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We have developed a flexible framework for constructing Jastrow factors which allows for the introduction of
terms involving arbitrary numbers of particles. The use of various three- and four-body Jastrow terms in quantum
Monte Carlo calculations is investigated, including a four-body van der Waals-like term, and anisotropic terms.
We have tested these Jastrow factors on one- and two-dimensional homogeneous electron gases, the Be, B, and
O atoms, and the BeH, H2O, N2, and H2 molecules. Our optimized Jastrow factors retrieve more than 90% of the
fixed-node diffusion Monte Carlo correlation energy in variational Monte Carlo for each system studied.
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I. INTRODUCTION

The variational and diffusion quantum Monte Carlo
methods (VMC and DMC) are zero-temperature stochastic
techniques for evaluating the expectation values of time-
independent operators [1–3]. These methods are particularly
well suited for calculating the ground-state energies of large
assemblies of interacting quantum particles. The central object
is an approximate trial wave function whose accuracy controls
the computed energy and the intrinsic statistical fluctuations
in the calculations. It is therefore of particular importance to
develop accurate trial wave functions.

Expectation values in VMC are evaluated using
importance-sampled Monte Carlo integration. In DMC the
ground state is projected out by evolving the Schrödinger
equation in imaginary time. Such projector methods suffer
from a fermion sign problem, in which errors in the propaga-
tion increase exponentially in imaginary time as the algorithm
amplifies any spurious component of the lower-energy bosonic
state. This problem may be evaded in DMC by employing the
fixed-node approximation [4], in which the nodal surface is
fixed to be that of a suitable trial wave function. The resulting
DMC energy is greater than or equal to the exact energy and
less than or equal to the VMC energy computed with the same
trial wave function. The VMC energy depends on the entire
trial wave function, but the DMC energy depends only on the
nodal surface of the trial wave function.

One of the appealing features of VMC and DMC is that
virtually any form of trial wave function can be used. The
main criteria are that the wave function must obey the correct
symmetry under particle exchange, it should be flexible enough
to describe the system of interest, and it should be possible to
evaluate it rapidly. The analytic properties and normalizability
of the trial wave function must be such that the energy
expectation value is well defined. The simplest fermionic wave
function is a Slater determinant, which describes exchange
but not correlation. Multideterminant wave functions, pairing
wave functions such as geminals [5], and backflow transfor-
mations [6] can also be used. The most fruitful method of
going beyond the Slater determinant is, however, to multiply it
by a Jastrow factor [1], which leads to the Slater-Jastrow wave
function. The Jastrow factor is normally chosen to depend on
the interparticle separations, which introduces correlation into

the wave function. The introduction of a Jastrow factor often
leads to the recovery of 80% or more of the correlation energy
of electronic systems [7].

The Jastrow factor is chosen to be everywhere positive
and symmetric with respect to the exchange of identical
particles in order to maintain the nodal surface defined by
the rest of the wave function. One of the features of the
Jastrow factor is that it can conveniently be used to enforce
the Kato cusp conditions [8], which determine the behavior
of the wave function when two charged particles approach
one another. Enforcing the Kato cusp conditions does not
necessarily improve the variational energy, but the reduction
in the statistical fluctuations in the energy is often very
important.

DMC can be viewed as VMC with a perfect Jastrow
factor, but improving the Jastrow factor can improve DMC
calculations in several ways. The DMC algorithm is subject
to time-step errors and to (normally very small) population-
control errors [9] that are reduced by improving the trial wave
function. Evaluating expectation values of operators that do
not commute with the Hamiltonian is not straightforward in
DMC, but using highly accurate trial wave functions helps in
achieving more accurate results. Similar considerations apply
when using nonlocal pseudopotentials, which involves making
approximations that are ameliorated by improving the trial
wave function [10,11]. As the fundamental limitation on the
accuracy of DMC is the quality of the nodal surface, it is
desirable to use trial wave functions with optimizable nodal
surfaces as afforded by, for example, multideterminant wave
functions and backflow transformations. A good Jastrow factor
can account for the bulk of the dynamical correlation energy,
which allows the optimization of parameters that affect the
nodal surface to achieve a better nodal surface.

Here we introduce a highly flexible form of Jastrow factor
which allows for the introduction of a variety of terms
involving arbitrary numbers of particles. Our main motivation
is to be able to implement quickly different functional forms
and explore the importance of different correlations in any
physical system we study.

