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Exchange of stability as a function of system size in a nonequilibrium system
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In equilibrium systems with short-ranged interactions, the relative stability of different thermodynamic states
generally does not depend on system size (as long as this size is larger than the interaction range). Here, we use a
large deviations approach to show that, in contrast, different states can exchange stability as system size is varied
in a driven, bistable reaction-diffusion system. This striking effect is related to a shift from a spatially uniform to
a nonuniform transition state and should generically be possible in a wide range of nonequilibrium physical and
biological systems.
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The statistical physics of nonequilibrium systems has
proven to be an enduring source of unexpected and intriguing
phenomena. Historically, studies of driven systems have
tended to focus on the thermodynamic limit of infinite system
size. In recent years, however, experimental advances have
made it possible to study everything from micromagnets and
nanotubes to living cells at the mesoscopic scale, and this in
turn has led to a growing theoretical interest in finite-sized
stochastic systems. A major problem is to understand the
relative stability of, and transition rates among, different
(meta)stable states; this issue has been studied extensively
for some equilibrium, detailed-balance-obeying models [1–5].
Here, we consider the same question in a simple model of a far-
from-equilibrium, driven chemical system and show that far
richer behavior is possible when detailed balance is violated. In
particular, we find that—unlike in an equilibrium system—the
system’s two stable states can exchange stability as the system
size increases. This reversal is related to competition between
a homogeneous and a spatially varying transition state [4,6],
and we expect it generically to be possible whenever there
is no underlying Boltzmann distribution to ensure that the
relative stability is independent of the transition path. Similar
results may thus apply to a wide range of systems of interest
in condensed matter, chemical, and biological physics.

In what follows, we start by introducing the Schlögl model
of a bistable chemical system and formulating its mean-field
rate equations in terms of a deterministic potential V(c). The
minima of this potential correspond to two locally stable states,
and one might naively imagine that the state with the lower V
is the more stable of the two. Indeed, in a spatially extended
system with diffusive transport, the mean-field equations have
front solutions in which the state with lower V always invades
that with higher V . In a well-stirred system, in contrast,
only noise-induced transitions between states are possible,
and the mean-field description provides no information about
relative stability. Surprisingly, in this case, an analysis that
accounts for the fundamentally stochastic nature of chemical
reactions shows that, in certain parameter ranges, the state with
higher V is found with greater probability [7,8]. To reconcile
these two seemingly contradictory predictions, we consider
a model including both diffusion and fluctuations. We first
show numerically that the two states exchange stability as
the system’s spatial size grows. We then use a semiclassical
approach to explain this dependence. By placing bounds on
the action that determines the transition rate between states,

we are able to show that the relative stability must follow the
deterministic potential for large enough systems, where the
transition occurs through nucleation followed by deterministic
front motion, while the well-stirred result applies for small
enough systems.

The bistable Schlögl model [9] consists of the chemical
reactions

A
k0−→ X, X

k1−→ A, 2X + B
k2−→ 3X,

(1)
3X

k3−→ 2X + B,

where the concentrations of A and B are held constant. The
corresponding mean-field rate equation for the concentration
c of X in a well-stirred system is

ċ = (k0 + k2c
2) − (k3c

3 + k1c) = −V ′(c), (2)

where we have absorbed the concentrations of A and B into the
rates k0 and k2, respectively, and the prime denotes a derivative.
This equation defines the deterministic potential V(c). If we
move away from the well-stirred limit and let c depend on
a spatial coordinate z, a diffusion term must be added, and
Eq. (2) generalizes to

∂tc = −V ′(c) + D∂2
z c. (3)

For appropriate choices of the ki , V(c) has one local maximum
cs and two local minima c1 and c2, with c1 < c2, corresponding
to two (meta)stable states. Equation (2) is invariant with respect
to a simultaneous rescaling of concentrations and of rate
constants, a fact we can exhibit explicitly by introducing a
typical concentration scale c0 of the same order as c1 and c2 and
writing the ki as ki = λi(c0)1−i , where the λi have dimensions
of inverse time. For fixed λi , the dynamics of x = c/c0 is
independent of c0.

