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Logarithmic divergent thermal conductivity in two-dimensional nonlinear lattices
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Heat conduction in three two-dimensional (2D) momentum-conserving nonlinear lattices are numerically
calculated via both nonequilibrium heat-bath and equilibrium Green-Kubo algorithms. It is expected by
mainstream theories that heat conduction in such 2D lattices is divergent and the thermal conductivity κ increases
with lattice length N logarithmically. Our simulations for the purely quartic lattice firmly confirm it. However,
very robust finite-size effects are observed in the calculations for the other two lattices, which well explain some
existing studies and imply the extreme difficulties in observing their true asymptotic behaviors with affordable
computation resources.
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Heat conduction induced by a small temperature gradient
in the stationary state in a macroscopic material is expected
to satisfy Fourier’s law: j = −κ∇T . This is a well-known
empirical law, while a complete understanding of the mi-
croscopic mechanism that determines such a law remains a
challenging problem of nonequilibrium statistical mechanics
[1,2]. Fourier’s law implies that a fixed temperature difference
�T that is applied to a homogeneous material with length N

induces a steady-state heat current j that should be inversely
proportional to N : j = −κ�T/N . On the other hand, j is
found, by numerical simulation, to decay as N−1+α with a
positive α in many one-dimensional (1D) models [1,2]. This
implies an infinite κ which diverges with N as Nα . It has been
generally accepted that global momentum conservation is a
key factor to induce such an anomalous heat conduction. Most
of the theories, e.g., the renormalization group analysis [3]
and the mode-coupling theories [4] support such a power-law
divergence. However, a well-accepted conclusion for the
value of α is still not reached [2,5–7]. For three-dimensional
(3D) momentum-conserving systems, all the above-mentioned
theories predict that the heat current autocorrelation function
decays with the time lag τ as τβ , where β = −3/2, which
suggests a finite κ . The finiteness of κ in 3D nonlinear lattice
models has been recently confirmed by both nonequilibrium
heat-bath [8] and equilibrium Green-Kubo [9] calculations. It
should be noted, however, that in Ref. [9] the calculated value
of β is −1.2, which is less negative than −3/2.

As for two-dimensional systems, the theoretically predicted
value of β is −1, which leads to a logarithmically divergent
κ . However, existing numerical simulations are still far from
conclusive. Such a logarithmic divergence is reported by
numerical simulation in the Fermi-Pasta-Ulam (FPU)-β rect-
angle [10] and the disk [11] lattices with vector displacements.
However, a power-law divergence is observed in the FPU-β
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lattices with scalar displacements [12]. Up to now, the size
dependence of the thermal conductivity and the role of the
details of interparticle interactions in 2D systems are still
unclear.

Such a study is not only of theoretical importance. Progress
in nanotechnology has enabled us to measure experimentally
the size dependence of the thermal conductivity in some
1D [13] and 2D [14] nanoscale materials. Furthermore, the
study may also help in fabricating building blocks of nanoscale
phononic devices [15].

In this paper we study heat conduction in two-dimensional
square lattices with a scalar displacement field ui,j . In those
lattices, each particle interacts with its nearest neighbors only.
The Hamiltonian reads

H =
NX∑
i=1

NY∑
j=1

[
u̇2

i,j

2
+ V (ui+1,j − ui,j ) + V (ui,j+1 − ui,j )

]
,

where the interparticle potential takes the form of V (x) =
1
2k2x

2 + 1
3k3x

3 + 1
4k4x

4. The mass of all the particles has
been set to unity. To examine carefully the validity of the
logarithmic divergence and also study the role of interparticle
coupling, we systematically study three types of lattices, i.e.,
the FPU-αβ lattice: k2 = k4 = 1,k3 = 2; the FPU-β lattice:
k2 = k4 = 1, k3 = 0; and the purely quartic lattice: k2 = k3 =
0, k4 = 1. The purely quartic lattice can be regarded as the
high-temperature limit of the other two. Due to its simplicity
and high nonlinearity, one would expect that its asymptotic
behaviors could be displayed in shorter time and space scales.

