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Universal anisotropic finite-size critical behavior of the two-dimensional Ising model
on a strip and of d-dimensional models on films
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Anisotropy effects on the finite-size critical behavior of a two-dimensional Ising model on a general triangular
lattice in an infinite-strip geometry with periodic, antiperiodic, and free boundary conditions (bc) in the finite
direction are investigated. Exact results are obtained for the scaling functions of the finite-size contributions to
the free energy density. With ξ> the largest and ξ< the smallest bulk correlation length at a given temperature
near criticality, we find that the dependence of these functions on the ratio ξ</ξ> and on the angle parametrizing
the orientation of the correlation volume is of geometric nature. Since the scaling functions are independent
of the particular microscopic realization of the anisotropy within the two-dimensional Ising model, our results
provide a limited verification of universality. We explain our observations by considering finite-size scaling
of free energy densities of general weakly anisotropic models on a d-dimensional film (i.e., in an L × ∞d−1

geometry) with bc in the finite direction that are invariant under a shear transformation relating the anisotropic
and isotropic cases. This allows us to relate free energy scaling functions in the presence of an anisotropy to those
of the corresponding isotropic system. We interpret our results as a simple and transparent case of anisotropic
universality, where, compared to the isotropic case, scaling functions depend additionally on the shape and
orientation of the correlation volume. We conjecture that this universality extends to cases where the geometry
and/or the bc are not invariant under the shear transformation and argue in favor of validity of two-scale factor
universality for weakly anisotropic systems.
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I. INTRODUCTION

Bulk critical phenomena can be divided into distinct
universality classes [1]. Critical exponents, certain critical
amplitude ratios, and the near-critical behavior of thermo-
dynamic functions are identical for the members of such a
universality class and are called universal, since they depend
only on macroscopic properties such as near-critical correla-
tion lengths and not on the microscopic details of the system
under consideration. For instance, the correlation length in the
asymptotic critical domain, that is, for asymptotically small
positive or negative t ≡ (T − Tc)/Tc, is, for isotropic systems,
described by

ξ = ξ±,0|t |−ν, T ≷ Tc, (1)

where Tc is the bulk critical temperature, ν is a universal critical
exponent, ξ±,0 are nonuniversal critical amplitudes, and Rξ ≡
ξ+,0/ξ−,0 is a universal critical amplitude ratio.

An extension to the concept of bulk universality concerns
systems that are geometrically confined on a length scale
L in one or more directions, where L is large compared to
all microscopic length scales of the system, such as lattice
spacings (see [2–4]; for reviews see, e.g., [5,6]). Consider the
free energy density f in units of kBT (this normalization is
used without further mentioning for all free energy densities
throughout this work) of a d-dimensional system that is
isotropic at such large distances. Assume that f may be
split uniquely into a nonsingular and a singular contribution
according to

f (T ,L) = fns(T ,L) + fs(t,L), (2)
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where the singular contribution fs is defined as that part of f

that becomes singular in t at t = 0 in the bulk limit L → ∞.
If fs exhibits scaling, its behavior in the asymptotic critical
domain of large L and small |t |, where Wegner corrections
to scaling [7] are negligible, may be described by a scaling
function F according to

Ldfs(t,L) = F(x̃), (3)

with the scaling variable x̃ ≡ (L/ξ+,0)1/ν t . If F exists, it is
expected to be universal. It describes the scaling behavior of
the asymptotic singular part of the free energy density for
given system geometry and boundary conditions (bc) for the
bulk universality class under consideration for the isotropic
case.

With the bulk free energy density,

fb(T ) ≡ lim
L→∞

f (T ,L), (4)

we may split the free energy density according to

f (T ,L) = fb(T ) + fex(T ,L), (5a)

fex(T ,L) = fsf(T ,L) + ffs(T ,L), (5b)

where fex is called the excess free energy density, fsf(T ,L) =
L−1f̄sf(T ) represents any surface or interface contributions,
and ffs is called the finite-size contribution to the free energy
density. Denote the singular parts of fex, fsf , and ffs by fex,s,
fsf,s, and ffs,s, respectively. If the leading contributions to these
singular parts exhibit scaling, we may write in the asymptotic
critical domain,

Ldfex,s(t,L) = A(x̃), (6a)

Ldffs,s(t,L) = G(x̃), (6b)
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with scaling functions A and G. These, again, are expected to
be universal. The Casimir amplitude is defined as the critical
value of G, that is, by

� ≡ G(0). (7)

The physical motivation for investigating the scaling functions
A and G and the Casimir amplitude lies in their close connec-
tion to the critical Casimir force and its scaling function (see,
e.g., the monographs [8,9]), and the recent overview article
[10] (see also Appendix A). Reference [10] also provides a
collection of recent theoretical and experimental results.

Now consider weakly anisotropic systems, which are
characterized by a single bulk correlation-length exponent
ν. We assume here that their bulk correlation lengths are
related by a shear transformation to the isotropic case. Then
ν assumes in any direction the same value as for the isotropic
case, which is supported by other investigations [11–15]. On
the other hand, the ξ±,0 depend on the direction and are,
for a d-dimensional system, described by the surface of a
d-dimensional ellipsoid. However, in any given direction,
Eq. (1) holds and Rξ assumes its isotropic value.

The situation is less clear for the scaling functions on
the right-hand sides of Eqs. (3) and (6), since they may
additionally depend on the parameters describing the shape
and the orientation of the correlation length ellipsoid, that
is, on d−1 correlation length ratios and d(d−1)/2 angles.
These additional d(d+1)/2−1 parameters may be organized
into a d × d symmetric matrix Ā with det Ā = 1 [16]. The
question arises whether such a function can be considered
universal [17–19]. Dohm [18] interprets any dependence on
Ā as nonuniversal. Diehl and Chamati [19] suggest to define
universality only after transforming to an isotropic system by
means of a shear transformation. Here we advocate the inter-
pretation that scaling functions even for weakly anisotropic
systems are universal, if they depend on the anisotropy only
through its long-distance properties parametrized by Ā and
not on any microscopic details of how it is realized. We will
return to this issue in Sec. IV.

For simplicity, we consider only systems, where the
transformation to an isotropic system leaves the geometry
and the bc invariant. In particular, we compute free energy
scaling functions for the specific case of an anisotropic
two-dimensional Ising model on an infinite strip of width L

and explain our explicit exact results by investigating systems
confined to d-dimensional films of width L. We consider
periodic, antiperiodic, fixed, and free bc in the direction of
the width L of the film. For all cases we define a scaling
variable by

x̃ ≡ (
L/ξ

(L)
+,0

)1/ν
t, (8)

where ξ
(L)
+,0 is the T > Tc amplitude of the bulk correlation

length ξL perpendicular to the film boundaries with a corre-
sponding asymptotic critical behavior,

ξL = ξ
(L)
±,0|t |−ν, T ≷ Tc, (9)

where ξ
(L)
+,0/ξ

(L)
−,0 = Rξ .

We do not consider complications arising from strong
anisotropies [20], from subleading long-range interactions
[19,21], or from scaling violations for large x̃ arising in a

region of large L for fixed ξL that manifest themselves in a
nonuniform convergence of the leading singular part of free
energy densities towards the respective scaling function in the
asymptotic critical domain [22].

This work is structured as follows. In Sec. II, we discuss the
two-dimensional Ising model on a triangular lattice in infinite-
strip geometry. In Sec. II A, the model is set up and basic
quantities are defined. In Sec. II B, we recall explicit results
for the bulk correlation lengths and discuss their behavior near
Tc. In Sec. II C, we derive the scaling behavior of the singular
contributions to fex, fsf , and ffs for periodic, antiperiodic
(Sec. II C1), and free (Sec. II C2) bc to the extent they are
defined. We derive explicit expressions for the corresponding
scaling functions and critical Casimir amplitudes. In Sec. III,
we discuss the finite-size scaling behavior for free energy
densities of d-dimensional anisotropic films with periodic
and antiperiodic bc (Sec. III B1) and fixed and free bc
(Sec. III B2) and compare our results to those found in
Sec. II C. The discussion of the results of Secs. II and III
is delegated to Sec. IV.

