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Molecular dynamics method to locally resolve Poisson’s ratio: Mechanical description
of the solid–soft-matter interphase
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A method based on “small-deformation mechanical response” has been developed to locally resolve the
Poisson’s ratio via molecular dynamics simulations. The approach can be used for simple and composite materials
to characterize systems with two or more continuous phases in the framework of periodic boundary conditions. The
proposed technique represents a simple method to obtain a local mechanical description of complex systems. A
polystyrene bulk, a silica bulk, and a polystyrene-silica heterogeneous composite material have been characterized
under imposed strain. The results show the effects of local material inhomogeneities which are present in the
glassy material and in the composite system. The Poisson’s ratio spatial profiles for silica, the polystyrene bulk,
and in the interphase region between the soft polymer bulk and the hard surface have also been calculated. The
obtained local mechanical description can be employed in micromechanical models developed to predict the
overall mechanical properties of multicomponent materials.
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I. INTRODUCTION

The mechanical modeling of a material requires the deter-
mination of relationships between the imposed stresses and the
induced strains and vice versa. These relations are defined as
constitutive equations and allow the description and prediction
of mechanical material properties. With the development of
new complex materials, such as nanocomposites [1], refined
models are demanded in engineering applications to describe
the influences of mechanical stress [2]. Nanocomposites are
complex multicomponent multiphase materials and, generally,
are formed by a polymer matrix in which nanofillers with
dimensions of a few nanometers are dispersed [3–5]. The
main reason for the interest in these materials is their highly
customizable properties [6] which can be tuned, in principle,
by varying the constituents’ characteristics and their com-
position ratios. Consequently, researchers’ efforts have been
directed towards the development of models able to describe
the mechanical properties of nanocomposite materials. The
need for further model enhancements to predict the mechanical
behavior of these complex materials with sufficient accuracy
has been reported widely [7–10].

When at least one of the nanomaterial constituents is com-
posed of soft matter, the interactions between the constituents
modify the soft material microstructure in the interphase layer
[5,11]. It is therefore of interest to develop models able to map
possible changes in the interphase layer in order to predict the
mechanical properties of such composite materials. Several
studies have shown that the overall characteristics of nanocom-
posites can deviate significantly from simplistic expectations
based on a component characteristic sum or average [12]. As
a result, numerical studies have been performed in the attempt
to develop new micromechanical models to account for the
properties of the individual constituents and of the interphase
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regions of nanocomposites [13,14]. Generally, multiscale
models are one of the most efficient approaches to describe and
predict the properties of nanocomposite materials [15] since
low-resolution descriptions of bulk regions can be merged
with high-resolution descriptions in the interfacial regions,
thus optimizing the computational effort. Depending on the
desired level of resolution and on the size of the interfacial
regions, two main multiscale approaches can be employed:
(i) the direct and iterative strain-stress exchange between the
molecular simulation domain and the upscale domain, e.g., by
the finite-element method [16,17]. and (ii) the determination
of locally resolved elastic coefficients required to solve the
constitutive equations of micromechanical models in each
phase and in the interfacial region. Molecular simulations
can provide spatially resolved mechanical quantities as a
function of the distance from an interface [18]. By means
of an equivalent-continuum model [19] or through a “homog-
enization” procedure [20]. locally resolved elastic coefficients
can be implemented in a micromechanical model to study the
overall material behavior. Approach (i) is, in principle, more
accurate than approach (ii), at the cost of greater computational
requirements, while approach (ii) requires the study and the
mechanical analysis of only a single system. Within approach
(ii), a composite material constituted by a soft phase in
the presence of nanofillers has been studied and its overall
mechanical properties have been described [18,20].

The methods used to compute elastic coefficients via
molecular simulations can be divided into three branches [21]:
(a) “fluctuation methods” based on linear response theory
and the theory of elasticity, where thermal averages of strain
or stress fluctuations are considered [22–27], (b) “dynamic
methods,” in which the stress-strain correlation in a material
can be computed from constant stress simulations [28–32], and
(c) “small-deformation mechanical response” approaches, in
which the strain is imposed by position rescaling followed by
an energy minimization procedure, after which the system’s
response is computed [33,34]. In principle, fluctuation meth-
ods are preferable as they require only a single equilibrium
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simulation from which the compliance tensor of a material
can be computed, thus completely defining the mechanical
properties of a system in the elastic regime. In glassy polymers,
fluctuation methods suffer from convergence limitations that
hinder their application. If, in addition, a local resolution of
mechanical quantities is intended, the results obtained would
not be reliable. Herein, for a glassy polymer, methods (b) and
(c) seem the most reliable approaches. Since the focus of the
present work is the development of a technique to locally
describe the mechanical properties of a multicomponent
system, a mechanical descriptor and a method only moderately
affected by statistical fluctuations have been selected and
designed. To resolve the Poisson’s ratio locally, the local
displacement profile induced by an imposed strain or stress
is the only quantity needed. As reported by Greaves et al., “In
comparing a material’s resistance to distort under mechanical
load rather than to alter in volume, Poisson’s ratio offers the
fundamental metric by which to compare the performance of
any material when strained elastically” [35]. In comparison to
other mechanical coefficients which require the computation
of local pressures, such as the Young’s modulus, the Poisson’s
ratio is expected to be influenced less by statistical fluctuations.
Therefore, the locally resolved Poisson’s ratio renders possible
a simple and efficient mechanical description.

In the present work, a method based on the small-
deformation mechanical response approach, i.e., method (c),
has been developed to locally compute the Poisson’s ratio via
molecular dynamics (MD) simulations. For the computation
of the mechanical response of a system on which a stress
or a strain is imposed, the implementation of boundary
conditions has to be consistent with the imposed stress-
strain scheme. Boundary conditions with flexible simulation
boxes, such as the “elastic minimum image convention”
method [36] or stochastic boundary conditions [16], represent
acceptable candidates that allow the computation of locally
resolved elastic coefficients. However, the complexity of such
a method implementation would increase significantly without
leading to concrete benefits in the present framework. The
commonly applied periodic boundary conditions (PBCs) have
the drawback of preserving the shape of the simulation box.
Therefore, the imposition of a uniaxial and uniform stress or
strain, as in method (b), would induce local displacements
that are a function of the overall material properties, thus
neglecting local effects. PBCs, however, can be employed
only if by imposing a stress or strain along two directions
uniformly local contributions from the third direction are

obtained independently. As such, a generalization of the
Poisson’s ratio definition is proposed in the present work that
is consistent with periodic boundary conditions, thus enabling
a simple implementation in molecular simulation techniques.

