subsection follows that of
Gardiner [19,20].

We define Q = 1 − P and the following two functions:

v(τ ) ≡ P�(�εs,�εf ,τ ), w(τ ) ≡ Q�(�εs,�εf ,τ ), (24)

together with their Laplace transforms:

ṽ(s) =
∫ ∞

0
dτe−sτ v(τ ), w̃(s) =

∫ ∞

0
dτe−sτw(τ ). (25)

The latter has the distinct advantage that instead of dealing with
differential equations we obtain a set of algebraic equations.
Using Eqs. (24) and (25) together with Eq. (17) we find

sṽ(s) − v(0) = Ls ṽ(s) + γ 1/2PLintw̃(s), (26a)

sw̃(s) − w(0) = (Ls + γLf + γ 1/2QLint)w̃(s)

+ γ 1/2QLintṽ(s). (26b)

Note that use has been made of the properties (20a)
and (20b). Solving for ṽ(s), we obtain

sṽ(s) − v(0)−γ 1/2PLintD(γ )w(0)

= [Ls + γPLintD(γ )Lint]ṽ(s), (27)

where we have used definition (24) and property (20c) and
introducedD(γ ) = (s − Ls − γLf − γ 1/2QLint)−1. From the
above equation one can draw the limit γ → ∞ for which
D(γ ) ∼ −(γLf )−1:

∂

∂τ
v(τ ) = [

Ls − PLintL−1
f Lint

]
v(τ ), (28)

where we have inverted the Laplace transform Eq. (25). Note
that due to the vanishing of the third term on the left-hand side
of Eq. (27) this asymptotic limit is Markovian and hence does
not require the knowledge of the initial distribution w(0) of the
fast fluctuations. Using v(τ ) = π ( �εf )�( �εs,τ ) and integrating
over the fast fluctuations �εf we obtain

∂�(�εs,τ )

∂τ
= L′�(�εs,τ ), (29a)

L′ = Ls − 〈
Lint L−1

f Lint
〉
π
, (29b)

where the angled brackets with subscript π in Eq. (29b)
denote the statistical average over the steady-state probability
distribution π (�εf ) of fast fluctuations.

3. Derivation of the slow-scale linear noise approximation

The above equation is a generic form for the Fokker-Planck
equation for the slow fluctuations �εs under timescale separation
conditions. What remains is to explicitly evaluate the average
over π (�εf ) such that we obtain a closed-form expression
for the reduced Fokker-Planck equation. We now show these
evaluation steps in detail.

Using Lint as given by Eq. (14) together with Eq. (29b) we
can deduce the form of the reduced Fokker-Planck operator:

L′ = Ls − ∇T
s J̃ sf

〈�εfL−1
f ∇ T

f

〉
π

J̃ f s�εs

−∇T
s J̃ sf

〈�εfL−1
f �ε T

f

〉
π

J̃
T

sf ∇s

+ 1
2∇T

s J̃ sf

〈�εfL−1
f ∇ T

f

〉
π

D̃ f s∇s

+ 1
2∇T

s D̃ sf

〈�εfL−1
f ∇ T

f

〉T
π

J̃
T

sf ∇s . (30)

Note that terms which have ∇T
f to the left do not contribute

to the reduced operator and hence are missing from the above
equation.

We proceed by evaluating the two distinct correlators
appearing in the above expression explicitly. We shall make
use of the identity

∫ ∞

0
du eLf u = L−1

f eLf u
∣∣∞
0 = −L−1

f (1 − P), (31)

which can be verified from straightforward integration and the
fact that P�( �εs, �εf ,τ ) = limu→∞ eLf u�( �εs, �εf ,τ ) [19]. Using
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the fact that P�ε T
f π = 0, we can write

〈�εf L−1
f �ε T

f

〉
π

=
∫

d�εf �εfL−1
f (1 − P)�ε T

f π

= −
∫ ∞

0
du

∫
d�εf �εf eLf u �ε T

f π

= −
∫ ∞

0
du〈�εf (u)�ε T

f (0)〉π . (32)

Note that in the third step we have taken into account that
�ε T
f π (�εf ,u) = eLf u�ε T

f π (�εf ,0) is a solution to ∂uπ = Lf π

with the initial condition �ε T
f π (0). One can utilize the Fourier

transform of the autocorrelation matrix 〈�εf (u)�ε T
f (0)〉π =∫

dω/(2π )eiωu S f (ω) to find that〈�εf L−1
f �ε T

f

〉
π

= − 1
2 S f (0) = − 1

2 J̃
−1
f D̃ f J̃

−T

f . (33)