II. TWO-DIMENSIONAL ISING MODEL

A. Basic definitions

Consider a two-dimensional Ising model on a general
triangular lattice with lattice constants di along the three
lattice directions (see Fig. 1). For simplicity, we assume a
ferromagnetic model with only nearest-neighbor couplings
Ji along the sides of length di . Consider this model on an
L1 × L23 rectangular geometry, with the L1 direction parallel
to the “1” lattice direction. Let there be N1 layers in the “1”
direction and N23 layers in the “23” direction perpendicular to
the “1” direction, so that

L1 = N1d1, (10a)

L23 = N23h1, (10b)

where h1 is the height of the elementary triangle with respect
to the side of length d1 (see Fig. 1).

L1 = L for per. and antiper. bc
L1 → ∞ for ++, 00, and 0+ bc
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FIG. 1. Triangular lattice with lattice constants di on an infinitely
long strip of width L.
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Periodic or antiperiodic bc are easiest implemented along
one of the three lattice directions. We want this direction to
be parallel to one of the rectangle edges and therefore choose
the “1” direction. Periodic bc are imposed by identifying a
line of spins along the “2” direction (or, equivalently, the “3”
direction) with spins along such a line at a distance L1 in the
“1” direction (one may think of the lattice as wrapped around
a cylinder of circumference L1, whose axis points along the
“23” direction). For antiperiodic bc, in addition the signs of
the couplings J1 along one side of one such line are reversed.

Both free (“0”) bc (i.e., no further neighboring spin for the
last spins on one edge of the rectangle) and fixed (“+”) bc
(i.e., a fictitious neighboring spin with fixed value +1 for each
last spin on one edge of the rectangle) are easiest implemented
if such an edge is along one of the lattice directions. For
the rectangle defined above, this leads to the unique choice
of imposing “00,” “++,” or “0+” bc in the “23” direction,
where the two entries refer to the two opposite sides of the
rectangle.

With β ≡ 1/(kBT ) and Ki ≡ βJi , the Hamiltonian of this
model reads

−βH =
∑
m,n

(K1sm,nsm+1,n + K2sm,nsm,n+1

+K3sm,nsm+1,n+1). (11)

With the partition function,

Z(T ,L1,L23) =
∑

{si,j =±1}
e−βH , (12)

the rectangle free energy density is given by

frect(T ,L1,L23) = −(L1L23)−1 ln Z(T ,L1,L23). (13)

We are interested in the free energy density,

f (T ,L)

≡ lim
L‖→∞

{
frect(T ,L,L‖) for periodic and antiperiodic bc,

frect(T ,L‖,L) for ++, 00, and 0+ bc,

(14)

of an infinitely long strip (i.e., for an L × ∞ geometry), with
periodic, antiperiodic, 00, ++, or 0+ bc in the L direction.
For the width L of the strip holds

(15a)
L =

{
L1 for periodic and antiperiodic bc,

L23 for ++, 00, and 0+ bc, (15b)

and the same relation between N , N1, and N23.

B. Bulk correlation lengths

For two-dimensional systems, the ellipsoid of Sec. I
describing the bulk correlation lengths in the asymptotic
critical domain reduces to an ellipse, having a major radius ξ>

and a minor radius ξ<. Define a bulk correlation “volume” by

Vco ≡ ξ>ξ< (16)

and an aspect ratio by

r ≡ ξ</ξ>, 0 < r � 1. (17)

∞

L

ξ∞

ξL

ξ>
ξ<

θ

FIG. 2. Bulk correlation lengths ellipse with largest and smallest
correlation lengths ξ> and ξ<, respectively. The L direction is the
direction perpendicular to the infinite direction of the strip and ξL and
ξ∞ are the bulk correlation lengths in these directions.

Let the direction of the major radius be rotated by an angle θ

with respect to the L direction of the infinitely long strip (see
Fig. 2).

Call ξ∞ the bulk correlation length in the infinite-length
direction of the strip and ξL the bulk correlation length in
the perpendicular direction. Basic geometric considerations
provide the relations,

ξ−2
∞ = ξ−2

> sin2 θ + ξ−2
< cos2 θ, (18a)

ξ−2
L = ξ−2

> cos2 θ + ξ−2
< sin2 θ, (18b)

between the various correlation lengths in the asymptotic
critical domain.

Let ξi , i = 1,2,3 be the bulk correlation lengths in the ith
lattice direction. It follows that

(19a)
ξ1 =

{
ξL for periodic and antiperiodic bc,

ξ∞ for ++, 00, and 0+ bc. (19b)

Generalizing (1), the bulk correlation lengths behave, in the
asymptotic critical domain, according to

ξi = ξ
(i)
±,0|t |−ν T ≷ Tc, (20)

with ξ
(i)
+,0/ξ

(i)
−,0 = Rξ . For the two-dimensional Ising model,

well-known exact results are

ν = 1, Rξ = 2. (21)

According to Eq. (A22) of Ref. [23], the T > Tc asymptotic
bulk correlation lengths are given by [24]

di/ξi = − ln γ (i), (22)

where

γ (i) ≡ a(i) +
√

a(i)2 − 4b(i)c(i)

2c(i)
, (23)

with

a(i) ≡ 2zi

(
1 + z2

j

)(
1 + z2

k

) + 4zj zk

(
1 + z2

i

)
, (24a)

b(i) ≡ z2
i

(
1 − z2

j

)(
1 − z2

k

)
, (24b)

c(i) ≡ (
1 − z2

j

)(
1 − z2

k

)
, (24c)

with i,j,k = 1,2,3 or cyclic permutations, and with

zi ≡ tanh Ki. (25)
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At the critical point the bulk correlation lengths diverge and
therefore γ (i) = 1. This condition may be written as

z1 + z2 + z3 + z2z3 + z3z1 + z1z2 − z1z2z3 = 1, (26)

so that

z1,c(z2,z3) = 1 − z2z3 − z2 − z3

1 − z2z3 + z2 + z3
(27)

is the critical value of z1 for given z2 and z3. Combining
(20)–(23), we may expand around the critical point through
linear order in t resulting in

z1 = z1,c(z2,z3) −
(
1 − z2

2

)(
1 − z2

3

)
(1 − z2z3 + z2 + z3)2

d1t

ξ
(1)
+,0

, (28)

and relate the ξi according to

d1/ξ1

2(1−z2z3)(z2+z3)
= d2/ξ2(

1−z2
2

)(
1+z2

3

) = d3/ξ3(
1−z2

3

)(
1+z2

2

) ,

(29)

where terms of higher than linear order in t have been omitted.
Geometric considerations, which we do not reproduce here,

yield

Vco = Atr(d1,d2,d3)

Atr(d1/ξ1,d2/ξ2,d3/ξ3)
, (30)

where the function,

Atr(�1,�2,�3) = 1
4

√
2
(
�2

1�
2
2 + �2

2�
2
3 + �2

3�
2
1

) − �4
1 − �4

2 − �4
3,

(31)

provides the area of a general triangle with side lengths �1,
�2, and �3. Combining Eqs. (29) and (30), and observing that
the area per lattice site Asite is twice the area of an elementary
lattice triangle, that is,

Asite = d1h1 = 2Atr(d1,d2,d3), (32)

we obtain, asymptotically close to Tc, the relation,

Vco = 2(1 − z2z3)(z2 + z3)(
1 − z2

2

)(
1 − z2

3

) (
ξ1

d1

)2

Asite, (33)

which will be needed below.

C. Free energy

In this section, we derive explicit results for the scaling
behaviors of fex, fsf , and ffs for periodic and antiperiodic bc
and of ffs for free bc. We provide scaling functions for their
contributions per bulk correlation volume, as well as standard
scaling functions and critical Casimir amplitudes for them. The
scaling functions and critical amplitudes will be expressed in
terms of the scaling variable x̃ from (8) and the anisotropy
parameters r and θ . For further reference we note that with (8)
and (21) follows

L/ξL =
{

Lt/ξ
(L)
+,0 = x̃ for T > Tc,

−Lt/ξ
(L)
−,0 = −2x̃ for T < Tc.

(34)

For the two-dimensional Ising model, the leading singular
behavior of f in the bulk limit L → ∞ behaves as ∝ t2 ln |t |.
The arbitrariness in splitting the constant under the logarithm

between singular and nonsingular contributions to f prevents
the required unique splitting of f according to (2) and causes
a violation of scaling. Consequently, F does not exist. On the
other hand, such a splitting of ffs and therefore the function G
exist for all cases considered in this work. The existence of a
corresponding splitting for fex and fsf , and thus the existence
of A, depends on the bc, as we will see below.