The approach presented herein to compute the spatial
profile of the Poisson’s ratio is of sufficient generality to
allow the characterization of systems in which the constituents
have different mechanical properties (e.g., crystals and glassy
polymers), with a special focus on the characterization of
the interphase region. A polystyrene bulk, a silica bulk,
and a polystyrene-silica composite system separated by a
flat interface have then been described with the developed
technique. The derived spatial profile of the Poisson’s ratio
can be implemented directly in a micromechanical model
for different types, sizes, and shapes of nanofiller inclusions
by employing a “homogenization” procedure [20]. The flat
interface considered in the present work allows the evaluation
of the Poisson’s ratio in the interphase around nanofillers
whose dimensions are large enough to neglect the effects of the
surface curvature on the mechanical property spatial profiles.

II. METHOD AND MODELS

The definition of the Poisson’s ratio for the conventional
strain scheme depicted in Fig. 1(a) is

ν = − εinduced

εimposed
, (1)

where εimposed is the axial strain in the direction of the imposed
deformation and εinduced the induced strain measured along one
of the directions orthogonal to the vector of the imposed strain.
Equation (1) assumes that the imposed strain is along only
one direction and that the induced strain appears in the plane
normal to the imposed strain, as schematically depicted in
Fig. 1(a). In a multiphase system, in which a continuous phase
is present, limitations in the imposition of the external strain or
stress are introduced due to PBCs. For instance, assuming that
the interface region extends along the x and y directions and
applying a compression along the z axis, the resulting lateral
expansion along the x and y axes will be determined by the
stiffest phase of the composite system. As a consequence,
the induced lateral displacements in a multiphase material
with different mechanical properties cannot be calculated
independently in a MD simulation with PBCs. Therefore,
the imposed or induced strain scheme in Fig. 1(a) is not
applicable.

FIG. 1. (Color online) Schematic representation of the imposed/induced strain in a general test sample. (a) The commonly used imposed-
induced displacement convention to compute the Poisson’s ratio. (b) The displacement scheme consistent with PBCs.
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If, instead, a uniform compression or expansion is imposed
along the two axes defining the plane parallel to the surface, a
strain along the normal direction to the plane will be induced,
as depicted in Fig. 1(b). Adopting this strategy, each phase
in the system will be able to relax almost independently
under consideration of PBCs. Therefore, the overall system
compression or expansion along the axis normal to the surface
can be expressed as the sum of local deformations. In the
present work, the strain will be imposed consistently along the

xy plane, while the Poisson’s ratio will be mapped along the z

direction normal to the xy plane.
For the strain scheme represented in Fig. 1(b), a reformu-

lation of a mechanical quantity such as the Poisson’s ratio is
necessary. The matrix of the elastic stiffness coefficients, ¯̄C,
relates strain (ε̄) and stress (σ̄ ),

σ̄ = ¯̄Cε̄ (2)

and, for isotropic and linear elastic materials,

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

σxx

σyy

σzz

σyz

σxy

σxz

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

= 1

E

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

1 −ν −ν 0 0 0
−ν 1 −ν 0 0 0
−ν −ν 1 0 0 0
0 0 0 2(1 + ν) 0 0
0 0 0 0 2(1 + ν) 0
0 0 0 0 0 2(1 + ν)

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

εxx

εyy

εzz

εyz

εxy

εxz

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

, (3)

where E is the Young modulus; σij and εij are the elements of
the symmetrical tensors of stress, σ̄ , and of strain, ε̄, rearranged
as vectors. For the strain scheme shown in Fig. 1(b), σyz =
σxy = σxz = 0, εxx = εyy = ε‖, and σxx = σyy = σ‖ can be
defined. In mechanical equilibrium, the stress σzz is equal to
0, therefore Eq. (3) results in a set of two linear equations,

σ‖ − νσ‖ = Eε‖, (4a)

−2νσ‖ = Eεzz, (4b)

that can be satisfied simultaneously with

ν = − εzz

2ε‖ − εzz

. (5)

The reformulation of the Poisson’s ratio obtained here,
besides allowing the application of a strain scheme compatible
with PBCs, is also consistent with the limiting cases of an
incompressible material (ν = 0.5), as well as materials that
do not show normal strain as response to an imposed strain
(ν = 0).

In the present work, the imposed biaxial strain has been
applied through atomic positions and box dimensions rescaling
(Fig. 2, step 1),

r ′
x,i = αrx,i , r ′

y,i = βry,i , r ′
z,i = γ rz,i , i = 1, . . . ,N tot

p (6a)

and

L′
x = αLx, L′

y = βLy, L′
z = γLz, (6b)

where N tot
p is the total particle number in the system, rk,i is

the k component (k = x, y, z) of the initial position vector, r̄i ,
of particle i; r ′

k,i is the k component of the rescaled position
vector, r̄ ′

i , of particle i. Lk is the initial overall box dimension
along the k direction, and L′

k is the rescaled overall box
dimension along the k direction. α, β, and γ are the position
rescaling factors along the x, y, and z axes, respectively.
Assuming α = β, a uniform biaxial strain is imposed along
the x and y directions (for a 3% biaxial compression, α =
β = 0.97, γ = 1). The obtained coordinate vectors, �r ′

i for

i = 1, . . ., N tot
p describe the rescaled system configuration,

which has to be reequilibrated keeping the x and y simulation
box dimensions, L′

x and L′
y , constant (Fig. 2, step 2), thus

simulating a constant imposed strain. A scheme of the adopted
strategy is shown in Fig. 2. (The Cartesian axes convention in
the present work is consistent with the axes convention shown
in Figs. 1 and 2).