Similarly, one can show that

〈�εf L−1
f ∇T

f

〉
π

= −
∫ ∞

0
du e J f u

〈�εf ∇T
f

〉
π

= − J̃
−1
f . (34)

Here 〈�εf ∇T
f 〉π = − I with identity matrix I , is evaluated by

partial integration. Plugging Eqs. (33) and (34) into Eq. (30)
gives a closed-form expression for the Fokker-Planck operator
of the reduced probability distribution �(εs,τ ):

L′ = −∇T
s J̃ �εs + 1

2∇T
s D̃ ss∇s , (35a)

J̃ = J̃ s − J̃ sf J̃
−1
f J̃ f s, (35b)

D̃ ss = D̃ s + J̃ sf

(
J̃

−1
f D̃ f J̃

−T

f

)
J̃

T

sf

− J̃ sf J̃
−1
f D̃ f s − (

J̃ sf J̃
−1
f D̃ f s

)T
. (35c)

We complete our analysis by changing to natural variables
of concentration fluctuations �̂ηs = (τs/�)1/2�εs , of real time
t = ττs and concentrations �φs,f = τs,f �xs,f to finally yield the
reduced Fokker-Planck equation for the fluctuations in the
slow species:

∂

∂t
P ( �̂ηs,t) = ( − ∇̂T

s J �̂ηs + 1
2 ∇̂T

s D ss∇̂s

)
P ( �̂ηs,t), (36a)

J = J s − J sf J −1
f J f s, (36b)

D ss = D s + J sf

(
J −1

f D f J −T
f

)
J T

sf

− J sf J −1
f D f s − (

J sf J −1
f D f s

)T
, (36c)

where ∇̂s denotes the derivative with respect to
�̂ηs . The coefficient matrices in the above expres-
sions are given by J s = S s(∇ �φs

�f T )T , J f = S f (∇ �φf

�f T )T

and J sf = S s(∇ �φf

�f T )T , J f s = S f (∇ �φs

�f T )T as well as

D s = �−1 S s F S T
s , D f = �−1 S f F S T

f , D sf = D T
f s =

�−1 S s F S T
f and F = diag( �f ).

We note that the slow-scale Jacobian (36b) coincides with
the reduced Jacobian as obtained from the macroscopic QSSA
equations, i.e., Eqs. (16), as shown in Ref. [10]. It is also
important to note that the reduced diffusion matrix D ss admits
the representation

D ss = �−1( A − B )( A − B )T , (37)

where A = S s

√
F and B = J sf J −1

f S f

√
F . From this

representation it can be immediately deduced that the reduced
matrix D ss is symmetric and positive semidefinite, two crucial
properties of the diffusion matrices for all Fokker-Planck
equations [12]. Using standard methods [19] one can also
obtain the Langevin equations corresponding to the slow-scale
Fokker-Planck equation (36a). These are given by

d

dt
�̂ηs(t) = J �̂ηs(t) + �−1/2

(
S s − J sf J −1

f S f

)√
F ��(t), (38)

where the R-dimensional vector ��(t) is white Gaussian noise
defined by 〈�i(t)〉 = 0 and 〈�i(t)�j (t ′)〉 = δi,j δ(t − t ′). Equa-
tions (36a) and (38) constitute equivalent forms of the LNA
under timescale separation conditions, with the latter being
particularly useful for Monte Carlo simulation purposes. This
reduced LNA is precisely the ssLNA introduced in Ref. [10].

IV. REACTION NETWORKS WITH SLOW
AND FAST REACTIONS

Besides the QSSA there exists another popular method
to eliminate the fast variables from the deterministic REs;
this is the rapid-equilibrium approximation [11,21,22]. While
the QSSA considers the situation in which there exists slow
and fast species whose transients decay on well-separated
timescales, the rapid-equilibrium approximation divides the
set of reactions into groups of slow and fast reactions where the
latter determines the equilibrium of the fast species alone [11].

In the stochastic case there exist a variety of methods
separating fast and slow reactions. Examples are the “nested
stochastic simulation algorithm” [23], “slow-scale stochastic
simulation algorithm” [24], the “stochastic partial equilibrium
assumption” [25], and the “quasiequilibrium approximation”
[26]. Confusingly, also the “stochastic quasi-steady-state
assumption” of Rao and Arkin [27] is valid only in the limit
of slow and fast reactions [8,9]. All of these approaches
have in common that the microscopic rate functions, or
equivalently the propensities are rearranged into two groups:
those associated with Rs slow reactions which occur rarely
over a long period of time, and those associated with (R − Rs)
fast reactions which occur frequently over a short period of
time. Then we can define a constant μ such that

μ = max(f̂1,f̂2, . . . ,f̂Rs
)

min(f̂Rs+1,f̂Rs+2, . . . ,f̂R)
� 1, (39)

holds. For the sake of this article we will refer to approx-
imations utilizing the above criterion as “rapid equilibrium
approximations.” Since our present derivation of the ssLNA is
based only on the assumption of the presence of slow and fast
species it can be used to investigate the latter approximation
as a partial case.

