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Tension of freely suspended fluid filaments
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Stable fluid filaments with diameters of several micrometers and slenderness ratios well above 1000 are unique
objects formed by some liquid crystalline phases of bent-core mesogens. We present a technique to determine
filament tensions from their deflection under defined loads. A strong temperature dependence is observed, with
a minimum near the clearing temperature. Both the nonlinear relation between filament tension and diameter
and the substantial increase of the tension with lower temperatures indicate contributions of volume terms, in
addition to surface capillary forces. We discuss a model that relates these bulk terms to elastic forces, originating
from the undulated smectic layer structure. This model can explain the origin of the filament stability.
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Freely suspended fluid filaments are among the most exotic
structures formed by liquid crystalline materials [1–18]. Most
of these unique structures are found in some mesophases of
bent-core smectogens. Bent-core materials are particularly
interesting because they can form chiral phases of achiral
molecules, which may be ferroelectric or antiferroelectric [19].
A promising application of liquid crystal filaments, e.g., as
optical wave guides, has been proposed recently [16]. The
reason for their stability is not fully understood (a molecular
layer structure appears to be insufficient for a stabilization) and
little is known about their fundamental mechanical properties.
Such filaments represent either single cylindrical fibers or
bundles of fibrils of about 2 μm diameter. The smectic
layers are wrapped around the fibril axes [6,8]. The material
can flow freely along the axis. When the filament length
is varied, its cross section remains unchanged, and material
is exchanged with the bulk reservoir. The bundle thickness
can range from a few micrometers to 100 μm or more, and
slenderness ratios (length to diameter) of 1000 or more can be
achieved. Filaments in equilibrium are straightened by their
tension.

Fluid filaments are unique in two aspects: first, they are
not subject to the Rayleigh-Plateau instability, which causes
cylinders of ordinary liquids to decompose into droplets when
their aspect ratio exceeds π . Second, as we will show in this
study, the filament tension is not caused by capillary forces
alone. In addition to the surface tension, bulk forces related to
the complex smectic molecular arrangement contribute to the
macroscopic filament tension.

Earlier mechanical and electrical studies explored the
dynamical properties of such filaments [6,7,12]. However, still
very little is known about their mechanical characteristics.
In plucking experiments [7], filaments of a few millimeters
in length were deflected by an electric field. After the field
was switched off, they performed damped oscillations, which
provided information on mechanical parameters, e.g., the
filament tension �. Later, mechanical resonances were studied
under continuous excitation with sound waves [12]. If one
neglects contributions of the internal filament structure, a
plausible assumption is to set � equal to the specific surface
energy per filament length [3,4], 2πrσ (radius r , surface
tension σ ). Our experimental data contradict this simple model

and indicate the existence of additional forces. Bailey et al.
[15] proposed a model that includes bulk elastic terms. An
alternative model that also considers bulk energy contributions,
but of a different nature, was put forward recently by Eremin
et al. [18].

Still, there remains the unsatisfactory situation that fila-
ment tensions have not been measured directly. Cantilever
methods [8,17] are apparently too inaccurate. In this study, we
describe a direct measurement technique, and we determine
the temperature dependence of �(T ). The method avoids the
problems of previous studies.

Filaments are suspended horizontally to measure their
deflection by gravity. Under their own weight, filaments deflect
by a few micrometers only [20]; this deformation can be
ignored here. We attach loads (glass or metal microbeads)
of known weights, which stick to the filaments by capillary
forces. Filaments are drawn in a 6 × 6 × 6 cm3 thermobox
(temperature range up to 200 ◦C) and observed through quartz
windows with a long range microscope (Questar QM 100) [9].

The chemical composition of the investigated material is
shown in Fig. 1. The substance has a phase sequence, isotropic
160 ◦C PM-Sm-CP 143 ◦C Sm-CP 90 ◦C Cryst., where Sm-CP
is a simple polar tilted smectic phase and PM-Sm-CP is a polar
tilted smectic phase with an undulated layer structure [21].
Stable filaments can be prepared only in the high temperature
PM-Sm-CP phase.