The existence of two (meta)stable states invites the question
of their relative stability. One expects that, when noise is
properly taken into account, c will be found with high
probability near c1 or c2, and one might guess that V(c)
determines which of the two is more probable (i.e., stable)
and which is less probable. Indeed, in the limit of infinite
system size, Eq. (3) admits traveling front solutions of the form
c(z,t) = f (z − vt) in which the state with lower V expands
into the one with higher V [3,6,10].

Equation (3), however, is only a mean-field approximation
to a more realistic model that accounts for the random nature
of the molecular collisions that lead to chemical reactions. To
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incorporate both these intrinsic stochastic effects and diffusion,
we use a mesoscopic compartment model. In general, a
d-dimensional reaction vessel is partitioned into M elementary
compartments of linear size h and volume V = hd , and each

molecule can jump between neighboring compartments but
can react only with other molecules in the same compartment.
The stationary probability P (n1,n2, . . . ,ni, . . .) to find ni

molecules in compartment i then satisfies

∑
i

[W+(ni − 1)P (. . . ,ni − 1, . . .) − W+(ni)P (. . . ,ni, . . .)] +
∑

i

[W−(ni + 1)P (. . . ,ni + 1, . . .) − W−(ni)P (. . . ,ni, . . .)]

+D
∑
(i,j )

[(ni + 1)P (. . . ,ni + 1,nj − 1, . . .) − niP (. . . ,ni,nj , . . .)] = 0, (4)

where D is the jump rate between compartments and the
last sum is taken over neighboring compartments (i,j ). The
reaction rates are

W+(n) = k0V + (k2/V )n(n − 1),
(5)

W−(n) = k1n + (k3/V 2)n(n − 1)(n − 2).

In general, this model allows for barriers that slow diffusion
between compartments, but we are primarily interested in
using it as an approximate description of a spatially continuous
system. One can show that the average behavior of the
stochastic compartment model (4) approaches that of the con-
tinuum reaction-diffusion equation (3), with D = h2D, when
Dtr = Dtr/h2 � 1 and c0V � 1 [11,12]. Here tr ∼ 1/λi is
a typical time between reactions of an individual molecule.
The first inequality ensures that individual compartments are
well mixed; while this could be accomplished by decreasing
h at fixed D, the second inequality demands that this not be
done at the expense of having very few molecules in each
compartment.

Although there is no general analytical expression for the
stationary distribution satisfying Eq. (4) [13], one can be found
when M = 1 and the entire reaction volume is well stirred.
In this case the total number of molecules n is distributed
according to

Pws(n) = K

n−1∏
j=1

W+(j − 1)

W−(j )
, (6)

where K is a normalization constant. Below, we will be
particularly interested in asymptotic results in the limit that
the typical number of particles per compartment � ≡ c0V

becomes large, and it is thus useful to rewrite Pws in terms of
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FIG. 1. Logarithms of the probability distribution Pws(x) in the
well-stirred model and of the deterministic potential V(c0x) [15].
Both logarithms are shifted vertically by their values at x1 and are
plotted as a function of the rescaled concentration x = c/c0.

x = c/c0 = n/� as [14]

Pws(x) = K(x; �)e−�Sws(x), (7)

where K(x1; �)/K(x2; �) is bounded as � → ∞ for every
x1, x2 > 0, so that exp[−�Sws(x)] determines the dominant
large � contribution to any probability ratio.

The action Sws(x) is defined by

dSws(x)/dx = ln[w−(x)/w+(x)], (8)

where w+(x) = λ0 + λ2x
2 and w−(x) = λ1x + λ3x

3. It is
clear from this equation that the extrema of Sws(x) and of
V(c0x) occur at the same values of x. The two functions,
however, can otherwise be very different. Indeed, for the
parameters used in Fig. 1 [15], V(c2) − V(c1) and �ws =
Sws(x2) − Sws(x1) (where the extrema xi = ci/c0) have op-
posite signs. Since Eq. (7) implies that it is the sign of �ws

that determines which of the two states is more probable,
the deterministic potential does not reliably predict relative
stability in the well-stirred case.