Using the size parameter μ we can write the vector of
macroscopic rate functions as

�f (�xs,�xf ) = ( �fs(�xs,�xf ),μ �ff (�xs,�xf )), (40)

where �fs(�xs,�xf ) = (f1,f2, . . . ,fRs
) are the rates of the slow

reactions and �ff (�xs,�xf ) = μ−1(fRs+1,fRs+2, . . . ,fR) are the
rates of the fast reactions rescaled by the size parameter μ.
Note that here μ is determined by the infinite volume limit of
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Eq. (39). We can now partition the stoichiometric matrix into
block matrices

S =
[

S s

S f

]
=

[
S (s)

s S (f )
s

S (s)
f S (f )

f

]
, (41)

discriminating slow and fast reactions (superscript) as well
as slow and fast species (subscript). The matrices S (s)

s and
S (f )

f denote the stoichiometries of the slow and fast species in

the slow and fast reactions, respectively, while S (f )
s and S (s)

f

represent the stoichiometry of slow species in fast reactions
and the stoichiometry of fast species in slow reactions.

A. Deterministic rapid-equilibrium approximation

The macroscopic elimination starts from the conventional
REs:

d �xs

dτ
= μ S (f )

s
�ff + S (s)

s
�fs, (42a)

1

γ

d �xf

dτ
= μ S (f )

f
�ff + S (s)

f
�fs, (42b)

which are similar to Eqs. (15) but discriminate slow and fast
reactions by the size parameter μ. It is clear that μ and γ

must be of the same order since slow and fast timescales are
determined by the size of the rate functions.

Further, we observe that for μ → ∞ the above equations
are not immediately of the form required by Tikhonov’s theo-
rem [compare Eqs. (15)], and hence the adiabatic elimination is
not immediately applicable unless we impose S (f )

s = 0. This
condition implies that the populations of slow species are not
changed in fast reactions and is also imposed throughout the
literature in reducing stochastic slow-fast reaction networks
[24–26,28]. Setting the time derivative of the second equation
to zero we can solve S (f )

f
�ff ≈ 0 for �xf = h(�xs) + O(μ−1) to

obtain the reduced system

d �xs

dt
= S (s)

s
�fs(�xs,h(�xs)). (43)

In the case where the equilibrium of the fast reactions
S (f )

f
�ff = 0 is detailed balanced, the above approximation is

called the deterministic rapid-equilibrium approximation [11],
i.e., the case when the fast reactions are given by a set of
reversible reactions for which the forward and backward rates
of each reaction cancel each other.

B. Stochastic rapid-equilibrium approximation

We can now apply the ssLNA to obtain the con-
tribution of the fluctuations using the same con-
ditions as used above for the deterministic rapid-
equilibrium approximation. First, we make use of the
condition S (f )

s = 0 to obtain the coefficients J s = S (s)
s

(∇ �φs

�f T
s )T , J f = μ S (f )

f (∇ �φf

�f T
f )T + S (s)

f (∇ �φf

�f T
s )T , J sf =

S (s)
s (∇ �φf

�f T
s )T , and J f s = S (s)

f (∇ �φs

�f T
s )T + μ S (f )

f (∇ �φs

�f T
f )T ,

which distinguish contributions from slow and fast reactions.
Second, we can use these together within Eq. (36b) to obtain

the reduced Jacobian by taking the limit μ → ∞:

J = S (s)
s

(∇ �φs

�f T
s

)T − S (s)
s

(∇ �φf

�f T
s

)T [
S (f )

f

(∇ �φf

�f T
f

)T ]−1

× S (f )
f

(∇ �φs

�f T
f

)T
. (44)

It can be shown that the above expression coincides with
the Jacobian obtained using Eq. (43). Third, we calculate the
coefficients of the noise from Eq. (37) as

A = S (s)
s

√
F s , B = 0, (45)

where F s = diag( �fs) and F f = diag( �ff ). Note that the sec-
ond equation follows from inserting S f

√
F = S (s)

f

√
F s +

μ S (f )
f

√
F f into the definition of B after Eq. (37) together

with the expression for J f and J sf and taking the limit
μ → ∞. This implies that B is of order μ−1/2, and hence
the noise stemming from the fast reactions can be neglected
in the limit μ → ∞. Finally, we can formulate the Langevin
equations:

d

dt
�̂ηs(t) = J �̂ηs(t) + �−1/2 S (s)

s

√
F s

��(t). (46)

Note that these equations are consistent with those obtained
using stoichiometry S (s)

s and propensity vector �fs(�xs,h(�xs)) of
the reduced macroscopic equations (43). Note that while in the
ssLNA [Eq. (38)] (which is consistent with QSSA conditions)
both the noise in the fast and slow reactions contribute to the
noise of the slow species, in the stochastic rapid-equilibrium
approximation [Eq. (46)], the noise in the slow reactions alone
determines that in the slow species.