The filaments are prepared near the clearing point, and
drawn to lengths � of a few millimeters. Filament cross sections
are not always circular; we make an elliptical approximation.
The half axes a,b are determined by rotating the filament
about its long axis before the load is attached [20]. Then a
support plate carrying a glass or steel bead is approached from
below until the bead touches the filament. When the dish is
lowered again, the bead detaches from the support dish and
sticks to the filament. The geometry is sketched in Fig. 2(a),
and the experimental realization is shown in Fig. 3(a). Glass
microbeads with submillimeter size and weights of the order of
a few μN (e.g., about 3 μN for 0.6 mm diameter) are sufficient
to distort filaments with diameters of the order of ≈100 μm.
The weight G is obtained from the bead diameter and the
known density of the glass. At thick filaments, we attach more
than one bead to obtain larger deflections.
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FIG. 1. Chemical structure of the investigated material.

The equilibrium inclination angles α ≈ α′ of the filament
segments are measured and the filament tension � is found
from the force balance,

G = (sin α + sin α′)�. (1)

A difference compared to similar measurements of elas-
tomer fibers [22] is that the angles α,α′ do not change when
the distance between the lateral holders is varied. The fluid
filament elongates or shortens correspondingly; it adjusts its
length by material flow out of or into the meniscus.

The only assumption in this model is that the forces are in
equilibrium. The sharp bend of the filament at the position
of the bead does not contribute to the force balance, and
all relevant forces in the filaments act in axial directions. A
magnified view of the contact between the filament and the
bead is seen in Fig. 4(a). The local structure of the filament
is almost uninfluenced by the load; only a small meniscus
connects the filament and load. Except for the bend at this
connection, the filaments are perfectly straight.

This technique can be varied slightly for the assessment
of the radius dependence by evaluating forces between three
connected filaments: If a bead is too heavy, it detaches from
the filament and creates a thinner filament branch of radius r2.
A triangular connection forms, as seen in Figs. 3(b) and 4(b)
and in the sketch in Fig. 2(b). Three tensions establish a force
equilibrium. Except for a small meniscus at the connection,
there are no distortions of the filament structures. In the
simplest case, where both upper branches are of equal radius
r1 and the third filament has a radius r2 [Fig. 3(b)], α equals α′
and �(r2) = 2�(r1) sin α. The radii and the angles between
the three filaments provide a direct test of the capillary
force hypothesis. If �(r2)/�(r1) = r2/r1 for all r1,r2, then

(a)

(b)

FIG. 2. (Color online) Geometries for the measurement of fila-
ment tensions: (a) deflection under the weight of a glass sphere, and
(b) force balance of three filaments.

(a)

(b)

FIG. 3. (a) Image of a filament of 152 μm diameter with an
attached glass bead. The distance between the two supports is 6 mm,
and the temperature is 2.2 K below the melting point. (b) Bent filament
of 80 μm diameter with a branch to a thin, nearly vertical filament
(20 μm diameter). The inset shows three connected filaments with
different diameters [8 μm (top left), 15 μm (right) and 7 μm (bottom
left)]. The tensions determined from the angles relate as 0.63 : 1.0 :
0.49, respectively.

the tension is proportional to the filament perimeter, i.e.,
it is likely to reflect a pure surface property. A nonlinear
dependence indicates that the tension contains terms related
to the bulk. In a cylindrical filament, such bulk terms would
give �(r) ∝ r2. Combinations of linear and quadratic terms
indicate a superposition of volume and surface contributions.
If the filament cross sections are elliptical, one has to replace
2πr by the true perimeter P .