Jastrow factors correlating several electrons have been
used in earlier calculations, such as those of Refs. [12–15].
We study the effects of various three-body Jastrow terms
and introduce a four-body van der Waals-like term. We
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also construct anisotropic Jastrow factors that can capture
the natural symmetries of a system. We have successfully
applied these Jastrow factors to a variety of systems, and we
report results for the one- and two-dimensional homogeneous
electron gases, the Be, B, and O atoms, and the BeH, N2, H2O,
and H2 molecules. Our VMC and DMC calculations were
performed using the CASINO package [16]. Hartree atomic
units are used throughout (h̄ = |e| = me = 4πε0 = 1). The
structure of the paper is as follows. We describe the form
and properties of the general Jastrow factor in Sec. II. Specific
examples of the construction of Jastrow terms are given in Sec.
III, and results obtained using them are presented in Sec. IV.
Finally we draw our conclusions in Sec. V. Implementation
details are given in Appendix A, and an example can be found
in Appendix B. We report only summaries of our data in this
paper [17].

II. CONSTRUCTION OF A GENERIC JASTROW FACTOR

Quantum Monte Carlo (QMC) methods can be applied to
systems which can be generically described as an ensemble
of N quantum particles and M sources of external potential.
The most common type of QMC simulations are electronic
calculations, where the quantum particles are electrons and
the sources of external potential are fixed nuclei (or pseu-
dopotentials). For simplicity, we refer to quantum particles
as electrons and to external potentials as nuclei in the rest of
this paper. Our Jastrow factor is applicable to other types of
quantum particles and external potentials.

Any trial wave function can be written in the form

�T(R) = eJ (R)�S(R), (1)

where �S(R) is the part of the wave function that imposes
the symmetry and boundary conditions, and eJ (R) is a Jastrow
correlation factor which is constrained so that the symmetry
and boundary properties of �S(R) are transferred unmodified
to �T(R). In the single-determinant (SD) Slater-Jastrow wave
function, �S(R) is a Slater determinant. There are various
alternatives to Slater determinants, with different advantages
and disadvantages depending on the system.

Typically J (R) is constructed as a sum of terms, e.g.,

J (R) = Je−e(R) + Je−n(R) + Je−e−n(R) + · · · , (2)

where “e–e” stands for “electron-electron,” “e–n” for
“electron–nucleus,” etc. Each of these terms involves different
numbers of electrons n and nuclei m. We shall refer to n and
m as the electronic and nuclear ranks of a term, respectively,
which are constrained to satisfy n + m � 2, n � 1, and m � 0.
We have designed a generic Jastrow term of selectable ranks,
Jn,m(R), such that the total Jastrow factor is constructed as the
exponential of a sum of one or more terms of the desired ranks.
In this notation, Je−e ≡ J2,0, Je−n ≡ J1,1, etc.

The function Jn,m(R) is a sum over all sets of n electrons
and m nuclei in the system of a parameterized function of

the e–e and e–n relative position vectors within each such set.
While alternatives exist, a natural way of parameterizing this
function for arbitrary values of n and m (implying an arbitrary
number of variables in the function) is to expand it in products
of functions of the individual e–e and e–n vectors. Thus, we
construct our Jastrow factor using pairwise objects as building
blocks, and in what follows we describe these objects and
derive the properties of Jn,m(R) that follow from those of the
pairwise objects.

We name the e–e functions used in the expansion �P
ν (r),

where r is the relevant e–e relative position vector, ν is the
index of the function within a chosen basis of functions,
and P is the e–e dependency index, which allows the use
of different optimizable parameters, if present, for parallel-
and antiparallel-spin electron pairs, for example. Similarly,
the e–n basis functions are �S

μ(r), where r is the relevant e–n
relative position vector, μ is the index of the function within the
chosen basis set, and S is the e–n dependency index of the basis
set, which allows the use of different parameters for up- and
down-spin electrons around a given nucleus, or for different
atoms, for example. In the case of nonelectronic systems, e–e
and e–n dependency indices are used to distinguish between
particle types and spins.

We introduce a compact notation for defining Jn,m(R).
We represent the n electronic indices by the integer vector
i = {i1,i2, . . . ,in}, each of whose components takes a distinct
value between 1 and N , and the m nuclear indices by the
integer vector I = {I1,I2, . . . ,Im}, each of whose components
takes a distinct value between 1 and M . For each term in
the Jastrow factor we define the e–e and e–n dependency
matrices P and S of respective sizes N × N and N × M

containing the dependency indices Pij and SiI for each e–e
and e–n pair. The components of P and S can be made equal
depending on the symmetries of the system, including particle
distinguishability and geometrical symmetries which make
different nuclei equivalent.

Likewise, it is convenient to use matrices to represent the
basis functions involved in the Jastrow factor term. For e–e
basis functions, each row and column of the n × n matrix �

corresponds to an electron:

�P
ν (i) =

⎛
⎜⎜⎜⎜⎜⎜⎝

0 �
Pi1 i2
νi1 i2

(ri1i2 ) · · · �
Pi1 in

νi1 in
(ri1in)

�
Pi1 i2
νi1 i2

(ri2i1 ) 0 · · · �
Pi2 in

νi2 in
(ri2in)

...
...