The latter Langevin equation has also been obtained by
Pahlajani et al. [28] starting from the decomposition of
reactions into slow and fast categories. However, our derivation
is the first to clearly show that this Langevin equation is a
partial case of the ssLNA and hence is valid only over a subset
of the parameter space over which the QSSA holds.

V. DISCUSSION

In this article we have shown how to rigorously reduce
the linear noise approximation of the CME by using the
projection operator formalism to eliminate the fast fluctuation
variables. The resulting Langevin equation, Eq. (38), is in
agreement with the ssLNA as has been previously deduced
from intuitive arguments only [10]. The present derivation
provides a rigorous basis by deriving the LNA from the
system size expansion using a modified van Kampen ansatz,
Eq. (4), which is applicable under conditions of timescale
separation. The resulting REs, Eq. (15), and the Fokker-Planck
equation (17) obtained by this approach are of a particular
form which allows direct application of Tikhonov’s theorem
and the projection operator method, respectively. Hence by
this procedure it is guaranteed that the mesoscopic elimination
of the fast fluctuations is valid in exactly the same limit as
the macroscopic elimination of the concentrations of the fast
species by the deterministic QSSA.

For reaction networks composed of slow and fast reactions,
conditions considered by the majority of available stochastic
model reduction methods employing timescale separation, we
have shown that in the limit of large volumes or molecule
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numbers the CME can be approximated by a Langevin
equation, Eq. (46), which is a special case of the ssLNA.
The main advantage of using the ssLNA over the various
aforementioned methods [23–28] is that the ssLNA is valid
over a larger parameter range than the latter methods. The
path integral approach developed in Ref. [29] also enjoys this
property. However, the ssLNA enjoys the further advantage
that it is available in closed form for any monostable reaction
network and hence can be readily constructed from knowledge
of the stoichiometric matrix and deterministic rate equations.
The disadvantage of the ssLNA is that for pathways composed
of some second-order reactions, the ssLNA (and the LNA
on which it is based) is valid only for large enough molecule
numbers [30,31]. This limitation can be lifted by consideration
of higher order terms in the system size expansion; such
calculations present more formidable analytical challenges
than encountered in the derivation of the ssLNA and are under
current investigation.

For realistic biochemical networks there may be particular
parameter ranges for which the stability of the dynamics is
either monostable or bistable or even oscillatory states can
occur. The applicability of the method therefore depends on
the type of stability realized for a particular network under
consideration. Oscillatory states are found for 10% of the
transcriptome and 20% of the proteome in mouse liver [32,33]
and similar fractions in the human metabolome [34]. Although
bimodal distributions have been observed experimentally, as,
for instance, in the lac operon of E. coli [35], a recent proteome-
wide study suggests that such probability distributions (which
potentially indicate bistability) are quite rare [36] and similarly
for the human transcriptome [37]. Despite the fact that bistable

and oscillatory properties are important for specific cellular
functions, it appears that monostable networks for which the
present theory has been developed are common in living cells.

We note that the LNA has been applied also to networks
with limit cycles [38]. The resulting equation is still a linear
Fokker-Planck equation, and hence the elimination of fast
variables can be performed along the same lines as in the
present derivation. However, the analysis of the resulting
equation has to be carried out by means of Floquet theory
due to the inherent phase diffusion in these systems [39].
For bistable systems, the underlying distribution cannot be
captured by a linear Fokker-Planck equation, and hence
the LNA is not applicable in this case [12]. A commonly
employed procedure to eliminate fast variables in such systems
is the stochastic QSSA. A recent numerical study reported
considerable discrepancies in the probability distributions of
full and QSSA-reduced bistable systems [40]. We expect
these discrepancies to be similar to the difference in the
ssLNA and rapid-equilibrium approximations discussed in
this article for the monostable case. Therefore, developing a
technique to rigorously reduce the CME of bistable networks
remains still an open question. Since our method is devised
for monostable systems and can be extended to oscillatory
ones under timescale separation conditions we expect it to be
of broad applicability for the study of intracellular reaction
networks.
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