The strong temperature characteristics of the tension �

produce a reversible geometrical change of the fluid filament
during heating and/or cooling (Fig. 5). The qualitative results
are shown in Fig. 6 for two typical filaments. Experimental
uncertainty is somewhat larger at low temperatures where
the deflection angles are smaller at given weights. In both
filaments, the forces strongly increase with decreasing tem-
perature. In some filaments [cf. Fig. 6(b)], we observe a
slight increase of � also towards the clearing point. This
reversed slope in the vicinity of the clearing temperature is not
found in all filaments; often filaments break on approaching
the phase transition. Both filaments in Fig. 6 are slightly
elliptical in the cross section. We take the perimeter of an
ellipse and make a correction that takes the corrugations

(a) (b)

FIG. 4. (a) Contact zone of a glass sphere (diameter 788 μm)
with the vertical filament; the temperature is 2.2 K below the melting
point. (b) Three filament branches in contact. The diameter of the thin
vertical branch is 22 μm. White bars mark 100 μm length.
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FIG. 5. (Color online) Filament deflection under load. The hor-
izontal bar marks the initial position at 155.6 ◦C. All changes are
fully reversible. After temperature changes, the force equilibrium is
established within less than one minute.

(a)

(b)
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FIG. 6. (Color online) Temperature dependent tensions �(T ) of
two representative thick filaments during cooling (solid, red circles)
and heating (open, blue circles): (a) � = 10.09 mm, a = 69 μm, b =
54 μm, and two steel beads of 0.4 mm diameter attached, (b) � = 8.5
mm, a = 114 μm, b = 82.5 μm, and one 0.8 mm glass bead attached.
The dashed lines indicate the contributions related to capillary forces
with an assumed σ = 0.02 N/m.
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FIG. 7. (Color online) Dependence of the filament tension upon
the perimeter, calculated from the two half axes a,b with a corrugation
correction factor of π/2 (see text) for all filaments. The solid line
indicates the capillary force calculated with σ = 0.02 N/m; the dots
and dashes are fits to Eq. (2).

of the filament surface [12] into account. When the bundle
consists of much smaller, cylindrical fibrils, its surface can
be considered as an array of parallel cylinders. Thus we
replace each cylinder diameter by half the circumference of a
cylinder to approximate the real bundle perimeter. This yields
a correction factor of π/2 as a rough estimate. Further, we
assume a surface tension of 0.02 N/m (σ of similar materials
are found in Refs. [23,24]), and arrive at capillary forces of
(a) 6.1 μN and (b) 9.7 μN, respectively (dashed lines). The
excess forces, in particular the increase by a factor of about
three at low temperatures, cannot be explained by capillarity.

In Fig. 7, we compare the tensions of filaments of
different thicknesses at two fixed temperatures. The expected
contribution of the surface tension is indicated by a straight
line. Only for very thin filaments does it represent a satisfactory
approximation. For thick filaments, a quadratic contribution to
�(r) dominates. The data scatter too much to allow a combined
fit of both the linear and quadratic terms of these curves.
Instead, we fitted the filament tensions to an equation

� = σP (a,b) + ηπab, (2)

with a temperature independent σ = 0.02 N/m. The coef-
ficient η of the volume contribution to � represents an
energy density. This bulk term dominates in thick filaments
(in cylindrical filaments when r > 2σ/η). The resulting η(T )
curve is given in Fig. 8. The scattering of the data is mainly due
to varying surface corrugations. Figure 8 shows that the bulk
parameter η strongly increases with decreasing temperature.

This trend of a stronger than linearly increasing ratio
of tensions with increasing filament thickness (Fig. 7) is
confirmed qualitatively and quantitatively with interconnected
filaments of different radii [Figs. 2(b) and 3(b)]. All exper-
imental data support the interpretation that the bulk term
increases with decreasing temperature, whereas the surface
tension contributions are rather constant.

