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Competition of elasticity and flexoelectricity for bistable alignment
of nematic liquid crystals on patterned substrates
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We show that patterned surfaces can promote bistable configurations of nematics for reasons other than the
symmetry of the surface. Numerical and analytical calculations reveal that a nematic liquid crystal in contact
with a striped surface is subject to the competing aligning influences of elastic anisotropy, differing energy cost
of various types of deformation, and flexoelectricity, curvature-induced spontaneous polarization. These effects
favor opposing ground states where the azimuthal alignment is, respectively, parallel or perpendicular to the
stripes. Material parameters for which the effect might be observed lie within the range measured for bent-core
nematogens.
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Complex fluids, such as nematic liquid crystals, exhibit
a rich variety of structures when confined to a complicated
geometry; for example, a surface prepared with topographic or
geometric patterning promotes regions of different molecular
orientation. Alignment has been demonstrated with a variety
of patterning techniques such as nanoimprinting [1], scribing
with the tip of an atomic force microscope [2], lithographic ex-
posure of photoalignable polymer films [3], and microcontact
printing [4]. More than one stable configuration may exist,
which is essential for applications such as electronic-paper
displays [2,3,5,6] and chemical sensing [7,8]. Experimentally
demonstrated geometries [1,2,5,9] rely on the symmetry
of the surface to provide degenerate states, while in the
zenithal bistable device (ZBD) [6], the bistability arises from
movable defects induced by a deep grating etched on the
surface. In the present Rapid Communication, we identify
a different mechanism to achieve bistability in which the
stable configurations are each favored by opposing physical
effects.

Elastic anisotropy, the dissimilar energy cost of different
types of deformation, has been identified as one possible cause
of the observed alignment of nematics on patterned surfaces
[10,11]. Adjacent to the substrate, the nematic is distorted
by the pattern and becomes uniformly aligned away from the
surface due to elastic forces. The free energy of the nematic
is, famously,

F = 1

2

∫
C

K1(∇ · n)2 + K2(n · ∇ × n)2 + K3|n × ∇n|2

× d3x − 1

2

∫
C

D · Ed3x −
∫

∂C

Wθ (n · n0)2d2x, (1)

where the director n is a headless unit vector field describing
the local average orientation of the nematic and where the
first three terms represent, in order, splay, twist, and bend
deformations with their associated elastic constants. The
fourth term represents the interaction of the nematic with
the electric field with displacement field D = ε · E + Pflexo;
here, the dielectric tensor is ε = ε⊥I3 + �εn ⊗ n, where I3

is the identity matrix, ε‖ and ε⊥ are the components parallel
and perpendicular to n, respectively, and �ε = ε‖ − ε⊥ is the
dielectric anisotropy. The final term quantifies the energy cost
of n deviating from the spatially varying preferred orientation,
or easy axis, n0 imposed by the pattern. The coefficient Wθ is
referred to as the anchoring energy. The total energy varies
as a function of the bulk orientation since different types
of deformation are required to comply with the boundary
condition imposed by the pattern. One or more effective easy
axes may exist that extremize the total elastic energy. On length
scales much larger than those of the pattern, the alignment can
be described by an effective anchoring potential associated
with the surface [12]. A significant advantage of these surfaces
over conventional uniform treatments is that the easy axis and
anchoring energy can be independently controlled by adjusting
the design of the pattern [11–13].

Flexoelectricity, a spontaneous polarization induced by
curvature,

Pflexo = esn(∇ · n) + ebn × ∇ × n, (2)

where es and eb are material constants using the sign
convention of Rudquist [14], can play a significant role
in patterned systems due to the presence of large elastic
distortions. It has been identified as important in switching
the ZBD [15], in the structure of domain walls [16], as a
cause of periodic instabilities [17,18]; it also renormalizes
the anchoring in a cell with modulated pretilt [19]. A
geometry suggested in the classic work of Meyer [20] to
study the flexoelectric effect was a nematic aligned by the
electric field of an array of line electrodes held at alternating
potential.