It is useful to define the strip free energies per site f̂ and
per bulk correlation volume f̃ by

f̂(T ,L) = Asitef (T ,L), (35a)

f̃(T ,L) = Vcof (T ,L), (35b)

respectively. Let analogous definitions hold for fb, fex, fsf , ffs,
and, if a unique separation as in (2) is defined, also for their
singular parts.

1. Periodic and antiperiodic bc

The free energy per site defined in (35a) is, according to
Eq. (71) of Ref. [25], given by

f̂(T ,L) = −C + f̂sf(T ,L)

− 1

2N

N−1∑
j=0

ln
f1(φj ) +

√
f 2

1 (φj ) − f 2
2 (φj )

2
, (36)

with

φj ≡ 2π
(
j + 1

2

)
N

, for periodic bc, (37a)

φj ≡ 2πj

N
, for antiperiodic bc, (37b)

and where [26]

f1(φ) ≡ A0 − A1 cos φ, (38a)

f2(φ) ≡
√

(A2 + A3)2 − 4A2A3 sin2(φ/2), (38b)

A0 ≡ (
1 + z2

1

)(
1 + z2

2

)(
1 + z2

3

) + 8z1z2z3, (39a)

A1 ≡ 2z1
(
1 − z2

2

)(
1 − z2

3

)
, (39b)

A2 ≡ 2z2
(
1 − z2

3

)(
1 − z2

1

)
, (39c)

A3 ≡ 2z3
(
1 − z2

1

)(
1 − z2

2

)
, (39d)

and

C ≡ ln
2√(

1 − z2
1

)(
1 − z2

2

)(
1 − z2

3

) , (40)

with the qualification that the interface function f̂sf is missing
in Ref. [25]. For T > Tc indeed f̂sf = 0. For finite L, there is
no phase transition and therefore the free energy per site for
T < Tc is obtained by analytic continuation of (36). While for
periodic bc, this leaves f̂sf at zero, the j = 0 term has to be
treated separately for antiperiodic bc and we obtain

f̂
(p)
sf (T ,L) = 0, (41a)

f̂
(a)
sf (T ,L) = �(−t)

N
ln

(1 − z1)(1 − z2z3)

(1 + z1)(z2 + z3)
, (41b)

with the Heaviside step function �. The interface contribution
for antiperiodic bc for T < Tc was overlooked in Ref. [25],
leading to erroneous results there for T < Tc. In particular,
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the θ < 0 plots for R = ∞ in Fig. 3(a) and for Ly = ∞ in
Fig. 3(b) are missing a linearly rising part towards θ → −∞.
This leads to incorrect statements between Eqs. (78) and (79)
of Ref. [25] about the θ < 0 behavior of the infinitely long
cylinder.

Taking the limit L → ∞ of (36), we obtain the bulk free
energy per site as

f̂b(T ) = −C − 1

4π

∫ 2π

0
dφ ln

f1(φ) +
√

f 2
1 (φ) − f 2

2 (φ)

2
,

(42)

and we note that the critical point corresponds to

A0 − A1 − A2 − A3 = 0, (43)

which is equivalent to (26).
Combining (36) and (42) according to (5), we obtain in an

obvious notation,

f̂fs(T ,L) =
[

1

4π

∫ 2π

0
dφ − 1

2N

N−1∑
j=0

]

× ln
f1(φ(j )) +

√
f 2

1 (φ(j )) − f 2
2 (φ(j ))

2
. (44)

From (38) we obtain

f 2
1 (φ) − f 2

2 (φ) = (A0 − A1 + A2 + A3)(A0 −A1 − A2 − A3)

+ 4
[
A0A1 + A2A3 − A2

1 cos2(φ/2)
]

× sin2(φ/2). (45)

Near Tc the quantity A0 − A1 − A2 − A3 is small and an
appropriate approximation for 0 � φ � π may be written as√

f 2
1 (φ) − f 2

2 (φ) ≈ 2

√
A0A1 + A2A3 − A2

1 cos2
φ

2
sin

φ

2

+
√

(A0 − A1)A1 + A2A3

N

× (
√

x̃2 + N2φ2 − Nφ), (46)

where we have used that through linear order in t

±N

√
(A0 − A1 + A2 + A3)(A0 − A1 − A2 − A3)

(A0 − A1)A1 + A2A3

= Lt/ξ
(1)
+,0 = x̃ for T ≷ Tc, (47)

which follows from (27), (28), (34), and (39). An approxima-
tion analogous to (46) holds for π � φ � 2π , which is found
by replacing φ → 2π − φ there, under which (45) is invariant.
Thus we may write

f̂fs(T ,L) ≈
[

1

4π

∫ 2π

0
dφ − 1

2N

N−1∑
j=0

]
ln

A0 − A1 cos φ(j ) + 2
√

A0A1 + A2A3 − A2
1 cos2 φ(j )

2 sin φ(j )

2

2

+
√

(A0 − A1)A1 + A2A3

(A0 − A1)N

[
1

2π

∫ 2π

0
dφ − 1

N

N−1∑
j=0

](√
x̃2 + N2φ2

(j ) − Nφ(j )
)
. (48)

Using the results (A1a) and (A2a) for periodic bc and (A1b)
and (A2b) for antiperiodic bc, we obtain

N2f̂
(p/a)
fs (T ,L) ≈

√
(A0 − A1)A1 + A2A3

(A0 − A1)
I (+/−)(x̃), (49)

with

I (±)(x) ≡ − 1

π

∫ ∞

0
dω ln(1 ± e−√

x2+ω2
), (50)

and where we note that

I (+)(0) = −π/12, I (−)(0) = π/6. (51)

Close to the critical point, we obtain, after some algebra
and with the help of (33),

√
(A0 − A1)A1 + A2A3

(A0 − A1)
≈

(
ξ1

d1

)2
Asite

Vco
. (52)

Combining this with (49) gives, close to Tc,

f̂
(p/a)
fs (T ,L) ≈ ξ 2

1

L2

Asite

Vco
I (+/−)(x̃). (53)

Using (19a), (28), (33), and (34), we obtain for the interface
contribution (41b) to the free energy per site for antiperiodic

bc for temperatures close to Tc,

f̂
(a)
sf (T ,L) ≈ − ξ 2

1

L2

Asite

Vco
�(−x̃)x̃. (54)

For periodic and antiperiodic bc, the free energy contribu-
tions fex, fsf , and ffs are dominated by their leading singular
parts fex,s, fsf,s, and ffs,s, respectively. With (19a), (34), and
(35), we obtain the asymptotic singular finite-size and interface
parts of the free energy per bulk correlation volume as

f̃
(p/a)
fs,s (t,L) =

{
I (+/−)(x̃)/x̃2 for T > Tc,

I (+/−)(x̃)/(4x̃2) for T < Tc,
(55)

and

f̃
(p)
sf,s(t,L) = 0, (56a)

f̃
(a)
sf,s(t,L) = −�(−x̃)/(4x̃), (56b)

respectively. With (5b) follows the asymptotic singular excess
free energy per correlation volume,

f̃ (p)
ex,s(t,L) = f̃

(p)
fs,s(t,L), (57a)

f̃ (a)
ex,s(t,L) =

{
f̃

(a)
fs,s(t,L) for T > Tc,

[I (−)(x̃) − x̃]/(4x̃2) for T < Tc.
(57b)
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Equations (55)–(57) represent central results of the current
section. Their most remarkable feature is that their right-hand
sides depend only on the scaling variable x̃ and not on
the parameters r and θ describing the anisotropy of the
system at large distances (nor on any other details of how
the anisotropy is realized). We conjecture that the right-hand
sides of (55)–(57) represent universal scaling functions in the
bulk universality class of the two-dimensional Ising model. In
Sec. III B1, we will explain their independence of r and θ in
the more general context of d-dimensional films.