The spatial profile of the Poisson’s ratio along the axis
normal to a plane, here the z axis, can be computed from
the normal local atomic displacements induced by the strains
imposed parallel to that plane, here the x and y directions. In
the framework of MD, the atomic displacement profile along
any direction can be evaluated as

drk,i = 〈r ′′
k,i〉 − 〈rk,i〉 for k = x, y, z, (7)

where drk,i is the average displacement of particle i in the
direction of the k axis, 〈rk,i〉 the average component of the
position vector, r̄i , of particle i with respect to the k axis
in the equilibrated unperturbed state [Fig. 2(a)], while 〈r ′′

k,i〉
is the average atomic position of particle i along the k

axis in the strained reequilibrated system [Fig. 2(c)]. Two
different simulation sets are therefore necessary to compute the
averaged 〈rk,i〉 and 〈r ′′

k,i〉. The 〈rk,i〉 can be calculated from the
equilibrated unperturbed system, while 〈r ′′

k,i〉 can be obtained
from a reequilibrated system in which the imposed strain is
maintained. Once 〈rk,i〉 and 〈r ′′

k,i〉 have been determined, it
is possible to measure the local deformations induced by the
imposed displacements. It should be noted that 〈rk,i〉 can be
computed only for nondiffusive systems, such as a solid or a
glass.

The spatial distribution of the atomic displacements along
the z axis renders possible the local resolution of the Poisson’s
ratio. In order to reduce the noise in the local values of the
elastic coefficient, the atomic displacement has to be averaged
locally. It is therefore convenient to adopt a volume averaging
criterion, subdividing the system into fictitious slabs with a
constant number of particles, Nps . Once Nps has been selected,
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FIG. 2. (Color online) Schematic representation of the strategy
to locally resolve the Poisson’s ratio: (a) Equilibrated unperturbed
system, (b) atomic position rescaling along the x and y axes.
A predetermined strain is imposed along the x and y directions.
(c) Reequilibration step with the system dimensions x and y fixed. In
the figure, Lk for k = x, y, z is the initial overall box dimension along
the x, y, z directions, L′

k for k = x, y, z is the rescaled box dimension,
and L′′

k for k = x, y, z the final, i.e., relaxed overall simulation box
dimension, L′

x = αLx and L′
y = βLy , where α and β are the position

rescaling factors for the x and y directions, respectively, L′
x = L′′

x

and L′
y = L′′

y . lj is the initial dimension of slab j in the z direction,
L′′

j is the final dimension of slab j in the z direction, and Nsl is the
total number of slabs. For γ = 1 the rescaled slab length, l′j , is equal
to lj and Lz = L′

z.

setting the particle index label according to the z position of
the particle such as 〈rz,i〉 > 〈rz,i−1〉 for i = 2, . . ., N tot

p , the
length of the j th slab, lj , can be readily computed:

lj = 〈rz,a〉 − 〈rz,b〉, a = jNps,
(8)

b = (j − 1)Nps + 1, j = 1, . . . ,Nsl,

where Nsl is the total number of slabs. Once the strain has been
imposed and the system reequilibrated, resetting the particle
index according to the new particle position in the strained
system such as r ′′

z,i > r ′′
z,i−1, the new slab dimensions can be

readily computed:

l′′j = 〈r ′′
z,a〉 − 〈r ′′

z,b〉, a = jNps,
(9)

b = (j − 1)Nps + 1, j = 1, . . . ,Nsl .

From the global and locally induced strain, the overall
average value of the Poisson’s ratio, νsystem, and the local value
in each slab thus can be computed. νsystem can be determined

according to Eq. (5):

νsystem = −
(L′′

z−Lz)
Lz

2 (L′′
x−Lx )
Lx

− (L′′
z−Lz)
Lz

= −
(L′′

z−Lz)
Lz

2
(L′′

y−Ly )
Ly

− (L′′
z−Lz)
Lz

.

(10)

Under the assumption that the induced local strains are
independent from each other, the locally resolved Poisson’s
ratio, νj , for slab j can be obtained from

νj = −
(l′′j −lj )

lj

2 (L′′
x−Lx )
Lx

− (l′′j −lj )

lj

= −
(l′′j −lj )

lj

2
(L′′

y−Ly )
Ly

− (l′′j −lj )

lj

,

(11)
j = 1, . . . ,Nsl .

Under the assumption Lz
∼= ∑Nsl

j=1 lj and L′′
z

∼= ∑Nsl

j=1 l′′j ,
and, following an averaging criterion for parallel springs, one
can obtain

νsystem
∼= 1

Nsl

Nsl∑
j=1

νj . (12)

The selection of the particle numbers or, equivalently, the
average dimension of each slab influences the resolution of
the method and the magnitude of the statistical fluctuations.
The standard deviation for the locally resolved elastic quantity
can be also computed:

stdev =
√∑Nsl

j=1

(νsystem − νj )2

Nsl

. (13)

It should be noted that Eq. (13) can be applied directly
only when the overall νsystem and the local values, νj , of the
Poisson’s ratio refer to the same material. Thermal fluctuations
and material inhomogeneities generate a certain noise in the
profile of the induced atomic displacements and, therefore,
in the accessible local resolution in the spatial profile of the
Poisson’s ratio. Any enhancement in the local resolution, i.e.,
increased number of slabs, is accompanied by an increasing
statistical noise. Therefore, in order to estimate the accessible
local resolution in an inhomogeneous system, the computa-
tional error has to be determined as a function of the averaging
volume. Once the volume required to obtain a local resolution
within a certain accuracy has been determined in a reference
bulk system, the study of surface effects on the spatial profile of
the Poisson’s ratio in the soft-matter phase becomes possible.
It is worth to emphasize that the spatial profile of the elastic
quantity has been approximated as a sequence of adjacent
homogeneous and isotropic subsystems. Even if the Poisson’s
ratio can be defined for both isotropic and anisotropic systems
[37], for simplicity and for geometrical limitations of the inter-
facial system, an average Poisson’s ratio under the assumption
of an isotropic system has been computed. This assumption
is suitable for amorphous media, while it only allows the dis-
crimination between a nonauxetic and effectively auxetic [37]
behavior in a structurated material with directional properties.

In the present work, molecular simulations have been
performed using MD. The unperturbed systems have been
simulated for a constant number of particles, pressure, and tem-
perature (NPT ensemble). Thereafter, in the strained systems,
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the imposed deformation along the x and y axes has been kept
constant, fixing the lateral dimensions of the cross-sectional
area Axy , while relaxation along the direction normal to the
imposed biaxial strains, z, has been allowed by controlling
only the pressure component, Pz (NAx,yPzT ensemble).