In this Rapid Communication, we show that flexoelec-
tricity even in the absence of an external field promotes
the alignment of a nematic in contact with a patterned
surface and, moreover, that the preferred direction is oppo-
site to that favored by elastic anisotropy. To elucidate the
mechanism, we construct a minimal analytical model. Also,
careful solution of the full Euler-Lagrange equations using
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(a) (b)

FIG. 1. (Color online) Schematic of system with (a) parallel and
(b) perpendicular configuration.

a robust numerical technique allows us to demonstrate that
competition between elastic anisotropy and flexoelectricity
leads to bistable configurations of the nematic and to identify
the range of material parameters over which both states are
stable.

The geometry and associated coordinate system under con-
sideration is depicted in Fig. 1 in which a nematic is confined
between two symmetric surfaces patterned with stripes that
promote, alternatingly, vertical and azimuthally degenerate
planar alignment. Two configurations of the nematic that
are known to extremize the free energy [11] are depicted,
where the bulk orientation is either parallel [Fig. 1(a)] or
perpendicular [Fig. 1(b)] to the length of the stripes. The
perpendicular configuration consists entirely of splay and bend
distortions, while the parallel state contains all three types
of distortion present in Eq. (1). For most nematic materials,
the twist elastic constant K2 is lower than the splay K1 and
bend K3 constants, so the parallel structure represents the
ground state as demonstrated in previous experimental [10]
and theoretical [11] work.

Flexoelectricity leads to an alignment in this geometry since
only splay and bend distortions contribute to the polarization
(2) and these distortions are present in different amounts.
Consider the region of nematic in the vicinity of the boundary
between a vertical and planar stripe, as illustrated in Figs. 2(a)

(a) (b)

(c) (d)

(e)

FIG. 2. (Color online) (a) Closeup of the director configuration
of a region of nematic adjacent to the boundary between two stripes
for φ = +π/2. Overlaid arrows indicate the presence of splay-like,
n(∇ · n), and bendlike, n × ∇ × n, deformations depicted in gray
and black, respectively. (b) Corresponding plots for the configuration
with φ = −π/2. (c) and (d) The associated D (gray) and E (black)
fields induced by the flexoelectric effect for the configurations shown
in (a) and (b). (e) The free energy of this configuration as a function
of the azimuthal alignment angle φ.

and 2(b): Locally, the director is described by

n = (cos θ sin φ, cos θ cos φ, sin θ ),

θ (x,z) = 1

2
arctan

(
x

z + Lθ

)
. (3)

The configuration (3) minimizes (1) if K1 = K2 = K3 for
a semi-infinite system where the regions x < 0 and x � 0
at z = 0 promote vertical and planar alignment, respectively.
The anchoring parameter, Lθ = K1/Wθ , measures the relative
strength of the elastic forces and the surface anchoring; as
Lθ → 0, a sharp transition from planar to vertical orientation
is recovered. The electric field induced by this polarization is
found by introducing an electrostatic potential E = −∇V and
requiring ∇ · D = 0,

ε∇2V = ∇ · Pflexo. (4)

The dielectric anisotropy is temporarily neglected by setting
ε ≡ ε⊥ = ε‖. The flexoelectric polarization induced in this
configuration contains a component with nonzero divergence,

∇ · Pflexo = (es − eb)
x{2x2 + (Lθ + z)2(3 cos 2φ − 7) + 4[x2 − 2(Lθ + z)2] sin φ}

8[x2 + (Lθ + z)2]5/2
, (5)

which, assuming a perfectly matched boundary condition at z = 0, yields a potential,

V = (es − eb)
x{3(Lθ + z)2 − [2x2 + 3(Lθ + z)2] cos 2φ + 4x2 sin φ}

24[x2 + (Lθ + z)2]3/2ε
. (6)