We first calculate the thermal conductivity κNE in nonequi-
librium stationary states. To this end, fixed boundary condi-
tions are applied in the X direction, while periodic boundary
conditions are applied in the Y direction. The left- and
right-most columns are coupled to Langevin heat baths
with temperatures TL = 1.5 and TR = 0.5, respectively. Heat
currents flowing along the X direction are measured. A number
of independent runs (16 for 2048 × 64 lattices and 8 for
others) starting from different randomly chosen initial states
are performed. The simulation time depends on the model and
the lattice size. For each largest lattice (2048 × 64), the average
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FIG. 1. (Color online) (a) Temperature distributions of different
models for various lattice size NX × NY . Curve groups from down
top correspond to the FPU-αβ, FPU-β, and purely quartic lattices,
respectively. Only the data in the central region between the two
vertical dashed lines are taken into account in calculating the
temperature gradient ∇T , i.e., the left and right 1/4 of the lattices are
excluded. (b) κNE vs temperature T in 1024 × 32 lattices. They tend
to be identical in the high-temperature limit.

is performed over 2 ∼ 4 × 107 dimensionless time units after
enough transient time units. The simulation for each largest
lattice costs several months’ wall time in our high-performance
parallel computing cluster. The temperature of each column is
defined as the average over this column, i.e.,

T (i) ≡ 1

NY

NY∑
j=1

〈
u̇2

i,j

〉
,

where the symbol 〈〉 stands for the time average. We have
carefully confirmed that the heat currents along the lattices and
the temperature distribution approach constants independent
of time. The temperature distributions of different models for
various NX and NY are plotted in Fig. 1(a). Those for the
same model with various lattice sizes well overlap each other,
which indicates that temperature profiles can be established.
The thermal conductivity κNE is calculated by

κNE = − 〈J 〉
NY ∇T

,

where J stands for the total heat current, and the temperature
gradient ∇T is along the X direction. To reduce boundary
effects, ∇T is calculated by a linear least-squares fitting of
the temperature profiles in the central region where the left-
and right-most 1/4 of the lattices are excluded. As shown in
Fig. 1(a), the temperature profiles are evidently nonlinear, and
that is why such a procedure is necessary. Such a nonlinearity
is not caused by the temperature dependence of the thermal
conductivity but by boundary effects. This can be realized
by studying the temperature dependence of κNE for different
lattices, as shown in Fig. 1(b). The data for the purely quartic
lattice fit the theoretical prediction that κ ∼ T 1/4 exactly.

The thermal conductivity κNE versus lattice length NX for
different lattices with various lattice widths is shown in Fig. 2.

FIG. 2. (Color online) Thermal conductivity κNE in 2D (a) FPU-
αβ, (b) FPU-β, and (c) purely quartic lattices vs lattice length NX

for various NY . The dashed line that indicates logarithmic growth
is drawn for reference. Inset of (b): data for the FPU-β lattice but
in double logarithmic scale. Solid line corresponds to the power-law
divergence N 0.27.

We see in Fig. 2(a) that in the long NX regime, the smaller the
NY the higher the κNE. It is reasonable since the finite width
effect makes a 2D lattice behave close to a 1D lattice. The
data for NY = 64 present a flat curve, i.e., κNE increases much
more slowly than logarithmically in this regime. In contrast,
we see in Fig. 2(b) that κNE increases evidently faster than
logarithmically. In the inset, the same data are plotted in double
logarithmic scale. The power exponent estimated from the best
fit of the last four points is 0.27 ± 0.02. The data for the purely
quartic lattices are shown in Fig. 2(c). In at least one order of
magnitude, κNE shows a logarithmic growth very well.

Similar to the situation in 1D lattices [7], finite-size effects
of the nonequilibrium method are quite considerable due to the
presence of heat baths and the fixed boundaries,. Furthermore,
the temperature gradient in the lattice must not be too small,
otherwise net heat currents cannot be distinguished from
background statistical fluctuations. Thus the lattice is far from
an ideal close-to-equilibrium states. To reduce further those
effects, simulations of a much longer lattice are necessary.
However, that demands a huge computational resource, which
is beyond our means. We will therefore calculate the heat
current autocorrelation function in order to make a more
convincing verification. Based on the Green-Kubo formula,
this provides an alternative way to determining α indepen-
dently [16]. This method has been proven to have much better
efficiency [7,9].
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In the Green-Kubo simulation, periodic boundary condi-
tions are applied in both the X and Y directions, since they
provide the best convergence to the thermodynamic limits. The
interactions between a particle labeled (i,j ) and its nearest
right and up neighbors are f X