The bulk term has to be interpreted as an energy necessary
to create filament volume from bulk material. We propose that
it is related to the two-dimensional structure of striped domains
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FIG. 8. Temperature dependence of the coefficient η [Eq. (2)] of
the volume contribution to the filament tension.

in the polarization-modulated undulated layer phase [26]. The
equilibrium stripe width d0 varies from less than 100 nm
near the clearing point to about micrometer size near the
low temperature Sm-CP phase. In the fibers, the stripes are
in the axial direction, as sketched in Fig. 9 [25]. Because
of the spontaneous polarization splay, a term of the form
K {1/ds − 1/d0(T )}2 approximates a bend elastic contribution
to the free energy density, where d0(T ) defines the equilibrium
bulk value, K ≈ 10 pN is a corresponding elastic constant, and
ds is the actual stripe width. We assume that the stripe width ds

in the fibers is fixed, imposed either by the boundary conditions
or by the curved layer arrangement, or imprinted during
preparation. Then, cooling of the filaments leads to a mismatch
of d0(T ) and ds . With d0 ≈ 1 μm at low temperatures and
ds ≈ 50 nm, the excess free energy per volume becomes
≈4 kJ/m3. This agrees with the order of magnitude of the
measured η(T ) in the filament tension (Fig. 8). Of course, for
an exact quantitative description, this model needs refinement;
electric self-energies [14,15] and energies related to the defect
lines at the stripe boundaries should be considered as well.
Measurements of the polar order of the filaments by optical
second harmonics interferometry [18] strongly support the
model described here. Freeze fracture and electron microscopy
might be useful for a direct observation of the stripes in fiber
geometry. Further evidence that the bulk term originates from

FIG. 9. Model of the polarization splay stripes in the fibers.
Arrows symbolize the spontaneous polarization �p. The c-director
is perpendicular to �p in the layer plane. The sketched configuration
complies with the observation that the filaments generate an axially
polarized optical second harmonic [18,25].

the particular smectic structure comes from a comparison with
filaments of columnar liquid crystal phases. In a vibration
analysis, it was established that the filament tension of the
latter originates from surface contributions alone [3,4].

In summary, the tension of liquid crystal filaments of the
investigated bent-core mesogens is composed of two contribu-
tions: capillary forces as in ordinary liquids and an additional
term that may originate from the two-dimensional (2D)
molecular arrangement in the fibrils. The assumption of a fixed
number of splay stripes in the individual fibers provides a rea-
sonable explanation of why the filaments in PM-Sm-CP are not
subject to the Rayleigh-Plateau instability, unlike most other
smectic phases. The striped structure lets the molecular ar-
rangement in the filaments appear more similar to 1D columns,
rather than 2D extended layers of typical smectic phases.
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[9] A. Nemeş, A. Eremin, R. Stannarius, M. Schulz, H.
Nádasi, and W. Weissflog, Phys. Chem. Chem. Phys. 8, 469
(2006).
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[24] H. Schüring, C. Thieme, and R. Stannarius, Liq. Cryst. 28, 241

(2001).
[25] U. Kornek, Diploma thesis, Otto von Guericke University

Magdeburg, 2011.
[26] D. A. Coleman et al., Science 301, 1204 (2003).

040501-5

http://dx.doi.org/10.1103/PhysRevE.75.031701
http://dx.doi.org/10.1103/PhysRevE.75.031701
http://dx.doi.org/10.1103/PhysRevE.80.032701
http://dx.doi.org/10.1103/PhysRevE.81.031708
http://dx.doi.org/10.1103/PhysRevLett.109.017801
http://dx.doi.org/10.1039/jm9960601231
http://dx.doi.org/10.1143/JJAP.36.6455
http://dx.doi.org/10.1143/JJAP.36.6455
http://dx.doi.org/10.1080/00150193.2012.684976
http://dx.doi.org/10.1080/00150193.2012.684976
http://dx.doi.org/10.1103/PhysRevE.71.011705
http://dx.doi.org/10.1039/c2sm06824a
http://dx.doi.org/10.1021/la980224j
http://dx.doi.org/10.1080/02678290010006270
http://dx.doi.org/10.1080/02678290010006270
http://dx.doi.org/10.1126/science.1084956