The associated D and E fields are displayed in Figs. 2(c) and 2(d) for φ = +π/2 and φ = −π/2, respectively. These plots
reveal that since D and E are mutually perpendicular, the electrostatic energy density is everywhere 1

2 D · E = 0 and, hence,
the flexoelectric-induced electric field itself has zero energy. Nonetheless, a preferred azimuthal alignment still arises due to
the dielectric anisotropy: Suppose an infinitesimal difference in the components of the dielectric tensor δε is introduced, then the
leading order correction to the free energy is

− δε

2

∫
C

(n · E)2d3x. (7)
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Inserting (3) and (6) into Eq. (7) and performing the integration yields an effective surface potential as a function of φ,

F̃ (φ) = −δε
(es − eb)2

ε2

(−866 + 909 cos 2φ − 238 cos 4φ + 35 cos 6φ + 240 sin φ + 200 sin 3φ − 40 sin 5φ)

217

×π log

(
1 + z0

Lθ

)
, (8)

where z0 is a cutoff distance for the integration. While it is clear
from the plot in Fig. 2(e) that the perpendicular configuration
represents the ground state, the energetic maximum actually
occurs at a small angle φ ≈ π/8 to the parallel configuration.
Most unusually for an effective anchoring potential, which
typically reflects the symmetry of the pattern, (8) contains
terms odd in φ because both the flexoelectric polarization and
the elastic distortion each carry an independent sign as may be
seen from the plots in Figs. 2(a) and 2(b).

We have therefore demonstrated, within rather restric-
tive approximations and in an unbounded geometry, a
flexoelectricity-induced azimuthal alignment, which favors
the opposite state to that preferred by elastic anisotropy if
�ε > 0; for negative �ε the flexoelectric effect enhances the
elastic anchoring mechanism. Relaxing the assumptions by
incorporating unequal elastic constants, allowing for azimuthal
variations of n, and including dielectric anisotropy of a realistic
magnitude will cause both (3) and (6) to be modified; we
now wish to establish what becomes of the flexoelectic-
aligning effect, which must now compete with the elastic
anisotropy, and to investigate the possibility that in some
region of the parameter space the competition is matched such
that the alignment is bistable. To do so, it is necessary to solve
the full nonlinear Euler-Lagrange equations associated with
(1) for both V and n self-consistently. These are numerically
challenging to solve because gradients in n, both those from the
physical solution and those associated with error, cause large
electric fields through the flexoelectric coupling. We do not use
the Q-tensor formalism since the system contains no defects.

To proceed, we use a parallel package [21] that implements
the robust first-order system least squares (FOSLS) finite-
element method [22,23] with Newton linearizations [24],
coupled with nested iteration (NI) [25], algebraic multigrid
(AMG) [26], and an efficiency-based adaptive local refinement
(ALR) scheme [27,28] to solve the discrete system efficiently.
This method has been successfully applied to various complex
fluid structure problems, e.g., elasticity [29,30] and magneto-
hydrodynamics [27,31].

With this formulation, all terms in the equations are written
as first-order derivatives of n, V , E and auxiliary variable U =
∇n; the solution of the system of equations L(u) = f is posed
as the minimization of the L2 norm of the residual ||L(u) −
f||0, in which these derivatives appear quadratically [22]. This
discretization yields symmetric positive definite discrete linear
systems, which can be solved effectively with optimal AMG
solvers [32], as well as a sharp and reliable a posteriori local
error estimator [22]. At each step in the solution algorithm, the
estimate allows judgements in the grid refinement process to
be made based on the anticipated increase in accuracy at the
expense of computational cost. As a result, methods such as
NI and ALR are employed to make the process more efficient.
The combined method allows the solution process to resolve
the approximate solution on an optimal grid with an optimal

amount of computational work. This is accomplished when a
discrete solution is obtained with total error less than a given
tolerance, using a minimal number of degrees of freedom [27]
and a solver whose computational cost is linearly proportional
to the number of degrees of freedom [22,32]