Semiclassical approach. In a well-stirred system, no transi-
tions between states can occur without fluctuations. In contrast,
the kinetics (3) with diffusion does allow for front-driven
transitions between states even in the mean-field limit. This
suggests that, unlike in the well-stirred system, there may be
cases in spatially extended systems where the deterministic
potential V(c) does in fact determine relative stability. Direct
simulations of the fully stochastic compartment model (using
a kinetic Monte Carlo algorithm with separate treatment
of reaction and diffusion steps [11]) demonstrate that this
intuition is correct. Indeed, Fig. 2 shows that the two states
can exchange stability as M is increased; for small M , their
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FIG. 2. (Color online) The distribution of the average scaled
concentration x = ∑

ni/(M�) for different M and V = 20 [15].
Inset: Schematic of the compartment model, with molecules allowed
to hop between compartments and to react within each compartment.
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relative stability is the same as in the well-stirred limit, but for
larger M , the state with lower V regains the upper hand. As we
now show, this stability inversion can be understood within a
semiclassical approximation.

Just as in the well-stirred case, the stationary distribution P

satisfying Eq. (4) can be written for large � as

P (x1, . . . ,xM ) = KM (x1, . . . ,xM ; �)e−�S(x1,...,xM ), (9)

where xi = ni

�
, and � = c0V remains the typical number of

particles per compartment [14]. For well-mixed systems, the
eikonal approximation (9) is often thought of as a large volume
approximation, but here the requirement that the compartment
model approximate a continuous reaction-diffusion system
constrains the volume of each compartment, and it is more
useful to think of making � large by letting c0 → ∞ with the
λi , D, and V fixed.

It is known [14,16] that the function S(x) can be expressed
as the minimal action

S(x) − S(xi) = min
x(t)

max
p(t)

{ ∫ x

xi

dt[ pẋ − H ( p,x)]

}
,

H ( p,x) =
∑

i

(
epi − 1

)[
w+(xi) − w−(xi)e−pi

+D�i(xe− p)
]
, (10)

where xi is a stable stationary point of the deterministic
kinetics, x a point in its basin of attraction, and �i the
appropriate discrete Laplacian centered on compartment i.
The extrema of S(x) correspond to the fixed points of the
dynamical system

ẋi = w+(xi) − w−(xi) + D�i(x) (11)

and have the same stability [14].
In the continuum limit h → 0, Eq. (11) becomes a rescaled

version of Eq. (3), whose stationary states are well character-
ized [4,17–19]. It is reasonable to expect that the stationary
states of the discretized version have similar properties for
small enough h [20]. Then, with reflecting or periodic
boundary conditions, only the uniform states x1 = (x1, . . . ,x1)
and x2 = (x2, . . . ,x2) are stable, and there is a unique (up to
symmetries) fixed point xs of (11) with only one unstable
direction. This saddle is used to define the function S(x)
everywhere, i.e., to fix the value of S(xi) and thus of the
stability index � through a matching procedure [14,16]:

� = S(x2) − S(x1) = �S1,s − �S2,s ,

�S1,s = min
x(t)

max
p(t)

∫ xs

x1

dt[ pẋ − H ( p,x)], (12)

�S2,s = min
x(t)

max
p(t)

∫ xs

x2

dt[ pẋ − H ( p,x)].

Both �Si,s are non-negative [14]. Their exponentials are
known to determine, respectively, the transition rates from
x1 to x2 and vice versa [14,16]; exp(−��), which gives the
relative stability of the two states for large �, can thus be
thought of as essentially the ratio of forwards to backwards
transition rates.

We now focus on the regime where (as in Fig. 1) V(c2) −
V(c1) < 0, but �ws > 0, and study the sign of �, and through
it the relative stability of the two uniform states. This sign

strongly depends on the saddle xs , which, in the continuum
limit h → 0, is spatially uniform for a small enough system
but becomes nonuniform at a critical linear system size [3,4,6].
In the limit of large system size, the saddle profile is close to
x1 everywhere except in a localized region whose size remains
constant as the system size grows. This form reflects the fact
that the deterministic traveling waves favor the state x2, so
that only a small nucleus is required to initiate a transition
from uniform x1 to uniform x2. Similarly, for our compartment
model, the stationary states and optimal trajectories in Eq. (12)
are uniform for M less than some Mc, and one can show
that � = M�ws. The stability is then that of a well-stirred
system, independent of D. For M > Mc, solving the double
optimization problem (12) is extremely difficult. One can,
however, verify numerically [20] that xs has the same shape as
in the continuum limit, and thus deviates appreciably from x1

only in a small region. Using this fact, one can derive bounds
on �.