Next we derive standard free energy scaling functions and
critical amplitudes. Combining (16) and (18b) gives

Vco/ξ
2
L = r cos2 θ + r−1 sin2 θ, (58)

so that multiplying (55) and (56) by L2/Vco, while observing
(34), gives asymptotically,

L2f
(p/a)
fs,s (t,L) = G(p/a)(x̃,r,θ ) = I (+/−)(x̃)

r cos2 θ + r−1 sin2 θ
, (59)

and

L2f
(a)
sf,s(t,L) = − �(−x̃)x̃

r cos2 θ + r−1 sin2 θ
, (60)

respectively. Therefore, we have

L2f (p/a)
ex,s (t,L) = A(p/a)(x̃,r,θ )

=
⎧⎨
⎩
G(p)(x̃,r,θ ) for periodic bc,

I (−)(x̃) − �(−x̃)x̃

r cos2 θ + r−1 sin2 θ
for antiperiodic bc,

(61)

where A(p/a)(x̃,r,θ ) and G(p/a)(x̃,r,θ ) are the scaling functions
of the excess free energy density and the finite-size
contribution to the free energy density, respectively. For
the two-dimensional Ising model, they generalize the
isotopic-case structure (6) to the anisotropic case. We
conjecture that A(p/a) and G(p/a) are universal functions of x̃, r ,
and θ for all infinite-strip systems in the bulk universality class
of the two-dimensional Ising model with the appropriate bc in
the L direction. Note that the scaling functions depend on the
anisotropy parameters r and θ only through a geometric factor.

For the isotropic case r = 1, the results (59) and (61) reduce
to

G(p/a)
iso (x̃) = I (+/−)(x̃), (62)

and

A(p/a)
iso (x̃) =

{
G(p)

iso (x̃) for periodic bc,

I (−)(x̃) − �(−x̃)x̃ for antiperiodic bc,
(63)

and thus we may relate

G(p/a)(x̃,r,θ ) = (r cos2 θ + r−1 sin2 θ )−1G(p/a)
iso (x̃), (64a)

A(p/a)(x̃,r,θ ) = (r cos2 θ + r−1 sin2 θ )−1A(p/a)
iso (x̃). (64b)

With x⊥ = x̃, our result for G(p)
iso (x̃) is identical to �⊥(x⊥,0)

from Eq. (57) of Ref. [27]. Even for the isotropic limit, G(a)

and A(a) appear not to have been previously published. G(p)
iso (x̃)

and G(a)
iso(x̃) are shown in Fig. 3. A cross-check of G(p/a)

iso and
A(p/a)

iso with published scaling functions for the Casimir force
is provided in Appendix B1.

4 2 0 2 4

0.2

0.0

0.2

0.4

Giso

x̃

FIG. 3. Scaling functions G(p)
iso (x̃) (solid, <0), G(a)

iso(x̃) (solid, >0),
G(00)

iso (x̃) (dashed, <0), G(++)
iso (x̃) (dot-dashed, <0), and G(0+)

iso (x̃)
(dashed, >0).

With (51), the critical Casimir amplitudes �(r,θ ) =
G(0,r,θ ) corresponding to (59) are

�(p)(r,θ ) = −π/12

r cos2 θ + r−1 sin2 θ
, (65a)

�(a)(r,θ ) = π/6

r cos2 θ + r−1 sin2 θ
, (65b)

which we expect to be universal functions of r and θ within the
bulk universality class of the two-dimensional Ising model.

2. Free bc

The free energy per site defined in (35a) is, according to
Eq. (A15) of Ref. [23], for free bc given by [28]

f̂
(00)
rect (T ,L‖,L)

= − ln(2 cosh K1 cosh K2 cosh K3)

+ 1

N
ln(cosh K2 cosh K3) − 1

N‖

∑
ϑ

ln |1−z1e
iϑ |

− 1

2N‖N

∑
ϑ

ln(p+λN−1
+ + p−λN−1

− ), (66)

with

ϑ = (2p − 1)π

N‖
, p = 1, . . . ,N‖, (67)

p± = ± A − λ∓ − ā|E|√
(A − F )2 + 4|EC|

, (68a)

λ± = A + F ±
√

(A − F )2 + 4|EC|
2

, (68b)

and

ā = −2z1| sin ϑ |/|1 − z1e
iϑ |2, (69a)

b = (1 − z2
1)/|1 − z1e

iϑ |2, (69b)

A = (α2 + η2 + 2αη cos ϑ)/|1 − z1e
iϑ |2, (69c)

E = (2βγ sin ϑ)/|1 − z1e
iϑ |2, (69d)

C = (2αη sin ϑ)/|1 − z1e
iϑ |2, (69e)

F = (β2 + γ 2 + 2βγ cos ϑ)/|1 − z1e
iϑ |2, (69f)
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α = z1 + z2z3, (69g)

β = z2 + z3z1, (69h)

γ = z3 + z1z2, (69i)

η = −(1 + z1z2z3). (69j)

The strip free energy per site is obtained as

f̂ (00)(T ,L) = lim
L‖→∞

f̂
(00)
rect (T ,L‖,L)

= − ln(2 cosh K1 cosh K2 cosh K3)

+ 1

N
ln(cosh K2 cosh K3)

− 1

2π

∫ 2π

0
dϑ ln |1 − z1e

iϑ |

− 1

4πN

∫ 2π

0
dϑ ln[(p+λN−1

+ + p−λN−1
− )]. (70)

Taking the limit L → ∞ and observing that λ+ > λ−, we
obtain the bulk free energy per site (42) in the alternative
representation,

f̂b(T ) = lim
L→∞

f̂ (00)(T ,L)

= − ln(2 cosh K1 cosh K2 cosh K3)

− 1

2π

∫ 2π

0
dϑ ln |1 − z1e

iϑ | − 1

4π

∫ 2π

0
dϑ ln λ+.

(71)

Thus the excess free energy per site is

f̂ (00)
ex (T ,L) = f̂

(00)
sf (T ,L) + f̂

(00)
fs (T ,L), (72)

with

f̂
(00)
sf (T ,L) = 1

N
ln(cosh K2 cosh K3) − 1

4πN

∫ 2π

0
dϑ ln

p+
λ+
(73)

and

f̂
(00)
fs (T ,L) = − 1

4πN

∫ 2π

0
dϑ ln

[
1 + p−

p+

(
λ−
λ+

)N−1]
,

(74)

where we already anticipate that the latter expression does
not contain any surface or interface terms. Near Tc, dominant
contributions to the integral in (74) arise only near ϑ = 0
and ϑ = 2π . Since the integrand in (74) is invariant under
ϑ → 2π − ϑ , it is sufficient to consider small positive ϑ .
Employing the small-t expansion (28), we obtain

A + F ≈ 2(1 − z2z3)2, (75a)√
(A − F )2 + 4|EC| ≈ 2(1 − z2z3)2

N

√
x̄2 + ω2, (75b)

A − F − 2ā|E| ≈ 2(1 − z2z3)2

N
x̄, (75c)

with

ω ≡
(
1 − z2

2

)(
1 − z2

3

)
2(1 − z2z3)(z2 + z3)

Nϑ, (76)

and

x̄ ≡
(
1 − z2

2

)(
1 − z2

3

)
2(1−z2z3)(z2+z3)

Nd1t

ξ
(1)
+,0

≈ ξ 2
1

Vco

Lt

ξ
(1)
+,0

≈ ξ∞ξL

ξ>ξ<

Lt

ξ
(L)
+,0

≈ [(r sin2 θ + r−1 cos2 θ )(r cos2 θ + r−1 sin2 θ )]−1/2x̃

= [
1 + 1

4 (r − r−1)2 sin2(2θ )
]−1/2

x̃, (77)

where Eqs. (8), (10b), (15), (17), (18), (19b), (21), (32), and
(33) have been used. It follows that

λ± ≈ (1 − z2z3)2

(
1 ±

√
x̄2 + ω2

N

)
, (78a)

p± ≈
√

x̄2 + ω2 ± x̄

2
√

x̄2 + ω2
, (78b)

and therefore that

p+
λ+

≈ 1

2(1 − z2z3)2

(
1 + x̄√

x̄2 + ω2

)
, (79a)

p−
p+

≈
√

x̄2 + ω2 − x̄√
x̄2 + ω2 + x̄

, (79b)

(
λ−
λ+

)N−1

≈ e−2
√

x̄2+ω2
. (79c)

From the expression for p+/λ+ we conclude that the second
term on the right-hand side of (73) receives a nonsingular
contribution N−1[ln(1 − z2z3) − 1

2 ln 2] plus a contribution
to the integral that is not restricted to small ϑ or 2π − ϑ ,
since ln(1 + x̄/

√
x̄2 + ω2) ≈ x̄/ω for large ω. This points

towards a singular contribution that logarithmically violates
scaling of f

(00)
sf , and we will not consider this quantity in what

follows.
Combining (74), (76), and (79), we obtain in the large-N

limit close to Tc for the finite-size term,

N2f̂
(00)
fs (T ,L) ≈ 2(1 − z2z3)(z2 + z3)(

1 − z2
2

)(
1 − z2

3

) I (f )(x̄), (80)

with

I (f )(x) ≡ − 1

2π

∫ ∞

0
dω ln

(
1 +

√
x2 + ω2 − x√
x2 + ω2 + x̄

e−2
√

x2+ω2

)
.