III. MODELS AND SIMULATION DETAILS

Molecular dynamics simulations have been performed
to calculate the Poisson’s ratios of an atactic polystyrene
(PS) bulk, an α-quartz silica (SiO2) bulk, and an interfacial
composite of atactic PS in contact with a flat silica surface. The
PS chains (−[C8H8]20−) have been terminated by a methyl
group (-CH3), while periodic boundary conditions along the
three directions have been applied for the silica bulk. The
surface silica oxygen atoms in the composite system were
saturated with hydrogen atoms.

An in-house developed MD simulation code, YASP [38], was
used to simulate the polymer PS and α-quartz silica with full
atomic resolution. The force-field parameters for PS are based
on the OPLS-AA method [39] for hydrocarbon systems which
has been optimized to describe mixtures of PS with benzene
[40] and ethylbenzene [41]. In this force field, the carbon and
hydrogen atoms of the phenyl rings have partial charges to
reproduce the electric quadrupole moment, while harmonic
dihedral angles were employed in the phenyl rings to maintain
planarity. The interaction parameters within the silica phase
have been obtained from a crystalline silica bulk model [42],
in which silica and oxygen atoms carry partial charges, too. On
the silica surface, the hydrogens carry a partial positive charge,
allowing electroneutrality in the overall silica phase. Within
the silica phase, two-body interactions and a bending potential
between three consecutive atoms are considered. The inter-
molecular interactions have been modeled with Lennard-Jones
(LJ) and Coulomb potentials using Lorentz-Berthelot mixing
rules [43]. The Kirkwood approximation in the reaction-field
method [44] has been used to correct the interaction potential
beyond the cutoff distance, taken equal to 1.0 nm. An effective
relative permittivity of the continuum εRF of 3.7 (experimental
relative permittivities: 2.4–2.7 for amorphous PS and 4.4–4.6
for amorphous silica at room temperature) [45] has been
chosen. A complete description of the force field employed
for the intra- and intermolecular interactions of polystyrene
and silica can be found in the work of Ndoro et al. [5].
The silica model adopted here mimics the crystalline silica
structure but generates a known density offset [5,46,47]. It has
been kept in the present work for consistency with our previous
investigations [5,46,47] and since the main focus of the present
work concerns the study of interfacial effects in the soft-matter
phase.

System (a) is a polymeric bulk composed of 200 polystyrene
chains, 20 monomers long, for a total of 64 400 atoms in a sim-
ulation box with dimensions 8.7 × 8.8 × 8.7 nm in the unper-
turbed state. System (b1) is a SiO2 bulk formed of 17 280 atoms
in a simulation box with dimensions 6.3 × 5.7 × 7.2 nm
in the unperturbed state. A silica wafer, system (b2), with
dimensions 9.4 × 9.2 × 2.5 nm for a total of 15 120 atoms
in six atomic layers has been also constructed. The composite
system, here labeled as system (c), has been built by
combining systems (a) and (b2) for a total of 79 520 atoms

in a box with overall dimensions of 9.4 × 9.2 × 9.9 nm in
the unperturbed state. For all systems considered, periodic
boundary conditions have been imposed along all directions.

Polystyrene is an amorphous polymeric material. Its sim-
ulation requires efficient equilibration procedures in order to
obtain initial configurations with only moderate finite-size ef-
fects and metastabilities in acceptable times [48]. To study the
atactic polystyrene system (a), a set of ten independent simula-
tions with identical particle numbers and simulation conditions
but independent initial configurations have been generated. In
each system, 200 polymeric chains 20 monomers long with
random initial positions and orientations have been introduced
and equilibrated in coarse-grained (CG) resolution for 10 ns
at 300 K and 101.3 kPa in the NPT ensemble. The CG model
adopted for PS has been developed via the pressure-corrected
iterative Boltzmann inversion method [49] and it models
each polystyrene monomer by one coarse-grained bead. The
obtained coarse-grained configuration has then been back-
mapped, providing a full atomistic description of the system. A
complete description of the CG simulation details can be found
in the work of Qian et al. [41], while the description of the
topologically guided back-mapping procedure adopted can be
found in the work of Ghanbari et al. [50] The obtained config-
urations for the ten systems with independent initial conditions
simulated in full atomistic detail have been further equilibrated
for additional 10 ns in the NPT ensemble. The average density
of the simulated PS systems is equal to 1033.9 kg/m3, while
the total energy of the PS systems amounts to 390.865 MJ/mol
with a variation coefficient of 0.097%. The values of the
density and of the total system energy recorded every 1 ps for
a time span of 1 ns have linear regression coefficients equal
to 0.065 and 0.289, respectively. The density value recorded
in the simulations is in good agreement with the value of
1045 kg/m3 measured experimentally [51].

The silica bulk, system (b1), and the silica wafer, system
(b2), have been constructed in accordance with the α-quartz
crystalline structure [42] for consistency with our previous
investigations [5,46,47]. The unit cells of the silica wafer have
been oriented such that the external surfaces correspond to
the crystallographic 1-0-0 plane. A simulation of 0.1 ns has
been sufficient to reach equilibration. The adopted force field
describes correctly the α-quartz structure but underestimates
the material density. The density of the simulated silica bulk
and of the silica wafer is equal to 2193.5 kg/m3, with 0.05%
variation coefficient, while a density of 2647 kg/m3, with
1.5% variation coefficient, has been measured experimentally
[52–54].

The polystyrene-silica composite systems have been
constructed by positioning the wafer of silica, system (b2),
in the equilibrated polystyrene bulk. To allow the insertion of
the wafer, the PBCs into the direction normal to the surface
have been removed temporarily. Then the silica phase has
been added, avoiding overlaps with the polymeric chains.
By reintroducing PBCs along every direction, a temperature
annealing procedure at 600 K has been performed. The
composite system has been kept for 10 ns at 600 K and then
cooled down with a cooling rate of − 50 K/ns. Once the
desired temperature of 300 K has been reached, the composite
systems have been run for a further 5 ns. The overall composite
density computed in the simulations is 1231.0 kg/m3 with a
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variation coefficient of 0.075%, while the total energy was
2113.8 MJ/mol with a variation coefficient of 0.05%. The
values of the density and total system energy have been
recorded every 1 ps for a time span of 1 ns and their values as
a function of time have linear regression coefficients equal to
0.004 78 and − 0.066, respectively.

