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Deep spin-glass hysteresis-area collapse and scaling in the three-dimensional ±J Ising model
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We investigate the dissipative loss in the ±J Ising spin glass in three dimensions through the scaling of the
hysteresis area, for a maximum magnetic field that is equal to the saturation field. We perform a systematic analysis
for the whole range of the bond randomness as a function of the sweep rate by means of frustration-preserving
hard-spin mean-field theory. Data collapse within the entirety of the spin-glass phase driven adiabatically (i.e.,
infinitely slow field variation) is found, revealing a power-law scaling of the hysteresis area as a function of the
antiferromagnetic bond fraction and the temperature. Two dynamic regimes separated by a threshold frequency
ωc characterize the dependence on the sweep rate of the oscillating field. For ω < ωc, the hysteresis area is
equal to its value in the adiabatic limit ω = 0, while for ω > ωc it increases with the frequency through another
randomness-dependent power law.
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Hysteresis in magnetic materials has been a subject of
interest for quite some time due to its applications in magnetic
memory devices and as a testing ground for theories of
nonequilibrium phenomena [1–4]. The hysteresis area which
measures the magnetic energy loss in the material is connected
with the Barkhausen noise [5,6] due to irreversible avalanche
dynamics [7–12]. The existing literature on hysteresis in ran-
dom magnets focuses mostly on random-field models [12–15]
while numerical studies on random-bond models are mostly at
zero temperature [16–22]. To our knowledge, there has been
no finite-temperature study of the hysteresis loss, especially
in the spin-glass phase where large avalanches are expected to
be severely prohibited. We here investigate the adiabatic and
dynamic hysteresis in the the ±J random-bond Ising spin glass
[23] on a finite, three-dimensional simple cubic lattice with
periodic boundary conditions. We show that the hysteresis area
obeys a scaling relation in the whole spin-glass phase, in accord
with earlier theoretical studies which observed scale invariance
over the whole range about the critical disorder for various
disorder-driven systems [15–17]. Moreover, this scaling data
collapse is also observed for experimental systems over wide
ranges of the temperature and the magnetic field: Gingras
et al. observed a universal data collapse over four decades
in a geometrically frustrated antiferromegnet Y2Mo2O7 [24],
while Gunnarsson et al. observed such a data collapse for the
short-range Ising spin glass Fe0.5Mn0.5TiO3 [25].

The ±J Ising spin-glass model is defined by the dimen-
sionless Hamiltonian

−βH =
∑
〈ij〉

Jij sisj + H
∑

i

si , (1)

where β ≡ 1
kBT

is the inverse temperature. The first sum
in Eq. (1) is over the pairs of nearest-neighbor sites (i,j ),
where Jij is the quenched-random local interaction between
the classical Ising spins si = ±1. The probability distribution
function for Jij is given by

P (Jij ) = p δ(Jij + J ) + (1 − p)δ(Jij − J ) . (2)

H in the second term in Eq. (1) is the uniform external mag-
netic field. With a proper choice of units, the temperature for
the system may be defined as T ≡ 1/J . A random distribution
of the ferromagnetic and antiferromagnetic bonds gives rise
to frustration and yields a spin-glass phase for a range of p

values. Ising spin-glass models are widely used as a tool for
understanding the properties of experimental spin glasses such
as Pr0.6Ca0.4Mn0.96Ga0.04O3 [11], Fe0.5Mn0.5TiO3 [25–27],
LiHo0.167Y0.833F4 [28], and Cu3−xAlMnx [29]. Without loss
of generality we set p � 0.5 since the partition function is
invariant under the transformation p,{sA

i },{sB
j } → (1 − p),

{sA
i },{−sB

j }, where A and B signify the two sublattices.
For small values of p and H = 0, the orientational (up-

down) symmetry is spontaneously broken below a critical
temperature Tc(p) and long-range ferromagnetic order sets
in. This phase is well understood within the Landau picture
where the free energy landscape is described by two minima
at magnetizations ±m(T ,p). Beyond a critical fraction pc of
the antiferromagnetic bonds, reducing temperature drives the
system into a glassy phase. The low-temperature phase now
retains its orientational symmetry and a new, randomness-
dominated phase which has a broken replica symmetry appears
[30,31]. In this phase, the free energy landscape is rough, with
many local minima at significantly nonoverlapping configu-
rations. Meanwhile, the dynamics slows down to the extent
that the relaxation time diverges [32]. At high temperatures
T > Tc(p), both ordered phases give way to a paramagnetic
state where the entropic contribution to the free energy is
dominant. While the critical temperature strongly depends on
p along the ferromagnet-to-paramagnet phase boundary, only
a weak dependence of Tc on p is observed for the spin-glass
phase [32,33]. In this study, we investigate the hysteretic
behavior of a spin glass under the uniform magnetic field H

that is swept at a constant rate ω. A past computational study
similar to ours [34] considered a time-dependent quenched-
random magnetic field that was conjugate to the spin-glass
order parameter.