In particular, it is not hard to see that �S1,s , which describes
the difficulty of reaching xs from x1, remains smaller than
a fixed constant, independent of M . This bound is simply
given by a particular trajectory solving the first maximization
problem in Eqs. (12). As xs , and thus the trajectory, differ
from x1 only in a small region, the total action is finite, even
for infinite M [20].

Similar reasoning indicates that �S2,s should grow linearly
with M . Indeed, in the limit M → ∞, the region where xs

differs from x1 becomes negligible, and one can focus on an
optimal trajectory that must take the system from x2 to x1 on an
essentially infinite domain. Physically, one expects that such
an optimal trajectory should correspond to a front solution of
the variational equations traveling with constant speed. Each
successive compartment then makes the same contribution
to the action, and one has �S2,s(M) � M�0 for some �0.
(See also the Supplemental Material [20].) Moreover, it is
clear that for any integers M and l, �S2,s(M) � �S2,s(Ml)/l,
because an optimal trajectory for a system of size M can
be mirrored l times to create a suboptimal trajectory for a
system of size Ml. Thus, the asymptotic large M behavior
�S2,s(M) � M�0 implies that �S2,s(M) � M�0 even for
finite M . Since �S1,s remains finite as M increases while
�S2,s grows without bound, � = �S1,s − �S2,s must change
sign at some M > Mc, and the two states exchange stability
as the system size increases (Fig. 3).

Discussion. The large deviations approach that we have
used to show that an exchange of stability must occur is
formally valid in the limit that � → ∞ at fixed compartment
volume V and number of compartments M . This order of
limits is important. In particular, because the prefactor KM in
Eq. (9) depends on M , it can overwhelm the exponential factor
if M tends toward infinity at fixed �; thus, our calculations
describe transitions between (meta)stable states in a finite-
sized, mesoscopic system but cannot be used to study the phase
transition in the Schlögl model defined in the limit of infinite
system size [21]. Similarly, our results hold in the limit of a
large number of reacting particles and thus describe a distinct
phenomenon from the exchange in the most probable state
observed in a well-stirred system with a finite (small) particle
number [22] or the recently described noise-induced reversal
of front propagation direction [10]. Our calculations also go
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SORIN TĂNASE-NICOLA AND DAVID K. LUBENSKY PHYSICAL REVIEW E 86, 040103(R) (2012)

0.5 1 1.5 2 2.5

−0.05

0

0.05

0.1

x

S
ca

le
d

 a
ct

io
n

 

 

M=5
M=10
M=20

FIG. 3. The scaled action −S/M for different numbers of
compartments. The plotted values represent the logarithm of the
probability of an average concentration x = ∑

i x
i/M in Monte Carlo

simulations [11], extrapolated to � = ∞. Curves are shifted such that
S(x1) = 0 in order to clearly indicate the stability exchange. Note that
the peaks in the curves move towards x1 as M grows, reflecting the
fact that most of the saddle profile is near x1 for large M .

considerably beyond a previous study that examined transition
rates very near a bifurcation in the Schlögl model but did not
consider relative stability [6]. Finally, although the exchange
of stability discussed here could not happen if the transition
state did not become nonuniform at M = Mc (leading to a

nonanalyticity in �) [4,5], the actual exchange occurs at some
M > Mc and need not coincide with any further bifurcations
of the transition state.

Although we have presented our results for a specific model
of a bistable chemical system, the system-size-dependent
relative stability that we describe is far more general and should
in principle be possible in models describing everything from
pattern formation [23] to ecological population dynamics [6]
or the complex reaction networks present in living cells [24].
All that is absolutely required is multistability and violation
of detailed balance. In some cases, more complex stability
diagrams are likely to be possible. For example, if we no longer
insist that the compartment model studied here be a good
approximation to a continuum system and thus allow ourselves
to vary D arbitrarily, we expect a reentrant exchange of
stability: As D → ∞, the entire system should be well mixed,
while each individual compartment behaves as a separate
well-mixed vessel as D → 0 [25]. In either limit, the relative
probability of the two states should depend on �ws, while for
intermediate values of D the sign of � may differ from that of
�ws. These and similar effects should be accessible within the
same formalism employed here.
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