Once the systems have been equilibrated, the production
runs for the unperturbed samples have been performed at
constant temperature T and pressure P , employing Berend-
sen’s thermostat weak coupling [55] to a temperature bath of
300 K and a pressure bath of 101.3 kPa. The coupling times
were 0.2 (T ) and 0.5 ps (P ), where a time step of 1 fs was
employed. For the strained system, a constant temperature T ,
constant normal pressure to the xy surface Pz, and a constant
cross sectional area A (xy) have been assumed (NPzAT

ensemble). The results reported for the atomic displacements
and Poisson’s ratio profiles have been obtained from a time
average over 1000 frames output at 1 ns intervals.

IV. RESULTS AND DISCUSSION

The developed method has been adopted first for the
polymer bulk reference system (a). Biaxial strains have been
applied along two axes, x and y, and the induced atomic
displacements along the x, y, and z axes have been measured

according to Eq. (7). The magnitude of the imposed biaxial
strain, which has to occur in the elastic strain range of
polystyrene, should be a compromise between (i) the time
interval required to reequilibrate a higher strained system
and (ii) the relative amplitude of the statistical fluctuations in
the computed atomic displacements. Different magnitudes of
the biaxial compression and expansion within the elastic
regime have been imposed in several independent simulations.
A value of 3% appeared to be an acceptable compromise
between (i) and (ii) and thus has been selected for further
analysis. The induced atomic displacements in the x, y, and
z directions for the bulk system (a) have been plotted as a
function of the z coordinate in Figs. 3(a) and 3(b) for a 3%
biaxial compression, and in Figs. 3(c) and 3(d) for a 3%
biaxial expansion. In Fig. 3, and in Fig. 8 to be discussed
later, the atomic displacement profiles, drk for k = x,y,z, are
obtained from the local averages of the atomic displacements
drx,i per slab, for k = x, y, z, respectively, while dRk , for
k = x,y,z, refers to the atomic displacements in the frame
of reference of the homogeneous linear displacement (dRx =
drx , dRy = dry , and dRZ = drz − (Az − B) where A and B

are the coefficients computed from the linear regression of the
drz spatial profile).

With the exception of some foams and structured
materials [37,52], which have a negative Poisson’s ratio, a

FIG. 3. (Color online) Local atomic displacement for the polystyrene bulk system under 3% imposed biaxial strain. Plots (a) and (c) show
the local atomic displacement dRz profiles as a function of the z coordinate for the biaxial compression and expansion test, respectively. The
spatial profile of the induced atomic displacements dRx , dRy , dRz is reported in plot (b) for the compression test and in plot (d) for the
expansion test in the frame of reference of the average linear displacement. In the plots, the dotted profiles represent the local displacement
values, while the continuous profiles report the five point running average of the atomic displacement profile.
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FIG. 4. (Color online) Local Poisson’s ratio for a PS bulk under 3% biaxial compression (a) and expansion (b). In the plots, the dashed
black profile reports the local Poisson’s ratio values, while the continuous red profile reports the running average of the Poisson’s ratio spatial
profile.

compression along one axis generates an expansion into the
other direction(s). Applying a compression along the x and y

axes, an expansion along the z axis will thereby be generated.
Consistently, Fig. 3(a) shows that the PS bulk system elongates
in the z direction and the slope of the computed atomic
displacements is positive. In the case of a biaxial expansion a
system compression in the z direction is measured instead, as
shown in Fig. 3(c) by the negative slope of the atomic displace-
ment profile. In Figs. 3(b) and 3(d), the z dependence of the
atomic displacements dRx , dRy , and dRz along the x, y, and z

directions in the frame of reference of the homogeneous linear
displacement is reported. The coefficients A and B obtained
from the linear regression of the drz spatial profiles reported
in Figs. 3(a) and 3(c), are A = 0.051 and B = − 0.19 for the
biaxial compression and A = − 0.049 and B = − 0.22 for
the biaxial expansion. When a biaxial expansion is imposed,
the polymeric chain movements benefit from the volume
increase. Such a behavior is confirmed by the comparison
between Figs. 3(b) and 3(d), where the fluctuations registered
in the biaxial expansion test have, on average, a bigger
amplitude than in the imposed biaxial compression test. The
standard deviation of the atomic displacements spatial profile
(its average value is equal to 0) measured in the compression
test is 0.015 for dRx and dRy , while it is 0.005 for dRz. In the
expansion test, the measured standard deviation of the atomic
displacement is 0.020 for dRx and dRy , while it amounts to
0.005 for dRz. The variation of local densities, end to end
distances, and backbone orientation angle of the polymeric
chains due to the imposed deformation have been calculated;
however, no net correlation between these quantities and the
atomic displacements shown in Fig. 3 or the Poisson’s ratio
spatial profile shown in Fig. 4 could be established.

It appears that the statistical fluctuations due to the
local material inhomogeneities are too large relative to the
perturbations caused by the imposed strain. These observa-
tions, in agreement with the small magnitude of the atomic
displacement profiles reported in Figs. 3(b) and 3(d), confirm
the elastic response of the tested material. As a matter of fact,
structural rearrangements within the material would generate

a nonelastic deformation of the sample. The local z atomic
displacements as a function of the z coordinate induced by
the imposed biaxial strain along the x and y axes enable
the computation of the variation of the slab dimensions and,
therefore, the local Poisson’s ratio values.

The locally resolved Poisson’s ratio for the PS bulk has
been reported in Fig. 4 for an imposed biaxial compression
[Fig. 4(a)] and an imposed biaxial expansion [Fig. 4(b)].
The two computer experiments starting from the same initial
equilibrated state led to slightly different averages for the
Poisson’s ratio. As shown in Fig. 4, for the biaxial compression
test the average computed Poisson’s ratio is equal to 0.44,
versus 0.45 for the biaxial expansion test. Experimentally
measured [56] and MD based [57,58] Poisson’s ratios for
PS bulks with different chain lengths are found in a range
between 0.34 and 0.38. In analogy to other elastic quantities,
the polymer length dependence is rather weak [56–58].

The relaxation time for system reequilibration after the
imposed biaxial strain has to be considered in the evaluation
of reliable values of the elastic constant. Figure 5 shows that
the biaxial compression provides a stable value of 0.44 for
the Poisson’s ratio after 5–6 ns of reequilibration for the
polystyrene bulk. Thereafter, a linear increase of + 0.01 in

FIG. 5. (Color online) Overall Poisson’s ratio of the polystyrene
bulk as a function of the allowed relaxation time. The imposed 3%
compression/expansion has been applied instantaneously at t = 0.
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a 10 ns time span has been registered. In the biaxial expansion
test, in contrast, the Poisson’s ratio value monotonically
increases and does not reach a stable value in the period of
15 ns reaching a value of 0.455 at 16 ns.