The Euler-Lagrange equations are written as a relaxation
scheme,

∂n
∂t

−
(

∂F

∂n
− ∇ · ∂F

∂U

)
= 0, (9)

which is solved together with Maxwell’s equations ∇ · D = 0
and ∇ × E = 0, the definitions U − ∇n = 0 and E + ∇V =
0, and the auxiliary constraints n · n − 1 = 0 and ∇ × U = 0.
These last curl equations are added to ensure that the error
estimate is sharp and reliable [22,28]. As this method is derived
via a least-squares minimization, consistent equations can be
added freely to the system. If done correctly, this allows the
norm in which the minimization is done (L2) to be equivalent
to the norm of the error in the solution space (H 1). The
addition of these equations guarantees that the error of the
solution and all of its derivatives are reduced as expected
when the resolution is refined. Since the equations contain
many nonlinear terms, NI allows the solver to perform many
of the expensive linearizations on coarse grids and only a few
at the finest resolutions.

Boundary conditions are imposed as follows: periodic
boundaries in the x direction, with V = 0 and n0 =
(cos θ0 sin φ0, cos θ0 cos φ0, sin θ0) at the top and bottom sur-
faces. Here,

θ0(x) = π

4
+ 1

2
(arctan χ+ − arctan χ−),

χ± = (ξ − 1) sin(2πx)

(ξ − 1) cos(2πx) ± 1
. (10)

The parameter ξ characterizes the merging of vertical and
planar alignment; in the limiting case ξ → 0, a discontinuous
transition between stripes occurs, while for ξ → ∞, the
surface angle θ0 → π/4 represents complete mixing. To
find the preferred azimuthal anchoring alignment for various
physical parameters, a sequence of simulations was performed
for which φ0 was set to a constant. Parameters used unchanged
between simulations were those for the nematic material 5CB,
i.e., K1 = 1 × 10−11 N, ε‖ = 18.5, ε⊥ = 7. A value of the
anchoring parameter ξ = 0.05 was chosen consistent with
Ref. [33].

The alignment in the absence of flexoelectricity was first
characterized by examining calculated values of F as a
function of φ0 such as those shown in Fig. 3(a) for typical
values K2/K1 = 1/2 and K3/K1 ∈ {1,3/2}. Regions of the
K2/K1 and K3/K1 parameter space are identified where
parallel or perpendicular alignment is favored; these are
displayed in Fig. 3(b), together with the critical line along
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(a) (b)

(c) (d)

FIG. 3. (Color online) (a) Free energy as a function of φ0 for
K2/K1 = 1/2 with (blue/dark gray) K3/K1 = 1 and (purple/gray)
K3/K1 = 3/2. (b) Region of K2/K1 and K3/K1 parameter space
where the parallel and perpendicular configurations each represent
the ground state. Rms measure of the azimuthal variations of the
director for the (c) parallel and (d) perpendicular case.

which the states become degenerate. In all cases, the extrema of
(1) are found to lie at either φ = 0 or φ = π/2. The amount of
azimuthal variation present in the calculated director profiles,
measured by the rms value of φ over the domain, is shown
in Figs. 3(c) and 3(d). For parallel alignment, out of plane
distortions were present where either K2 or K3 were much
less than K1. Indeed, the EL equations appear to become
unstable if either K2/K1 or K3/K1 is less than about 0.3. The
perpendicular configuration appears more stable with respect
to azimuthal variations, which are only observed for small K2

and large K3. These results broadly support the approximations
used in Refs. [11,33]; they also suggest that, for highly
anisotropic elastic constants, configurations where the director
varies in two dimensions (2D) become unstable with respect to
three-dimensional (3D) variations of the director, for example,
a modulation along the length of the stripes. Such instabilities
are well known to occur in systems with highly anisotropic
elastic constants [34]. This possibility is to be explored in
future work, but seems to place a limit on the extent to which
behavior at a patterned interface can be controlled by tuning
the elastic constants of the nematic material.