(81)

We note that

I (f )(0) = I (+)(0)/4 = −π/48, (82)

which results from comparing (82) with (50) and (51).
Combining (10b), (15b), (16), (19b), (32), (33), and (80),

we obtain, close to Tc,

f̂
(00)
fs (T ,L) ≈ ξ 2

>ξ 2
<

L2ξ 2∞

Asite

Vco
I (f )(x̄). (83)

For free bc, the free energy contribution ffs is dominated by
its leading singular part ffs,s. With (1), (21), (35), and (77), we
obtain for the asymptotic singular finite-size part of the free
energy per bulk correlation volume,

f̃
(00)
fs,s (t,L) =

{
I (f )(x̄)/x̄2 for T > Tc,

I (f )(x̄)/(4x̄2) for T < Tc,
(84)
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where Eq. (77) gives x̄ as a function of x̃, r , and θ .
Equation (84) represents a central result of the current section.
Its most remarkable feature is that its right-hand side depends
only on the single variable x̄. We conjecture that the right-hand
side of (84) represents a universal scaling function in the
bulk universality class of the two-dimensional Ising model. In
Sec. III B2, we will explain its independence of r and θ in the
more general context of d-dimensional films.

Next we derive standard free energy scaling functions and
critical amplitudes. Combining (16) and (18a) gives, in the
asymptotic critical domain,

Vco/ξ
2
∞ = r sin2 θ + r−1 cos2 θ, (85)

so that, multiplying (84) by L2/Vco while observing (1), (21),
(77), and (85), gives asymptotically,

L2f
(00)
fs,s (t,L) = G(00)(x̃,r,θ ) = (r sin2 θ + r−1 cos2 θ )I (f )(x̄),

(86)

with x̄ from (77). We conjecture that G(00) is a universal
function of x̃, r , and θ in the bulk universality class of the two-
dimensional Ising model. Note that the scaling function G(00)

depends on the anisotropy parameters r and θ only through
the geometric factors on the right-hand sides of (77) and (86).

With (82), the related Casimir amplitude is

�(00)(r,θ ) = G(00)(0,r,θ ) = − π

48
(r sin2 θ + r−1 cos2 θ ).

(87)

For the isotropic case, Eq. (86) reduces to

G(00)
iso (x̃) = I (f )(x̃), (88)

and thus we may relate

G(00)(x̃,r,θ ) = (r sin2 θ + r−1 cos2 θ )G(00)
iso (x̄), (89)

with x̄ from (77). With x = 2x̃, our result for G(00)
iso (x̃) is

identical to X(o,o)
ex (x) for ordinary bc provided at the beginning

of Sec. 12.1.2 in [9] without derivation. G(00)
iso (x̃) is shown in

Fig. 3. A derivation of G(00)
iso from published scaling functions

for the Casimir force is provided in Appendix B2.
As another cross-check, we compare our results with the

Casimir amplitude found in Ref. [23], where it is defined by

�INW ≡ N2f̂fs,s(0,L), (90)

which, observing (10b), (15b), and (32), is related to �(r,θ ) =
G(0,r,θ ) by

�INW = (d1/h1)�(r,θ ). (91)

Reference [23] provides the result,

�
(00)
INW = −(π/48)η, (92)

with

η ≡ C2
2

S1 + S2
= d1

h1
(r sin2 θ + r−1 cos2 θ ), (93)

where Ci ≡ cosh(2Ki) and Si ≡ sinh(2Ki). The second equal-
ity in (93) is obtained by using (16), (17), (18b), (19b), (25),
(32), and (33), as well as the criticality condition,

S1S2 + S2S3 + S3S1 = 1, (94)

which is equivalent to (26) and (43). Comparison of (87) and
(91)–(93) shows that our result for �(00)(r,θ ) agrees with the
corresponding result in Ref. [23]. However, while �(00)(r,θ ) is
universal, this is not the case for �INW as defined in (90), since
�INW depends on lattice details as manifested by the factor
d1/h1 appearing in (91) and (93).

III. FILM IN d DIMENSIONS

The results of Sec. II may be analyzed in the more general
context of a d-dimensional film of thickness L (i.e., for a
system in an L × ∞d−1 geometry near a d-dimensional bulk
critical point). Note that, within this section, we refer without
further mentioning always to the asymptotic critical domain.

A. Bulk correlation lengths

Weakly anisotropic systems may be related to correspond-
ing isotropic systems by an anisotropic scale transformation
(see, e.g., [29]). Such a transformation may be realized as a
shear transformation (see [16,18,19] and [17] for the use of
such a transformation in the context of critical phenomena for
field-theoretic models and for ϕ4 lattice models, respectively):

x′ = Mx, (95)

where x and x′ represent the d Cartesian coordinates of position
vectors in the original anisotropic system and the related
isotropic system, respectively, and where the d × d matrix
M may be decomposed according to

M = SR, (96)

into a rotation, represented by an orthogonal matrix R, and a
subsequent rescaling, represented by a real diagonal matrix S.

It is then straightforward to adapt the above transformation
to the case treated here, where the long-distance correlations
of the anisotropic bulk system are described by a correlation
length ellipsoid represented by a tensor � that is diagonalized
by R, so that

R�R−1 = diag
(
ξ 2

1 ,ξ 2
2 , . . . ,ξ 2

d

)
, (97)

with the correlation lengths ξ1, . . . ,ξd along the principal axes
of the ellipsoid, and where S is the volume-conserving (det S =
1) rescaling matrix,

S = V 1/d
co diag

(
ξ−1

1 ,ξ−1
2 , . . . ,ξ−1

d

)
, (98)

with the correlation volume defined by

Vco ≡ ξ1ξ2 · · · ξd = (det �)1/2. (99)

Thus the correlation length in the isotropic system is

ξ = V 1/d
co . (100)

Consequently, the squared correlation length tensor in the
primed system is

�′ = M�MT = V 2/d
co 1, (101)

with the d × d unit matrix 1. Note that

�−1 = V −2/d
co MT M. (102)

In the ϕ4 lattice model and in the field-theoretic contexts of
Refs. [17] and [16,18], respectively, the shear transformation is
written as λ−1/2U, where U corresponds to our rotation R and
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λ−1/2 corresponds to S with the qualification that, in contrast
to our definition, λ is not necessarily volume-conserving. In
Refs. [16–18], a matrix A = U−1λU was defined, so that Ā ≡
A/(det A)1/d may be used to parametrize the long-distance
anisotropy [18]. Since we choose S to be volume-conserving,
our conventions imply

A = Ā = (MT M)−1 = (det �)−1/d�, (103)

with

det A = det Ā = 1. (104)

Note that Ā is defined here through the physical correlation
lengths in the asymptotic critical domain. In contrast, explicit
versions of Ā were obtained in [16–18] by requiring the related
shear transformation to lead to a transformed Hamiltonian,
whose expansion in small wave numbers k is isotropic
through order k2. While for standard ϕ4 field theory these
definitions should coincide due to an exact mapping between
the anisotropic and isotropic bulk Hamiltonians [16], there is
no reason to believe that this procedure generally leads also
for lattice models to Ā as defined here. We will return to this
issue in Sec. IV.