We can thus conclude that the PS bulk relaxes slightly
faster under an imposed compression. This difference can be
also deduced from the atomic displacements along the x and
y axes (Fig. 3) and the computed Poisson’s ratio (Fig. 4).
A smaller standard deviation in the Poisson’s ratio profile
derived in a compression test relative to an expansion test is an
advantageous feature in the determination of local mechanical
properties. Therefore, the biaxial compression test with a
3% imposed strain will be applied hereafter. The Poisson’s
ratio values measured for the compression test reported in
Fig. 5 show that an acceptable compromise between method
accuracy and computational cost can be obtained after 5 ns
of relaxation time accepting a 2.5% error in the measured
Poisson’s ratio.

The statistical fluctuations in an inhomogeneous PS bulk
material limit the spatial resolution in local calculations
of the Poisson’s ratio. A practicable compromise between
intended resolution and error bars can be obtained from a
set of realizations from independent initial configurations.
Therefore, to quantify the accuracy of the here presented
approach, the standard deviation of the Poisson’s ratio as a
function of the averaging volume has been computed.

Figure 6 reports the accessible accuracy in local measure-
ments of the Poisson’s ratio as a function of the averaging
volume considered. The plot indicates that to compute the
elastic quantity locally with a 2.5% variation coefficient,
a volume of 2500 nm3 is required. The required averaging
volume can be obtained by averaging a set of equivalent
systems generated from uncorrelated initial conditions. With
the sample size simulated in the present work, which have an
x,y dimension of the simulation box equal to 9.4 and 9.3 nm, a
local resolution of 1 nm along the z axis can be obtained from
a set of about 30 independent simulations (equivalent to about
4400 PS monomers). The decay of the standard deviation of
the Poisson’s ratio as a function of the averaging volume has a
similar behavior as the function k ∗ V −1/2, which mimics the

FIG. 6. (Color online) Variation coefficient in % of the Poisson’s
ratio relative to the bulk value (ν = 0.44) as a function of the averaging
volume in a 1 ns time span with a relaxation period of 5 ns, red dashed
profile. The black continuous profile reports the function k ∗ V −1/2,
where k is a fitting constant (k = 159), which mimics the decay of
the standard deviation for normally distributed uncorrelated samples.

standard deviation decay for normally distributed uncorrelated
samples. For volumes above 5000 nm3 the computed profile
deviates significantly in absolute values and in its shape from
the spatial profile of the k ∗ V −1/2 law. This deviation might be
due to the physical constrains in the solid or glassy material in
which the molecules or chains have a limited mobility only. In
such media, the atomic displacements cannot reach all values
prescribed by a normal distribution.

The Poisson’s ratio of a silica bulk and silica wafer has also
been computed. In an ordered system, such as a crystalline
defect-free silica bulk, the local resolution of the mechanical
quantities is of minor interest only. Thus, only the average
values for the wafer and the silica bulk will be reported here.
Imposing a biaxial compression or expansion of 1% to either
the silica bulk or the silica wafer, the computed Poisson’s ratio
is equal to 0.33, with a variation coefficient of 0.1%, which
overestimates the values measured in experiments (ν = 0.22 ±
011) [35,54,59]. Identical values of the computed Poisson’s
ratio for the bulk and for the silica wafer confirm that the chosen
dimensions are sufficient to mimic the mechanical properties
of the silica phase. The imposition of a biaxial compression
and expansion of 3% enables a structural rearrangement at
ambient temperature [60–62]. In the performed simulations, it
has been observed that the structure of silica under an imposed
3% strain deviates from the initial α quartz. Such a structural
instability results in different computed Poisson’s ratios for
imposed compressions (0.28, variation coefficient 0.1%,) and
expansions (0.37, variation coefficient 0.1%) for the silica bulk
and silica wafer.

Once the polystyrene and silica bulk have been studied
separately and the influence of the imposed strain on the
atomic displacements as well as the Poisson’s ratio have been
computed, the composite system (c) has been considered. The
structural and mechanical properties of the α-quartz silica
component are not expected to be modified strongly by the
presence of the polystyrene matrix. On the contrary, the
soft-matter phase is expected to modify its local properties due
to the presence of the interface and, therefore, special emphasis
will be directed to the study of the polystyrene phase.

In Fig. 7, the polystyrene mass density profile normalized to
the computed bulk mass density of polystyrene, 1033.9 kg/m3,
is plotted. The polystyrene phase spans in the range between
z = 1.15 nm, and z = 8.58 nm, which is the region between
the silica wafer and its periodic image. Due to the crystalline

FIG. 7. (Color online) Polystyrene mass density profile, ρ(z),
normalized to the polystyrene bulk mass density of 1033.9 kg/m3,
ρbulk, as a function of the z position.
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FIG. 8. (Color online) Atomic displacement profiles, dRx , dRy ,
dRz for the polystyrene-silica composite system under 3% imposed
biaxial compression in the frame of reference of the average linear
displacement of the PS phase. In the plots, the dotted lines report the
local displacement values, while the continuous lines report the five
point running average of the displacement profile obtained from a
single realization.

structure of silica, the silica-polystyrene interface is not
completely flat. As atomic roughness is present on the surface
of the SiO2 phase, some polystyrene chains can cross the limit
defined by the outermost Si atoms, as shown in Fig. 7. At z

= 1.6 nm and z = 8.1 nm, a peak in the concentration profile
of the polystyrene monomers has been found, consistent with
previous studies of the PS-silica interface [5,46].

In the present work, the fragments of the polystyrene
chains that have partially entered the silica phase (shown by
the intersection of the PS mass density with the interface
in Fig. 7) have not been considered further due to the
poor statistics obtainable, which prohibited qualitative and
quantitative considerations on the atomic displacements and
Poisson’s ratio.

To compute the Poisson’s ratio spatial profile, the
polystyrene-silica composite system (b) has been strained via
a 3% biaxial compression along the x and y axes. The obtained
spatial z profiles of the induced atomic displacements along
the x, y, and z directions have been calculated via Eq. (7),
and the derived displacement profiles dRx , dRy , and dRz are
reported in Fig. 8.