i,j = −dV (ui+1,j − ui,j )/dui,j

and f Y
i,j = −dV (ui,j+1 − ui,j )/dui,j . The local instantaneous

heat currents in the two directions are defined as jX
i,j =

u̇i,j (f X
i,j + f X

i−1,j )/2 and jY
i,j = u̇i,j (f Y

i,j + f Y
i,j−1)/2, respec-

tively.
The rescaled heat current autocorrelation function in the X

direction for a given lattice size is defined as

cX
NX,NY

(τ ) ≡ 1

kBT 2NXNY

〈JX(t)JX(t + τ )〉t , (1)

where JX(t) ≡ ∑
i,j jX

i,j (t) is the instantaneous global heat
current in the X direction, and the Boltzmann constant kB is
set to unity. For the sake of simplicity, the subscripts of c are
omitted hereafter except in case of necessity. Microcanonical
simulations are performed with zero total momentum [1] and
identical energy density ε which corresponds to the same
temperature T = 1. ε equals 0.887, 0.892, and 0.75 for the
FPU-αβ, FPU-β, and purely quartic lattices, respectively. An
embedded 8(6)th-order Runge-Kutta-Nystrom algorithm [17],
which provides very high accuracy, is used in such a deter-
ministic energy-conserving system. A number of independent
runs (64 for 1024 × 1024 and fewer for smaller lattices) are
performed. Simulations of the largest lattices (1024 × 1024)
are carried out for about 107 dimensionless time units.

The rescaled heat current autocorrelation function in the
X direction, cX(τ ), for different types of lattices is plotted in
Fig. 3. To avoid finite-size effects, we perform simulations by
varying NX and NY and consider only the asymptotic behavior
shown in the part of curves overlapping with each other.
To avoid confusion, data for only two typical lattice sizes,
1024 × 1024 and 512 × 512, are plotted. Within the range of
standard error, they overlap with each other. Thus no data
for the intermediate size are necessary. Since NX = NY , we
actually plot [cX(τ ) + cY (τ )]/2 instead. This greatly reduces
statistical errors without performing any more simulations. Not
surprisingly, cX(τ ) in 2D FPU-αβ lattices decays much faster
than τ−1 in a wide regime of (τ ), just like what has been found
in 1D FPU-αβ lattices [7]. This explains well the flat κNE that
is observed in Fig. 2(a). The decay tends to slow down for yet
longer τ . Due to large fluctuations, we are not able to confirm
its asymptotic behavior. The simulation for each 1024 × 1024
lattice costs a few months’ wall time with a 64-CPU parallel
computational workstation. In Fig. 2(b), we see that cX(τ ) in
the 2D FPU-β lattice decays evidently more slowly than τ−1.
This also agrees with the power-law divergence of κNE shown
in Fig. 2(b). In Fig. 2(c), we see, in nearly three orders of
magnitude of τ , cX(τ ) in the purely quartic lattice decays as
τ−1. This strongly supports a logarithmically divergent thermal
conductivity κ and is also in agreement with the finding in
Fig. 2(c).

The length dependence of the thermal conductivity κGK(N )
can be determined by putting a cutoff time instead of infinity
as the upper limit of the Green-Kubo integral [16]

κGK(N ) ≡ lim
NX→∞

lim
NY →∞

∫ t

0
cX(τ )dτ, (2)

FIG. 3. (Color online) Rescaled heat current autocorrelation
function cX(τ ) vs the time lag τ in NX × NY lattices. Data binning
over contiguous τ regimes has been performed to reduce statistical
fluctuations. Lines correspond to τ−1 are drawn for reference. (a)
FPU-αβ lattice. cX(τ ) decays much faster than τ−1 when τ < 300,
while the decay tends to slow down for yet longer τ . (b) FPU-β
lattice. In a quite wide regime of τ , cX(τ ) decays obviously slower
than τ−1. This explains some existing numerical results that suggest
a power-law divergent thermal conductivity κ . (c) Purely quartic
lattice. In nearly three orders of magnitude of τ , cX(τ ) follows τ−1

very well. This strongly supports a logarithmically divergent thermal
conductivity κ .