Let n̂ be a unit vector that is orthogonal to the film
boundaries and define the vector,

L = Ln̂. (105)

For two-dimensional systems such as the Ising model treated
in Sec. II, it is convenient to choose coordinates, where

n̂T = (1,0), (106)

so that, with r and θ as defined in Sec. II B, we have

R =
(

cos θ sin θ

− sin θ cos θ

)
, (107)

and

S =
(

r1/2 0

0 r−1/2

)
, (108)

from which follows with (96) and (103),

Ā−1 =
(

r cos2 θ + r−1 sin2 θ 1
2 (r − r−1) sin(2θ )

1
2 (r − r−1) sin(2θ ) r sin2 θ + r−1 cos2 θ

)
.

(109)

Therefore, the parametrization of the anisotropy of a d-
dimensional system by Ā and the corresponding film orien-
tation by n̂ reduces, for a two-dimensional system, naturally
to the parametrization by r and θ , as manifested, for the
two-dimensional Ising model, by Eqs. (59)–(61), (65), (86),
and (87).

B. Free energy

For a d-dimensional system with restricted geometry,
the system shape and the bc are generally transformed
in a nontrivial way by the shear transformation. A major
simplification arises for films with (anti)periodic, fixed or free
bc, since (i) a film is transformed into another film and (ii)
the bc are invariant. This means that we can express film
free energy scaling functions of the anisotropic system in

terms of the corresponding scaling functions of the isotropic
system with the same geometry and bc. Then the modifications
for the anisotropic system can be represented by geometric
factors, as we already explicitly observed in Sec. II for the
two-dimensional Ising model and as will be detailed for
d-dimensional film systems below.

For notational simplicity, we formulate what follows for the
singular part fs of the free energy density f , even though for
the particular case of the two-dimensional Ising model there
is no unique separation of regular part fs and singular part fns

and consequently F does not exist, in contrast to A and/or
G, depending on the bc. If universality continues to hold for
anisotropic d-dimensional film systems, we expect Eq. (3) to
be replaced by

Ldfs(t,L) = F(x̃,Ā,n̂), (110)

where F is a universal function of its arguments and the
imposed bc. Equations (6) are replaced analogously.

Due to the different ways a film transforms for periodic and
antiperiodic bc on the one hand and for fixed and free bc on
the other hand, we treat these cases separately.

1. Periodic and antiperiodic bc

Consider a film with periodic or antiperiodic bc and a length
L of (anti)periodicity in the direction represented by the unit
vector n̂. The shear transformation M transforms the film into
another film, albeit with a different vector,

L′ = ML, (111)

describing the direction and length L′ = |L′| of (anti)
periodicity of the isotropic system. For (anti)periodic bc, the
orientation of the film boundaries is not unique. We choose
them such that L is orthogonal to the boundaries of the original
film and L′ is orthogonal to the boundaries of the film with
isotropic bulk correlation lengths (see Fig. 4). Other choices
lead to skewed bc. Results for such bc are related to the results
presented here by elementary geometric considerations.

� �

L
R−→

RL
S−→

L′
L̄

FIG. 4. Illustration of the shear transformation from an
anisotropic to an isotropic film for d = 2 (i.e., for an infinite strip).
Shown are the behavior of the strip boundaries, the correlation ellipse,
and the vector L under a rotation R and a subsequent rescaling S
along the horizontal and vertical coordinate axes. L̄ is the thickness
of the resulting strip, needed for free and fixed bc. For periodic
and antiperiodic bc, the indicated dots at opposite sides of the
original, rotated, and rescaled strips, connected by the vectors L,
RL, and L′ = SRL, respectively, are physically identical. For these
bc, translational invariance allows one to define new strip boundaries
(dashed) that are perpendicular to the direction of (anti)periodicity,
so that L′ = |L′| is the thickness of the resulting strip.
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Now consider singular parts of free energy densities that
exhibit scaling. For the isotropic model, we assume

L′dfiso,s(t,L
′) = Fiso(x̃ ′), (112)

with the scaling variable x̃ ′ ≡ (L′/ξ+,0)1/ν t . With the critical
behavior (9) of the correlation length ξL in the direction L of
(anti)periodicity of the original system, the scaling variables x̃

from (8) and x̃ ′ from above are identical, since with (101) and
(111) we have

(L/ξL)2 = LT �−1L = L′T �′−1L′ = (L′/ξ )2. (113)

Therefore, we may write for the free energy per correlation
volume,

f̃s(t,L) = Vcofs(t,L) = Vcofiso,s(t,L
′)

=
{

x̃−dνFiso(x̃) for T > Tc,

R−d
ξ (−x̃)−dνFiso(x̃) for T < Tc,

(114)

where we have used Eq. (100) and that our shear transforma-
tion is volume-conserving and thus separately conserves the
correlation volume and the free energy density. Analogous
equations hold for fex,s, fsf,s, and ffs,s, if they exhibit
scaling. Thus we find for d-dimensional films with periodic
or antiperiodic bc that the leading singular parts of (scaling)
free energy densities per correlation volume depend only on
the ratio of the length of (anti)periodicity and the correlation
length in the corresponding direction and not on any other
details of the shape or orientation of the correlation ellipsoid.
For the two-dimensional Ising model this is reflected by the
explicit results (55)–(57).

Multiplying (114) by

Ld/Vco = (L/L′)d ×
{

x̃dν for T > Tc,

Rd
ξ (−x̃)dν for T < Tc,

(115)

and observing

L′ = L|Mn̂| = L(n̂T Ā−1n̂)1/2, (116)

which follows from (103), (105), and (111), we obtain the
standard free energy scaling function,

Ldfs(t,L) = F(x̃,Ā,n̂) = (n̂T Ā−1n̂)−d/2Fiso(x̃), (117)

that is, F depends only through a geometric factor on the
relative orientations of the direction of (anti)periodicity and
the correlation ellipsoid.

Specializing to d = 2–dimensional systems with conven-
tions as in (106)–(109), Eq. (117) reads

L2fs(t,L) = F(x̃,r,θ ) = (r cos2 θ + r−1 sin2 θ )−1Fiso(x̃).

(118)

Analogous equations hold for fex,s, ffs,s, and fsf,s, if they
exhibit scaling. This explains, from a more general point of
view, the anisotropy dependence of the Ising model scaling
functions presented in Eqs. (59)–(64).

2. Fixed and free bc

Here we repeat the considerations of the preceding section
for a film with fixed and/or free bc, such as 00, ++, 0+, or
+− bc. The treatment immediately extends to similar other

invariant bc. For definiteness, we choose coordinates where
the “1” direction is normal to the film boundaries, so that

n̂T = (1,0, . . . ,0). (119)

As opposed to the case of periodic or antiperiodic bc, the
thickness of the isotropic film is no longer given by the length
of the transformed vector L′ (see Fig. 4). Instead, according
to Eq. (2.48) of Ref. [30], the film thickness L̄ of the isotropic
system is given by

L̄ = (det Ā−1/ det[[Ā−1]])1/2L, (120)

where [[Ā−1]] is the (d−1) × (d−1) right lower part of Ā−1

and where, with the conventions employed here, det Ā−1 = 1,
compare Eq. (104).

For the isotropic model, we assume

L̄dfiso,s(t,L̄) = Fiso(x̄), (121)

with the scaling variable x̄ ≡ (L̄/ξ+,0)1/ν t . From (100), (103)–
(105), (119), and (120), we obtain

(L/ξL)2 = LT �−1L = (Ā−1)11 det[[Ā−1]](L̄/ξ )2. (122)

With x̄ from above and x̃ from (8) this translates to the relation,

x̄ = {(Ā−1)11 det[[Ā−1]]}−1/(2ν)x̃. (123)

For the singular part of the free energy per correlation
volume, we may write

f̃s(t,L) = Vcofs(t,L) = Vcofiso,s(t,L̄)

=
{

x̄−dνFiso(x̄) for T > Tc,

R−d
ξ (−x̄)−dνFiso(x̄) for T < Tc,

(124)

where we have used Eq. (100) and that our shear transfor-
mation is volume-conserving and thus separately conserves
the correlation volume and the free energy density. Analogous
equations hold for fex,s, fsf,s, and ffs,s, if they exhibit scaling.
Note that as for the case of (anti)periodic bc, the free energy
per correlation volume depends only on one suitably chosen
scaling variable. For the two-dimensional Ising model with
free bc, this is reflected by the explicit result (84).