In Fig. 8 the spatial z profile of the atomic displacement
dRz along the z axis induced by the imposed 3% biaxial
compression is reported for the SiO2-polystyrene composite
system. In analogy to the plot in Fig. 3(a), Fig. 8 reports
the spatial profile of the atomic displacements, dRx , dRy ,
and dRz into the x, y, and, z directions for the composite
system (dRx = drx , dRy = dry , and dRz = drz − (Az − B),
where A = 0.052 and B = 0.21). Similar to Fig. 3(b), the
spatial drz profile does not present sensible fluctuations as a
function of the local displacements; therefore only dRz for
the composite system has been reported here. The standard
deviations of the atomic displacement profiles in Fig. 8 amount
to 0.012 for dRx and dRy , while the standard deviation
amounts to 0.004 for dRz. The standard deviations of the
atomic displacement profiles are slightly smaller than the ones
reported for the PS bulk system of similar system volume and
mass. This can be interpreted by the reduced rearrangement
capability of the polystyrene chains in the presence of the
surface. From a comparison between Fig. 3(a) for the bulk PS

FIG. 9. (Color online) Local Poisson’s ratio of the composite
system under 3% biaxial compression. In the plot, the dotted line
reports the local Poisson’s ratio values, while the continuous line
reports the five point running average of the Poisson’s ratio spatial
profile obtained from the average over a set of 30 realizations.

system, and Fig. 8 for the PS phase of the composite system,
small local collective rearrangements of the polystyrene chains
are observed. Among the set of 30 independent realizations
performed, a predominant size for the registered collective
movement could not be detected for the investigated system
type and system size.

In analogy to the procedure adopted for the bulk system,
the displacement profiles reported in Fig. 8 can also be used
to compute the variation of the slab dimensions and thus the
spatial profile of the Poisson’s ratio by employing Eq. (11).
Since the simulated composite system (b) is symmetrical
(two polystyrene-silica interfaces are present), it is possible
to improve the statistics of the results by averaging the spatial
profile of the Poisson’s ratio over the spatial regions near the
two sides of the silica wafer. The variation of the Poisson’s ratio
as a function of the distance from the surface is shown in Fig. 9.
It is important to underline here that each slab contains only
one phase type while the running average adopted considers
the silica and the polystyrene phase independently.

Figure 9 shows the spatial profile of the Poisson’s ratio as a
function of the z coordinate, which is normal to the silica sur-
face. The silica phase extends between z = 0 and z = 1.25 nm,
while the polystyrene phase starts at z = 1.10 nm. As previ-
ously mentioned, the computed Poisson’s ratio in the range
between z = 1.10 nm and z = 1.30 nm reported in Fig. 9 is
affected by an excessively large standard deviation. Thereafter,
the Poisson’s ratio spatial profile of PS exhibits a maximum
of almost 0.5 for z = 1.6 nm, which is the limiting value for
incompressible liquids. The peak correlates with the first and
second mass density maxima reported in Fig. 7. At z positions
beyond the fist peak, the Poisson’s ratio profile exhibits a
minimum at z = 2.5 nm (1.4 nm away from the silica phase).
Thereafter it increases almost linearly towards the value of 0.42
at z = 4.5 nm where it remains almost constant. The measured
Poisson’s ratio for the bulk system (0.43) is slightly higher than
the value measured at 4.5 nm (0.42). This offset is, however,
within the error limits of the method and, therefore, the 3.5-nm
interval from the surface after which the Poisson’s ratio reaches
a constant value can be defined as the interphase dimension.
We have shown in the present work that the surface has a strong
influence on the local values of the Poisson’s ratio; therefore
the common assumption of a space-independent constant
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Poisson’s ratio is an oversimplification for micromechanical
models which aim to account for interphase effects.

V. CONCLUSIONS AND REMARKS

Mechanical quantities such as the Poisson’s ratio are com-
mon descriptors of the mechanical behavior of macroscopic
systems. The aim of the present work has been to define
a method to locally resolve the Poisson’s ratio showing the
influences of a surface on the spatial profile of the mechanical
quantity in a soft-matter phase. Previous MD studies did not
show interphase extension beyond 2 nm [5,46,47,50]. From
the results reported in Fig. 9, we could deduce an influence
of the silica surface covering more than 3.5 nm. Further
detailed studies with sufficient statistics, therefore, have to
be performed on bigger systems to determine accurately the
interphase length dimension after which the Poisson’s ratio
reaches the bulk value. A detailed description of the soft phase
properties under imposed deformation will be presented in
forthcoming studies.

A MD based method to compute the local distribution
of the Poisson’s ratio has been developed based on small-
deformation mechanical response. Due to the limitations of
PBCs in composite systems in which at least two continuous
phases are present, the conventional imposed or induced strain
scheme to compute the Poisson’s ratio cannot be employed
directly. Consequently, a simple generalization of the Poisson’s
ratio has been derived. A polystyrene bulk, a silica bulk, and
a polymer-solid composite material have been characterized
under imposed strain and the induced atomic displacements
have been reported.

In the polystyrene phase, the employed technique overesti-
mates the Poisson’s ratio relative to the available experimental
values. This offset can be due to (i) limitations of a force field in
the study of mechanical properties. From the results obtained,
it seems that the polystyrene chains are not sufficiently stiff
enough to correctly predict the mechanical properties of the
soft-matter material. This could be due to an offset in the
bending and torsional potentials responsible for the tertiary
molecular structures. Furthermore, the offset can be due
to (ii) system selection, e.g., the polymeric chain length,
which for computational limitations has been restricted to
20 monomers. The lack of entanglements within and between

polymeric chains leads to polymeric structures that partially
differ from experiments and thus to different mechanical
properties. Entanglement of polymeric chains can be properly
addressed only with larger-scale simulations, e.g., coarse-
grained simulations. Finally, the offset can be due to (iii) the
assumption of local homogeneity and isotropy. In the silica
phase, the performed mechanical analysis allows only the
discrimination between nonauxetic and effectively auxetic [37]
materials since the condition of local isotropy does not hold and
structural rearrangements have been generated by the imposed
strain, whose magnitude has been selected to optimize the
interphase description.