. . .
...

�
Pi1 in

νi1 in
(rini1 ) �

Pi2 in

νi2 in
(rini2 ) · · · 0

⎞
⎟⎟⎟⎟⎟⎟⎠

.

(3)

We refer to the n × n matrix formed by the e–e dependency
indices {Piαiβ }α,β=1,...,n as P(i). Both P(i) and the n × n matrix
of e–e expansion indices ν are defined to be symmetric, and
this fact has been used in Eq. (3). Noting that rji = −rij ,
and restricting the e–e functions to be either symmetric
or antisymmetric about the origin, one finds in Eq. (3)
that matrix � is symmetric, antisymmetric, or asymmetric
depending on whether the functions in the basis set are
all symmetric, all antisymmetric, or both types are present,
respectively.
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For e–n basis functions each row of the n × m matrix �

corresponds to an electron and each column to a nucleus:

�S
μ(i,I) =

⎛
⎜⎜⎜⎝

�
Si1I1
μi1I1

(ri1I1 ) · · · �
Si1Im

μi1Im
(ri1Im

)
...

...

�
SinI1
μinI1

(rinI1 ) · · · �
SinIm
μinIm

(rinIm
)

⎞
⎟⎟⎟⎠ . (4)

We refer to the n × m matrix formed by the e–n dependency
indices {SiαIβ

}α=1,...,n;β=1,...,m as S(i,I), and the n × m matrix
of e–n expansion indices is μ.

We write Jn,m as a sum of contributions from each group
of n electrons and m nuclei in the system,

Jn,m = 1

n!m!

∑
i

∑
I

Jn,m(i,I) =
s.v.∑

i

s.v.∑
I

Jn,m(i,I), (5)

where summations with vector indices represent sums in which
every component of the vector is a summation index, and “s.v.”
(for “sorted vector”) indicates that the sum is restricted to
vectors whose components are sorted, e.g., i1 < i2 < · · · < in,
which avoids redundant contributions [18]. The contribution
from the n-electron and m-nucleus group {i,I} is

Jn,m(i,I) =
u.t.∑
ν

∑
μ

λP(i),S(i,I)
ν,μ

u.t.∏
�P

ν (i)
∏

�S
μ(i,I), (6)

where λ are the linear parameters, summations with matrix
indices represent sums in which every component of the matrix
is a summation index

∏
acting on matrices implies the product

of all of their components, and “u.t.” means that the relevant
operation is restricted to the upper-triangular portion of the
e–e matrices involved, excluding the diagonal.

A. Symmetry properties of the linear parameters

Equation (5) imposes the condition that Jn,m(i,I) must not
depend on the specific ordering of the electrons and nuclei
listed in i and I. Let A and B be permutation matrices of
respective sizes n × n and m × m such that Ai and BI are
integer vectors containing reordered electronic and nuclear
indices. The value of Jn,m(Ai,BI) should therefore equal that
of Jn,m(i,I),

Jn,m(Ai,BI)

=
u.t.∑

ν(Ai)

∑
μ(BI)

λ
P(Ai),S(Ai,BI)
ν(Ai),μ(Ai,BI)

u.t.∏
�P

ν (Ai)
∏

�S
μ(Ai,BI)

=
u.t.∑

A ν AT

∑
A μ BT

λ
A P(i) AT,A S(i,I) BT

A ν AT,A μ BT

u.t.∏
A �P

ν (i) AT
∏

A �S
μ(i,I) BT

=
u.t.∑
ν

∑
μ

λ
A P(i) AT,A S(i,I) BT

A ν AT,A μ BT γ
[
�P

ν (i),A
] u.t.∏

�P
ν (i)

∏
�S

μ(i,I),

(7)

where

γ
[
�P

ν (i),A
] =

∏u.t. A �P
ν (i) AT∏u.t.

�P
ν (i)

, (8)

which is +1 for basis sets consisting only of symmetric
functions, while in the presence of antisymmetric basis
functions it may be +1 or −1 depending on the precise
permutation performed by A. Equating the right-hand sides
of Eqs. (6) and (7) one finds that

λP(i),S(i,I)
ν,μ = γ

[
�P

ν (i),A
]
λ

A P(i) AT,A S(i,I) BT

A ν AT,A μ BT . (9)

This equation represents the basic symmetry property of the
linear parameters of the Jastrow factor, which implies that
a parameter with a given set of superindices {P(i),S(i,I)}
is determined by another parameter with a permuted set of
superindices {A P(i) AT,A S(i,I) BT}. This redundancy is re-
moved by considering only one of the possible permutations of
{P(i),S(i,I)}. We call this particular permutation of {P(i),S(i,I)}
the signature of the group of particles {i,I},

{P̃(i),S̃(i,I)} = {U P(i) UT,U S(i,I) RT}, (10)

where the permutation matrices {U,R} are computed by
applying a matrix-sorting algorithm [19] to {P(i),S(i,I)}. In our
terminology, the set of linear parameters whose superindices
reduce to the same signature constitute a parameter channel.
Only those parameters whose superindices equal the signature
of a channel need be stored, and any other linear parameters
in the channel can be computed from them via Eq. (9).