Multiplying (124) by

Ld/Vco = (L/L̄)d ×
{

x̄dν for T > Tc,

Rd
ξ (−x̄)dν for T < Tc,

(125)

and observing (104) and (120), we obtain the standard free
energy scaling function,

Ldfs(t,L) = F(x̃,Ā,n̂) = (det[[Ā−1]])d/2Fiso(x̄), (126)

with x̄ from (123). Note that the right-hand sides of Eqs. (120),
(122), (123), and (126) change their form for a choice of
coordinates that does not imply Eq. (119). The general form
may be obtained by replacing

(Ā−1)11 → n̂T Ā−1n̂, (127a)

det[[Ā−1]] → −det(Ā−1 − n̂n̂T Ā−1 − Ā−1n̂n̂T )

n̂T Ā−1n̂
. (127b)

Specializing to d = 2–dimensional systems with conven-
tions as in (106)–(109), Eq. (126) reads

L2fs(t,L) = F(x̃,r,θ ) = (r sin2 θ + r−1 cos2 θ )Fiso(x̄),

(128)
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with

x̄ = [1 + 1
4 (r − r−1)2 sin2(2θ )]−1/(2ν)x̃, (129)

as obtained by combining (Ā−1)11 and det([[Ā−1]]) = (Ā−1)22

from (109) with (123). With ν from (21), Eq. (129) reduces to
the relation (77) found for the two-dimensional Ising model.
Equations analogous to (128) hold for fex,s, fsf,s, and ffs,s, if
they exhibit scaling. As for periodic and antiperiodic bc, the
d-dimensional point of view provides an explanation for the
anisotropy dependence of the Ising model scaling function for
free bc presented in (89).

In Appendix B2, we sketch the derivation of the isotropic
Ising model results:

G(++)
iso (x̃) = G(00)

iso (−x̃) = I (f )(−x̃), (130a)

G(0+)
iso (x̃) = G(a)

iso(2x̃)/4 = I (−)(2x̃)/4, (130b)

with I (f ) and I (−) from (81) and (50), respectively. With x =
2x̃, our result for G(++)

iso (x̃) is identical to X(+,+)
ex (x) provided at

the beginning of Sec. 12.1.2 in [9] without derivation. G(++)
iso (x̃)

and G(0+)
iso (x̃) are shown in Fig. 3. Together with (77), (124),

and (128), we immediately obtain predictions for both the
finite-size scaling behavior of the finite-size part of the free
energy per correlation volume and the scaling functions of
the finite-size part of the free energy for the anisotropic case
for both ++ and 0+ bc. Combining (128) with (130), while
observing (51) and (82), the related Casimir amplitudes are

�(++)(r,θ ) = −�(0+)(r,θ )/2 = �(00)(r,θ ), (131)

with �(00)(r,θ ) from (87). With the definition (90), the results
provided at the end of Sec. 2 in Ref. [23] for the Casimir
amplitudes are, for ++, 0+, and 00 bc,

�
(++)
INW = −�

(0+)
INW/2 = �

(00)
INW, (132)

with �
(00)
INW from (92). While the results for �

(++)
INW and �

(0+)
INW

were derived in Ref. [23] only for rectangular lattices, the
combination of (91), (131), and (132) shows that they remain
correct for the general triangular lattice.

IV. SUMMARY AND DISCUSSION

We have investigated finite-size scaling of an anisotropic
two-dimensional ferromagnetic Ising model on an infinite
strip of width L with periodic, antiperiodic, and free bc in
the direction perpendicular to the direction of infinite extent.
The model is realized on a triangular lattice with general
couplings and lattice constants, so that the anisotropy may
be realized by varying the lattice constants di and/or the
couplings Ji . This allows for different microscopic realizations
of identical anisotropic bulk long-distance correlations near
the bulk critical point and therefore for a limited test of
universality.

We find that the asymptotic scaling behavior of the finite-
size contribution to the free energy per correlation volume may
be described by a function of only one suitably defined scaling
variable; cf. Eqs. (55) and (84). For periodic and antiperiodic
bc this holds additionally for the surface and excess free energy
densities per correlation volume [cf. Eqs. (56) and (57)], while,
for free bc, logarithmic violations of scaling prevent the scaling
behavior of the surface contribution to the free energy density.

For periodic, antiperiodic, and free bc, we provide exact
scaling functions G(p), G(a), and G(00) of the finite-size con-
tribution to the free energy density in Eqs. (59) and (86)
and scaling functions A(p) and A(a) of the excess free energy
density in Eq. (61). We find that these functions only depend
on variables related to long-distance correlations. We have
chosen these long-distance variables to be the scaling variable
x̃ representing the ratio of the width L of the strip and the bulk
correlation length in the corresponding direction (for T > Tc;
for T < Tc its analytic continuation is employed) as well as the
aspect ratio r and the orientation angle θ of the bulk correlation
length ellipse. Consequently, the critical Casimir amplitudes
�(p), �(a), and �(00) provided in Eqs. (65) and (87) depend only
on r and θ . Since our results for G, A, and � are independent
of the microscopic realization of the long-distance physics, we
conjecture that they are universal functions of their respective
arguments, that is, we expect identical functions to result for
other members of the bulk two-dimensional Ising universality
class for the same geometry and corresponding bc.

To understand the behaviors of the Ising systems described
above, we have investigated general anisotropic systems on
a d-dimensional film with the same bc as investigated for
the two-dimensional Ising model. We assume that the free
energies under consideration exhibit scaling. Due to the choice
of geometry and bc, these systems have the simplifying
property that their geometry and bc are invariant under a
shear transformation relating them to a corresponding isotropic
system. We find that the free energies per correlation volume
of such systems depend on only one suitably chosen scaling
variable [cf. Eqs. (114) and (124)]. The relations between the
scaling functions of the isotropic and the anisotropic systems
are provided in Eqs. (117) and (126) and reproduce for d = 2
the relations found for the two-dimensional Ising model. For
++ and 0+ bc, where no results for the triangular lattice Ising
model are available, we point out that these relations, together
with the explicitly known isotropic results (130), lead to
predictions for the corresponding anisotropic scaling functions
of the finite-size contribution to the free energy density of the
two-dimensional Ising model. We give explicit results for the
corresponding critical Casimir amplitudes in (131).

We have only treated geometries and bc that are invariant
under the shear transformation that relates the system under in-
vestigation to a system with isotropic bulk correlation lengths.
In other cases we cannot expect to express scaling functions
for the anisotropic case in terms of an isotropic-case scaling
function with the same geometry and bc. Rather, the isotropic
scaling functions will depend on the geometry and bc obtained
by transforming the anisotropic to the isotropic case and the
anisotropy will no longer be represented by mere geometric
factors as in (59)–(61), (77), (86), (117), (123), and (126).
However, we still expect such scaling functions to be universal
functions of their arguments. Within a given bulk universality
class, they should depend only on the scaling variable(s) used
for the isotropic case, the asymptotic long-distance anisotropy
represented by the matrix Ā from (103), the geometry, and the
bc. Hence we suggest that a quantity is universal, if it depends
only on the bc and on macroscopic physical observables such
as the geometry and the macroscopic near-critical correlation
lengths, but not on the particular microscopic realization
from which the anisotropic long-distance critical behavior
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originates. Such a quantity should therefore be identical among
the members of the bulk universality class under consideration.
For practical measurements of, for example, scaling functions,
it is no longer sufficient to measure one correlation length as
in the isotropic case. Rather, the measurement of correlation
lengths in a sufficient number of directions is necessary to
allow for the determination of the matrix Ā through (103).

Let us put our arguments in perspective with the inter-
pretations of [16–19]. From our arguments it follows that
it is not necessary to define universality only after a shear
transformation to an isotropic system, as Diehl and Chamati
suggest [19]. As noted in Sec. III A, Chen and Dohm [16–18]
define their matrix Ā through microscopic parameters in the
Hamiltonian so that, at least for lattice models, their matrix
is only an approximation to our definition which relates Ā
through (103) to the asymptotic physical correlation lengths.
Thus the dependence of scaling functions on their matrix Ā
will, in general, not be universal, since it depends on the
microscopic realization of the anisotropy. In this sense it is
correct when Chen and Dohm note that any dependence of
physical quantities on their anisotropy matrix Ā is nonuniversal
[16–18]. In contrast, we suggest here that quantities that are
universal for the isotropic case, merely acquire an additional
universal dependence on Ā from (103) for the anisotropic case.
The parameters describing Ā are called nonuniversal in [18].
This is correct in the sense that the relation of Ā from [16–18]
to our Ā depends on the model under consideration. However,
with our definition, Ā is merely an argument of, for example, a
scaling function, and should be viewed on the same level as the
scaling variable x̃. It is then only the scaling functions, whose
universality can be tested and not that of their arguments x̃ and
Ā. Similar arguments hold for the parameters describing the
shear transformation, which are called nonuniversal in [18,19].
This transformation merely describes a relation between
different physical situations (or different interpretations of the
same statistical model), not necessarily one of them being
isotropic. With our definitions, its classification as universal or
nonuniversal is not a meaningful question.