We use hard-spin mean-field theory (HSMFT), a self-
consistent field theoretical approach [34–50] that preserves
the effects due to the frustration (crucial for the spin-glass
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phase) generated by the randomly scattered antiferromagnetic
bonds. HSMFT is defined by the refined set of self-consistent
equations

mi =
∑
{sj }

{[ ∏
j

P (mj,sj )

]
tanh

( ∑
j

Jij sj + H

)}
(3)

for the local magnetization mi at each site i, whose nearest
neighbors are labeled by j . The single-site probability distri-
bution is

P (mj,sj ) = 1 + mjsj

2
. (4)

The local magnetization mi at site i satisfies −1 � mi � 1.
The hard-spin mean-field theory Eq. (3) has been discussed in
detail by the authors of Refs. [34–50].

HSMFT has been successfully applied to spin glasses
[34,43]. In this paper we make use of the method to investigate
the scaling of the hysteresis area under a uniform, time-
dependent magnetic field. To this end, we consider a 20 ×
20 × 20 cubic lattice with periodic boundary conditions. We
have checked in this study and in a previous study [34] that our
hard-spin mean-field theory results are independent of size for
an L × L × L system for L � 15. A particular realization at a
given (T ,p) is generated by the assignment of the quenched-
random coupling constants Jij according to the probability
distribution of Eq. (2) and, initially, a random and unbiased
choice of spins si = ±1. To determine the hysteresis curves,
the system is first saturated by a sufficiently large external
field Hs , the minimum value of H for which Eq. (3) yields
an average magnetization m = (1/L3)

∑
i mi = 1 within an

accuracy εm ≡ 10−6. Then, the path Hs → −Hs → Hs is
traversed with steps �H = Hs/100 or smaller. For each
incremental change of the field, the system is allowed to relax
a number of time steps τ = 1/ω. A time step corresponds to
successive iterations of Eq. (3) on L3 arbitrarily chosen sites.
An infinitely slow sweep is obtained as the limit τ → tR , where
the HSMF equations converge to a self-consistent solution
within the tolerance interval εm. Thus, tR is the relaxation time
of the system.

The infinitely slow-sweep hysteresis curves obtained in
the ferromagnetic and spin-glass phases are shown in Fig. 1.
The usual jump in the magnetization at a coercive field
Hc, observed for small p, is associated with a system-wide
avalanche in the ferromagnetic phase. For p larger than a
critical value pc, this picture is replaced by a slanted hysteresis
curve and a smaller hysteresis area, typical of spin-glass ma-
terials [3,11,29]. This converse hysteretic behavior, associated
with the Barkhausen noise [5,6], is a consequence of the
power-law distribution of avalanches which is well established
[6,7,10–12,14–18,20,21,29,51] for several frustrated systems
with quenched disorder. The hysteresis area disappears in the
paramagnetic phase.

In Fig. 2, we present the infinitely slow-sweep hysteresis
area globally, for all temperatures and antiferromagnetic
bond probabilities, on a logarithmic color-contour plot. The
hysteresis area A0 vanishes in the region shown in dark
blue, which corresponds to the paramagnetic phase, while
it is nonzero in the ferromagnetic and spin-glass phases,
respectively, on the left and right of the lower half of Fig. 2.
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FIG. 1. (Color online) Hysteresis curves (upper) and relaxation
times (lower) at high (T =4.00, left) and low (T =2.00, right) tem-
peratures. Data are for p values either deep in the ferromagnetic (p=
0.05), spin-glass (T =2.00, p=0.35), or paramagnetic (T =4.00,
p=0.35) phases, or close to the phase boundaries for the
ferromagnetic-paramagnetic (T =4.00, p=0.15) or ferromagnetic-
spin-glass (T =2.00, p=0.22) transitions. For each case, an overlay
of 20 distinct runs with different random-bond arrangements is shown.