where t = N/vs with at most a constant-factor difference as
N → ∞. Therefore, if c(τ ) decays asymptotically as τ−1, then
the thermal conductivity κGK should diverge asymptotically as
log N . The speed of sound vs can be obtained by simulating
the heat diffusion process [18]. It is of the order of magnitude
of one in the models that we have studied. Since we are
interested in the divergence exponent of κGK only, this value
does not affect our conclusion. We thus simply regard it as
unity. The length dependence of the thermal conductivity
κGK(N ) is displayed in Fig. 4. Since the integral operation
largely reduces the statistical error, the difference between
different lattice sizes can be observed. We thus plot the data
for lattice sizes 512 × 1024 and 1024 × 512 also. Because
cX

512,1024(τ ) = cY
1024,512(τ ), the simulations for the two lattices

can be carried out by the same run. In all the lattices, the
tendency of κGK(N ) is in good agreement with that of κNE(NX),
as shown in Fig. 2. For the FPU-αβ lattice, a flattened κGK is
again observed. In the FPU-β lattice, κGK displays a power-law
divergence in a wide regime. The best fit of the power exponent
in the regime N > 103 is 0.25 ± 0.01. As for the purely
quartic lattice, the data for the largest lattice size follow a
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FIG. 4. (Color online) κGK(N ) in the X direction vs N in NX ×
NY lattices. (a) FPU-αβ lattice. A flat κGK is again observed for
N < 2000. Thereafter κGK tends to rise up. Mathematically it is easily
understood that a slow down of the decay of c(τ ) cannot instantly
induce a visible rise up of κGK, since c(τ ) has already decayed to a
too low value. (b) FPU-β lattice. In a quite wide regime of τ , cτ decays
obviously slower than τ−1. Inset: data plotted in double logarithmic
scale. Solid line corresponds to N0.25. (c) Purely quartic lattices. In
nearly three orders of magnitude of τ , κGK for 1024 × 1024 follows
the straight line very well. This strongly supports a logarithmically
divergent thermal conductivity. The slight rise for smaller lattices is
due to the finite-size effect.

straight line very well in three orders of magnitude of N .
This strongly confirms a logarithmically divergent thermal
conductivity.

In summary, we have extensively studied heat conduction
in three 2D typical nonlinear lattices. The roles of harmonic
and asymmetric terms of the interparticle coupling are clearly
observed by comparing the results for the purely quartic
lattice and the other two lattices. In the purely quartic lattice,
the heat current autocorrelation function c(τ ) is found to
decay as τ−1 in three orders of magnitude from 101 to 104.
This strongly supports a logarithmically divergent thermal
conductivity κ . For the FPU-β lattice, our nonequilibrium and
equilibrium calculations suggest a power-law divergence with
an exponent α = 0.27 ± 0.02 and 0.25 ± 0.01, respectively.
They are consistent with each other and also with the finding in
Ref. [12] that α = 0.22 ± 0.03. A very strong finite-size effect
which induces a flat κ is found in the FPU-αβ model whose
interparticle coupling is asymmetric due to the cubic term.
Such a phenomenon has also been observed in the 1D case [7].
Here we recall that most existing numerical studies on lattices
with asymmetric interaction terms suggest a logarithmically
divergent κ , e.g., the Fermi-Pasta-Ulam (FPU)-β rectangle
[10] and disk [11] lattices with vector displacements. We
suppose that the effect of the harmonic term is largely offset by
that of the asymmetric term, thus a logarithmic-like divergence
is obtained. This is also implied by the fact that the curve for
the FPU-αβ lattice, compared to that of the FPU-β lattice, is
much closer to that of the purely quartic model, as shown in
Fig. 1(b).

Based on the finding that in 1D lattices, κ tends to diverge
in the same way in the thermodynamic limit [7], we therefore
expect that in long enough FPU-αβ and FPU-β lattices, κ

shall also diverge as log L, just like the theoretical expectation
which is confirmed in the purely quartic lattice. However, our
simulation also indicates that in order to see such an asymptotic
divergence, lattices with lengths much longer than those that
have hitherto been simulated have to be studied. The cost of
computational resources is probably prohibitively high unless
much more efficient algorithms are proposed.
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