Our last argument concerns the validity of two-scale
factor universality. Since Ā is a scale-free quantity, our
universality interpretation does not interfere with two-scale
factor universality in a formulation including the field h

conjugate to the order parameter. For definiteness, consider
again film geometry with given bc and assume that the free
energy density exhibits scaling. Then we expect the universal
isotropic scaling function [3,5,6]:

Ldfs(t,h,L) = F(C1tL
1/ν,C2hLβδ/ν), (133)

with nonuniversal scale factors C1 and C2 and critical
exponents β and δ to be generalized to an anisotropic universal
scaling function,

Ldfs(t,h,L) = F(C1tL
1/ν,C2hLβδ/ν,Ā,n̂), (134)

where the choice C1 = ξ
(L)
+,0

−1/ν
makes the first argument

identical to x̃ in (8) and leads to the h=0 limit F(x̃,0,Ā,n̂) =
F(x̃,Ā,n̂); compare (110). Since no new nonuniversal scale
factor needed to be introduced into Eq. (134) as compared to
the isotropic case, two-scale factor universality remains valid.
We have not quantitatively considered this case, since no exact

results for the free energy of the two-dimensional Ising model
with a nonzero magnetic field are available.

As an outlook, it would be interesting to investigate systems
that do not exhibit the simplifying feature of both invariant
geometry and bc under shear transformations. A possible
example is the critical Binder cumulant for a two-dimensional
ferromagnetic Ising model. Precision results for this quantity
are available for a square lattice in a square geometry with
periodic bc and a 45◦ anisotropy that is caused by a ferromag-
netic [31,32] or antiferromagnetic [33] coupling on one of the
lattice diagonals (i.e., by different microscopic realizations).
For recent results of such an investigation, see Ref. [34].
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APPENDIX A: INTEGRALS AND SUMS

Here we collect some mathematical results needed for the
determination of the scaling functions of the free energy in
Sec. II C1.

On the one hand, we need, for sufficiently well-behaved
functions f , the large-n results,∫ b

a

dxf (x) =
n−1/2∑
j=1/2

f (xj )δ + 1

24
[f ′(b) − f ′(a)]δ2 + O(δ3),

(A1a)∫ b

a

dxf (x) =
n−1∑
j=0

f (xj )δ + 1

2
[f (b) − f (a)]δ

− 1

12
[f ′(b) − f ′(a)]δ2 + O(δ3), (A1b)

respectively, where δ ≡ (b − a)/n and xj ≡ a + jδ.
On the other hand, using the method of residues, we obtain

in the large-n limit for real x

1

π

∫ nπ

0
dω

√
x2 + 4ω2 −

n−1∑
k=0

√
x2 + [(2k + 1)π ]2

= π

12
+ I (+)(x), (A2a)

1

π

∫ (n− 1
2 )π

0
dω

√
x2 + 4ω2 −

n−1∑
k=1

√
x2 + (2kπ )2

= |x|
2

− π

6
+ I (−)(x), (A2b)

with I (±) defined in (50).
The results (A1) and (A2) allow us to obtain Eq. (49) from

Eq. (48).

APPENDIX B: ISOTROPIC SCALING FUNCTIONS

Here we relate the scaling functions G and A to published
scaling functions of the Casimir force for the isotropic two-
dimensional Ising model in infinite-strip geometry. This allows
us to verify the isotropic limits of our results for G(p), G(a), and
G(00) and to derive the scaling functions G(00)

iso and G(0+)
iso that
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can subsequently be used for predictions about the anisotropic
case as explained in Sec. III B2.

For the isotropic case, the Casimir force of a d-dimensional
film system of thickness L is defined by

FCas,iso(T ,L) ≡ −∂[Lfiso,ex(T ,L)]

∂L
= −∂[Lfiso,fs(T ,L)]

∂L
,

(B1)

where the second equality reflects the fact that surface
contributions do not contribute to the Casimir force. If its
singular part FCas,iso,s exhibits scaling, a corresponding scaling
function Xiso may be defined in the asymptotic critical domain,
so that

LdFCas,iso,s(t,L) = Xiso(x̃) = (d − 1)Giso(x̃) − ν−1x̃
dGiso(x̃)

dx̃
,

(B2)

where (6b) and (8) have been used. With (21), this may be
expressed, for the two-dimensional Ising model, as

L2FCas,iso,s(t,L) = Xiso(x̃) = −x̃2 d[Giso(x̃)/x̃]

dx̃
. (B3)

1. Periodic and antiperiodic bc

Here we use results from the literature for X
(p/a)
iso to verify

the isotropic limits (62) of the scaling functions G(p/a) provided
in (59). Rescaling ω → |x|ω in (50), applying (B3) to the
resulting expression for G(p/a)

iso (x̃) and subsequently scaling
back according to ω → ω/|x| gives

X(p/a)
iso (x̃) = 1

2π

∫ ∞

0
dω

√
x̃2 + ω2

×
{

[tanh(
√

x̃2 + ω2/2) − 1]

[coth(
√

x̃2 + ω2/2) − 1]
, (B4)

where the upper and lower expressions hold for periodic and
antiperiodic bc, respectively. Corresponding critical values are

X(p/a)
iso (0) =

{
−π/12,

π/6.
(B5)

The upper result in (B4) agrees numerically with the Ising
curve plotted in Fig. 15 of Ref. [35] (x there is identical
to our x̃). The upper and lower results in (B4) agree with
Eqs. (3.16) and (3.19), respectively, of Ref. [36] (x there
is identical with our x̃/2). The upper result in (B5) agrees
with Eq. (1) in Ref. [37], with Eq. (3) in Ref. [38], and with
Eq. (58) in Ref. [27].

2. Fixed and free bc

Here we use results from Refs. [39] and [40] for the
Casimir force scaling functions X(00)

iso , X(++)
iso , and X(0+)

iso , for
the isotropic two-dimensional Ising model in infinite-strip
geometry to derive the scaling functions G(00)

iso , G(++)
iso , and

G(0+)
iso . From Eqs. (2.9) and (2.13) in Ref. [39] it follows for the

isotropic-case Casimir force scaling functions for ++ and 00
bc in our notation (X there is identical to our x̃/2),

X(++)
iso (x̃) = X(00)

iso (−x̃) = − 1

π

∫ ∞

0

dω
√

x̃2 + ω2

1 +
√

x̃2+ω2−x̃√
x̃2+ω2+x̃

e2
√

x̃2+ω2
.

(B6)

Equivalent results are obtained from Eq. (3) in Ref. [40] for
both 00 and ++ bc (x there is identical to our x̃) [41] and from
Eq. (3.26) in Ref. [36] for 00 bc (x there is identical to our
x̃/2), while the results from Sec. 12.1.2 of [9] for X

(o,o)
Cas (x) and

X
(+,+)
Cas (x) (x there is our 2x̃) are missing a factor 1/4. Using

(B3) and observing that, for large positive or negative x̃, the
scaling functionG contains by definition no surface or interface
terms, that is, no terms linear in x̃, we obtain from (B6) by
elementary integration the scaling functions G(00)

iso provided in
(88) and (130a) and G(++)

iso provided in (130a).
From Eq. (3) in Ref. [40] (x there is identical to our x̃), we

obtain [41]

X(0+)
iso (x̃) = 1

2π

∫ ∞

0
dω

√
x̃2 + ω2

(
coth

√
x̃2 + ω2 − 1

)
= X(a)

iso(2x̃)/4, (B7)

with X(a)
iso from (B4). With (B3) and taking again into

account the absence of large-|x̃| linear terms in G, elementary
integration leads immediately to G(0+) as provided in (130b).
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