To account for the high inhomogeneity of the systems,
a detailed study on the magnitude of the fluctuations in the
Poisson’s ratio spatial profile as a function of the considered
volume has been performed. The relationship between the
averaging volume and the standard deviation in the computed
Poisson’s ratio for a polystyrene material has been established,
providing the necessary guidelines to investigate similar
composite systems.

Despite the observed overestimation of the Poisson’s
ratio with the presented technique, we have shown that the
interphase region between the silica and the polystyrene bulk
has a nonlinear Poisson’s ratio spatial profile. The extension
of the interphase region defined as the length required for
the Poisson’s ratio to reach the bulk value amounts to
approximately 3.5 nm. The local values for the Poisson’s ratio
have been computed by a method designed with a sufficient
generality to be applied to all systems that can be studied
via molecular simulations. For consistency and simplicity,
the approaches and definitions of the elastic constant used
to describe macroscopic systems have been transferred to
microscopic systems and the results derived can serve as input
to micromechanical modeling.
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Plathe, S. Pfaller, G. Possart, and P. Steinmann, J. Chem. Phys.
134, 154108 (2011).

[17] S. Pfaller, G. Possart, P. Steinmann, M. Rahimi, F. Müller-Plathe,
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[51] H. Höcker, G. J. Blake, and P. J. Flory, Trans. Faraday Soc. 67,
2251 (1971).

[52] R. S. Lakes, Science 235, 1038 (1987).
[53] R. E. Bolz and G. L. Tuve, Handbook of Tables for Applied En-

gineering Science (The Chemical Rubber Company, Cleveland,
OH, 1970), Vol. 124.

[54] W. N. Sharpe Jr., B. Yuan, and R. Vaidyanathan, Micro Electro
Mech. Syst. (MEMS) 424, 1997 (2002 revision).

[55] M. Vacatello, Macromol. Theory Simul. 11, 757 (2002).
[56] A. V. Lyulin, N. K. Balabaev, M. A. Mazo, and M. A. J. Michels,

Macromolecules 37, 8785 (2004).
[57] J. T. Seitz, J. Appl. Polym. Sci. 49, 1331 (1993).
[58] T. Raaska, J. S. Niemela, and F. Sundholm, Macromolecules 27,

5751 (1994).
[59] H. Wahlen and H. Rieger, J. Phys. Soc. Jpn. 69, 242 (2000).
[60] N. Binggeli, N. R. Keskar, and J. R. Chelikowsky, Phys. Rev. B

49, 3075 (1994).
[61] J. S. Tse and D. D. Klug, Phys. Rev. Lett. 67, 3559 (1991).
[62] J. Badro, J. L. Barrat, and P. Gillet, Phys. Rev. Lett. 76, 772

(1996).

036704-11

http://dx.doi.org/10.1016/j.polymer.2006.10.017
http://dx.doi.org/10.1016/j.polymer.2006.10.017
http://dx.doi.org/10.1063/1.3576122
http://dx.doi.org/10.1063/1.3576122
http://dx.doi.org/10.1007/s00466-011-0657-7
http://dx.doi.org/10.1016/j.polymer.2004.11.022
http://dx.doi.org/10.1016/j.polymer.2004.11.022
http://dx.doi.org/10.1016/S0266-3538(02)00113-6
http://dx.doi.org/10.1016/S0032-3861(01)00429-3
http://dx.doi.org/10.1016/S0032-3861(01)00429-3
http://dx.doi.org/10.1063/1.443248
http://dx.doi.org/10.1103/PhysRevE.74.031124
http://dx.doi.org/10.1103/PhysRevE.61.1072
http://dx.doi.org/10.1103/PhysRevE.61.1072
http://dx.doi.org/10.1103/PhysRevLett.45.1196
http://dx.doi.org/10.1016/0167-7977(88)90009-3
http://dx.doi.org/10.1103/PhysRevB.71.184108
http://dx.doi.org/10.1063/1.328693
http://dx.doi.org/10.1063/1.328693
http://dx.doi.org/10.1063/1.448118
http://dx.doi.org/10.1021/ma00008a056
http://dx.doi.org/10.1021/ma00008a056
http://dx.doi.org/10.1103/PhysRevB.49.6494
http://dx.doi.org/10.1103/PhysRevB.49.6494
http://dx.doi.org/10.1063/1.1367016
http://dx.doi.org/10.1021/ma00149a018
http://dx.doi.org/10.1021/ma00149a018
http://dx.doi.org/10.1021/ma00155a022
http://dx.doi.org/10.1021/ma00155a022
http://dx.doi.org/10.1038/nmat3134
http://dx.doi.org/10.1038/nmat3134
http://dx.doi.org/10.1088/0256-307X/23/5/002
http://dx.doi.org/10.1088/0256-307X/23/5/002
http://dx.doi.org/10.1016/0010-4655(93)90144-2
http://dx.doi.org/10.1021/ja9621760
http://dx.doi.org/10.1021/ja9621760
http://dx.doi.org/10.1021/ma9518767
http://dx.doi.org/10.1021/ma801910r
http://dx.doi.org/10.1021/ma801910r
http://dx.doi.org/10.1021/jp055341j
http://dx.doi.org/10.1063/1.469273
http://dx.doi.org/10.1021/ma2020613
http://dx.doi.org/10.1021/ma202044e
http://dx.doi.org/10.1021/jp9009492
http://dx.doi.org/10.1002/jcc.10307
http://dx.doi.org/10.1002/jcc.10307
http://dx.doi.org/10.1021/ma2005958
http://dx.doi.org/10.1039/tf9716702251
http://dx.doi.org/10.1039/tf9716702251
http://dx.doi.org/10.1126/science.235.4792.1038
http://dx.doi.org/10.1002/1521-3919(20020901)11:7<757::AID-MATS757>3.0.CO;2-I
http://dx.doi.org/10.1021/ma049737p
http://dx.doi.org/10.1002/app.1993.070490802
http://dx.doi.org/10.1021/ma00098a032
http://dx.doi.org/10.1021/ma00098a032
http://dx.doi.org/10.1143/JPSJ.69.242
http://dx.doi.org/10.1103/PhysRevB.49.3075
http://dx.doi.org/10.1103/PhysRevB.49.3075
http://dx.doi.org/10.1103/PhysRevLett.67.3559
http://dx.doi.org/10.1103/PhysRevLett.76.772
http://dx.doi.org/10.1103/PhysRevLett.76.772