The para-ferro and para-spin-glass phase boundaries are easily
determined by locating the temperature at which A0 vanishes
(i.e., falls below εm). A set of p scans for different temperatures
and a set of temperature scans for various p values are given
in Fig. 3. The low-temperature ferro-spin-glass boundary is
located at pc � 0.22 and is calculated as the inflection point
for the maximum slope of the hysteresis curve as a function of
antiferromagnetic bond probability [16]. The phase boundaries
are consistent with the well-known phase diagram for the
three-dimensional ±J model [33] and in fair comparison with
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FIG. 2. (Color online) Logarithmic contour plot of the infinitely
slow-sweep hysteresis area A0 as a function of antiferromagnetic
bond probability p and temperature T = 1/J . The thick vertical line
denotes the phase boundary between the ferromagnetic and the spin-
glass phases as described in the text, while the other thick line bounds
the paramagnetic phase where the infinitely slow-sweep hysteresis
area is less than the precision used in the consistent-field calculations
(i.e., A0 < 10−6).
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FIG. 3. (Color online) Infinitely slow-sweep hysteresis area A0, as a function of antiferromagnetic bond probability p for temperatures
(indicated in the color legend) 1/T = J = 0.10, 0.11, . . . ,0.50 (left) and as a function of temperature T = 1/J for antiferromagnetic bond
probabilities (indicated in the color legend) p = 0.00, 0.01, . . . ,0.50 (right). Each curve is a tenth degree polynomial fit to the averages over
20 realizations.

the experimental temperature-concentration phase diagrams
of the various EuxSr1−xSySe1−y , solid (o-H2)1−x(p-H2)x , and
AuFe systems reviewed in Ref. [32].

We here focus on the scaling form of the hysteresis area in
the spin-glass phase and show that a unique scaling-function
governs the whole range of p and J within the spin-glass phase.
To this end, we first express the hysteresis area in the form
A0 = A0(p̃,J̃ ), where p̃ ≡ p−pc

pc
and J̃ ≡ J−Jc

Jc
are the reduced

displacements from phase boundaries. We then postulate the
multivariate scaling form

A0(p̃,J̃ ) = λcA0(λap̃,λbJ̃ ) , (5)

which by letting λ = p̃−1/a reduces to

A0(p̃,J̃ ) = p̃−c/aA0(1,p̃−b/aJ̃ ) , (6)

Defining ν ≡ c/a, μ ≡ −b/a, and f (x) ≡ A0(1,x), we obtain

p̃νA0(p̃,J̃ ) = f (p̃μJ̃ ) . (7)

The sought collapse is obtained by the choice of scaling
exponents μ = 1 and ν = 2. The data shown in Fig. 3 collapse
onto a single curve shown in Fig. 4, where the left-hand
side (LHS) of Eq. (7) is plotted against the argument on the
right-hand side (RHS) for 28 evenly spaced values of p above
pc. The origin corresponds to the phase boundary between
the spin-glass and paramagnetic phases. The log-log plot
of the same collapse shown in the inset of Fig. 4 suggests
that the scaling function has the form f (x) ∝ x1.72, yielding
a hysteresis area A0 ∝ p̃αJ̃ β with α � −0.28 and β � 1.72.
Interestingly, unlike the case of the usual critical phenomena,
the scale-invariance applies to the entire spin-glass phase and
not just to the vicinity of the critical phase boundary.

Having analyzed the limit with infinitely slow-sweep rate,
we next consider the dynamic hysteretic response as a function
of the magnetic field frequency. One can simulate the finite
oscillation frequency by iterating Eq. (3) for a predetermined
number of steps t , instead of waiting until a steady state
is reached. The sweep rate ω = 1/t is proportional to the
frequency of the applied field up to a material-dependent spin
relaxation time. The hysteresis area A(ω,p,J ) deviates from
the value at infinitely slow sweep A0 = A(ω = 0,p,J ) and

increases with increasing sweep rate ω. This can be understood
by observing that the slow response of the magnetization
to a time-varying field inflates the hysteresis curve along
the field direction. The typical behavior observed in various
experimental and theoretical magnets (typically pure magnets
or random-field systems) [52–56] is

A(ω,p,J ) = A0 + g(p,J ) ωb , (8)

where b is the sweep-rate exponent. We investigate whether
the random-bond Ising spin glass obeys a similar scaling
relation.