A second set of simulations was performed where the
combination of flexoelectric parameters es − eb pertinent to
the effect as deduced in Eq. (5) was varied. The resulting
total free energy is plotted as a function of es − eb in
Fig. 4(a), confirming the quadratic dependence predicted in
(8) showing that the parallel and perpendicular configurations
become degenerate for (es − eb)/K1 ∼ 5.6 C J−1. Studying
the individual contributions to the free energy, it is found
that the numerical noise is greatest on the electric field terms
as predicted since the effect of the flexoelectric coupling
is to amplify the curvature of the director, which is itself
subject to noise. Displaying the total free energy as a function
of the azimuthal angle φ0 as in Fig. 4(b) confirms that
for (es − eb)/K1 = 5.5 C J−1, the parallel and perpendicular

(a) (b)
(i)

(ii)

(iii)

FIG. 4. (Color online) Free energy (a) as a function of es − eb for
φ0 ∈ {0,π/4,π/2} and (b) as a function of φ0 for (es − eb)/K1 = (i)
2, (ii) 5.5, and (iii) 8 C m−1.

configurations are approximately degenerate and separated
by a shallow energy barrier. The calculations agree with the
analytical model in that while the perpendicular configuration,
φ = π/2, is indeed one of the ground states, the other lies at an
azimuthal angle of about π/8 to the parallel state. Examining
the behavior of F for three angles φ0 ∈ {0,π/4,π/2} as shown
in Fig. 4(a) shows that the region of parameter space over
which the bistability occurs is rather limited, confined to
5.5 � (es − eb)/K1 � 5.7.

The anchoring transition predicted by our model ought to
be experimentally observable. Conventional nematic materials
are experimentally found to possess quite small flexoelectric
coefficients, e.g., for the material E7, Jewell et al. [35] obtained
es − eb = +1.5 × 10−11 C m−1, while for a proprietary mate-
rial, Elston measured |es − eb| = 8 × 10−12 C m−1 [16]; these
results correspond to values of (es − eb)/K1 ∼ 0.8–1.5. Even
so, the predicted anchoring energies for patterned surfaces
should be moderately rescaled by flexoelectricity. Recently,
however, bent-core nematogens have been synthesized with
flexoelectric coefficients measured to be as high as 3.5 ×
10−8 C m−1 [36]. It seems likely then that an appropriate
mixture or material can be synthesized with parameters
suitable for exploiting the alignment and bistable effects.

To study the flexoelectric alignment mechanism in isola-
tion, a number of physical effects have been neglected. First,
spatial variation of the ordering, including the possibility of
biaxial ordering at the vertical-planar boundary, will adjust the
strength of the aligning effect. The presence of mobile ions, as
is well known [37], screens the flexoelectric response of the
system and, hence, reduces the anchoring. Weak anchoring in
earlier work on patterned surfaces [33] simply rescaled the
absolute value of the free energy and, hence, ought to affect
both states similarly here. A second consequence of using the
rigid anchoring approximation is that surfacelike elasticity is
neglected, which is known to cause interesting instabilities in
other geometries [38]; this is presently being studied together
with the apparent instability of the configurations here for
very anisotropic elastic constants. Moreover, it remains to
study the dynamics of this system to identify the optimal
switching strategy; interesting nematodynamical effects such
as backflow and kickback are expected in these geometries
due to the presence of large gradients. The robust numerical
method described is well suited to such problems and will help
bring more insight into the problem.
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To conclude, we have demonstrated that flexoelectricity
causes an azimuthal alignment effect for a nematic in contact
with striped substrates due to the coupling of the director
to the curvature-induced electric field through dielectric
anisotropy, extending the rich physics exhibited by complex
fluids in complicated geometries. Moreover, the preferred bulk
orientation favored by this effect is opposite to that promoted
by elasticity. The competition between the two effects leads
to an anchoring transition or bistability within a region of

parameter space accessible with recently synthesized bent-
core materials.
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