A typical scan of the hysteresis area as a function of ω

displays two dynamic regimes, separated by a critical sweep
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FIG. 4. (Color online) Scaling of the hysteresis area in the
spin-glass phase as a function of reduced antiferromagnetic bond
concentration p̃ and the reduced bond strength J̃ , for various p values
as shown in the color legend. The scaling function f (x) given by the
RHS of Eq. (7) on which all data points collapse is consistent with a
same power law within the entire spin-glass phase.
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FIG. 5. (Color online) Hysteresis area difference A − A0 versus
sweep rate ω, for temperatures T = 2.0, 1.0, 0.5 from top to bottom
and for antiferromagnetic bond fractions p = 0.0, 0.1, . . . ,0.5 as
shown in the color legend.

rate ωc that depends on p, J , and the system size (Fig. 5). For
a sufficiently slowly varying field ω < ωc, the area is pinned at
the value A0. In this regime, the avalanches that are triggered
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FIG. 6. (Color online) Sweep-rate exponent b versus antifer-
romagnetic bond fraction p for temperatures T = 2.0, 1.0, and
0.5. The dashed curve depicts the general trend of the sweep-rate
exponent, while the dotted vertical line marks the phase transition
from ferromagnetic to spin-glass phase.

by an incremental increase in the field decay within a period
1/ω or smaller. For faster sweeps (ω > ωc), the increase in
the area follows the power law in Eq. (8), with a p-dependent
exponent b. In the ferromagnetic phase with weak disorder,
the two dynamic regimes are separated by a sharp increase in
the hysteresis area. This transition gets significantly smoother
in the spin-glass phase, especially far from the ferromagnetic-
spin-glass boundary. For larger systems, one expects ωc to
recede and the power-law behavior to dominate.

Figure 6 shows the sweep-rate exponent b calculated as
a function of the antiferromagnetic bond fraction p, at fixed
temperatures T = 1/J = 2.0, 1.0, and 0.5. The hysteresis area
is calculated for the sweep rates ω = 1, 0.5, 0.3̄, 0.2, 10−1, . . . ,
10−4 at each p value, after averaging over ten realizations.
The exponent values are obtained through fits to the data
in the regime ω > ωc (typically two decades or more), using
the functional form of Eq. (8). The error bars reflect only the
scatter of the data relative to the fit. In the ferromagnetic phase
p < pc, we note that the calculated sweep-rate exponents
lie in an interval of fairly good agreement with the various
values obtained previously at p = 0, namely b = 2/3 [52–55]
and b = 0.52 ± 0.04 [53] from mean-field theory, b = 0.61
[53] from Glauber dynamics simulations, b = 0.495 ± 0.005
[54] and b = 0.45 [56] from Monte Carlo simulations.

In conclusion, we have considered here the ±J Ising
model under a uniform external field and investigated the
scaling behavior of the saturation hysteresis area (i.e., far
from the weak-field limit). We observed that the phase
diagram can be derived from the hysteresis area alone and
the ferromagnetic-spin-glass phase boundary corresponds to
the inflection point with regard to bond-randomness strength
p. When adiabatically driven, the area displays a data collapse
within the entire spin-glass phase for all temperatures and p.
The scaling function itself has a power-law form and the scale
invariance extends far from the phase boundary, deep into the
spin-glass phase.
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The dynamical response under a fluctuating external field
is also interesting. We find that, beyond a threshold value ωc,
the hysteresis area increases as a function of the field-sweep
rate ω with a nonuniversal power law. This behavior is not
limited to the vicinity of the phase transition. The associated
exponent is found to be a function the randomness strength p.
Moreover, this function is independent of temperature. In the
limit of a pure magnet (p → 0), we observe good agreement
with the existing literature, despite the fact that the earlier
theoretical work applied to a weak driving field, while we here
consider sweeps across saturation limits. Figure 6 suggests
that, relative to the ferromagnetic phase, the spin glass displays
an amplified sensitivity to the field-sweep rate, again running
in apparent contrast to the general wisdom that the hysteretic
effects are suppressed within a spin glass. In fact, we note that

the increase in the hysteresis area with ω is due to the magnet’s
delayed response to the changing field, and a signature of
the spin-glass phase is the slowing down of precisely such
relaxation phenomena.
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4528 (1995); O. Perković, K. A. Dahmen, and J. P. Sethna, Phys.
Rev. B 59, 6106 (1999).

[13] S. Sabhapandit, P. Shukla, and D. Dhar, J. Stat. Phys. 98, 103
(2000).

[14] K. A. Dahmen, J. P. Sethna, M. C. Kuntz, and O. Perković,
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