The signature {P̃(i),S̃(i,I)} may contain repeated entries
such that there exist permutation matrices {A,B} that leave the
signature unchanged,

{P̃(i),S̃(i,I)} = {A P̃(i) AT,A S̃(i,I) BT}, (11)

in which case Eq. (9) becomes

λP̃(i),S̃(i,I)
ν,μ = γ

[
�P̃

ν (i),A
]
λ

P̃(i),S̃(i,I)
A ν AT,A μ BT . (12)

Equation (12) is the symmetry constraint that relates linear
parameters within a channel, which can be imposed as detailed
in Sec. II C.

B. Indexing of basis functions

The components of ν and μ are the e–e and e–n expansion
indices. We define the expansion indices so that they can each
take any value between 1 and the e–e expansion order p, and
between 1 and the e–n expansion order q, respectively. We
factorize an optional cutoff function into �P

ν and �S
μ, so that

�P
ν (r) = f P (r)φP

ν (r), (13)

for ν > 0, and

�S
μ(r) = gS(r)θS

μ(r), (14)

for μ > 0, where f P and gS are the e–e and e–n cutoff
functions and φP

ν and θS
μ are functions from a suitable basis

set. This factorization allows an efficient implementation of
localized Jastrow factor terms.

Additionally, we allow expansion indices to take a value
of zero with the special meaning that �P

0 (r) = �S
0 (r) = 1

for all P , S, and r. Note that these 0th functions do not
contain cutoff functions. This allows us to construct terms
with specialized functional forms, such as those involving dot
products of vectorial quantities.
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C. Constraints

Constraints on the parameters can be expressed in the form
of a system of equations involving the linear parameters and
the basis function parameters. We restrict our analysis to linear
constraints on the linear parameters, and constraints that can
be imposed on the nonlinear parameters contained in a basis
function independently from the linear parameters and from
nonlinear parameters in other basis functions.

Linear constraints on the linear parameters can be imposed
using Gaussian elimination, as described in Ref. [7]. The
matrix of coefficients may depend on the nonlinear parameters
in the basis functions, if present, and the linear system
is usually underdetermined, resulting in a subset of the
parameters being determined by the values of the remaining
parameters, which can be optimized directly.

When a constraint results in setting specific linear pa-
rameters to zero, it is more convenient simply to remove
them from the list of linear parameters. This is accomplished
by disallowing the indices ν and μ from taking the values
corresponding to linear parameters. We call this an indexing
constraint.

1. Symmetry and antisymmetry constraints

Symmetry constraints must always be imposed, otherwise
the trial wave function is unphysical and calculations give
erroneous results. Symmetry constraints amount to equalities
between pairs of parameters as per Eq. (12). When two of these
equalities relate the same pair of parameters with opposite
signs, e.g., λ1 = λ2 and λ1 = −λ2, which implies λ1 = λ2 =
0, both parameters are eliminated using indexing constraints.

2. Constraints at e–e and e–n coalescence points

The Coulomb potential energy diverges when the positions
of two electrons or an electron and a nucleus coincide.
However, the local energy of an eigenstate of the Hamiltonian,
including the exact ground-state wave function, is finite and
constant throughout configuration space. Divergences in the
local energy are therefore not a feature of the exact wave
function and can lead to poor statistics in QMC calculations;
hence it is important to avoid them. The kinetic energy must
diverge to cancel out the potential energy and keep the local
energy finite, which is achieved by demanding that the wave
function obeys the Kato cusp conditions [8]. For any two
charged particles i and j in a two- or three-dimensional system,
these are (

1

�

∂�̂

∂rij

)
rij →0

= 2qiqjμij

d ± 1
, (15)

where �̂ denotes the spherical average of �, q represents
charge, μij = mimj/(mi + mj ) is the reduced mass, m repre-
sents mass, d is the dimensionality, and the positive sign in the
denominator is for indistinguishable particles and the negative
sign is for distinguishable particles. Fixed nuclei are regarded
as having an infinite mass. Divergent interactions other than
the Coulomb potential would give rise to different expressions.

It is common practice to impose the e–n cusp conditions
on �S and the e–e cusp conditions on the Jastrow factor. This
is because typical forms of �S explicitly depend on the e–n

distances but not on the e–e distances. Our implementation
allows the option of applying both types of cusp conditions
to the Jastrow factor, which gives flexibility in the choice
of �S and its properties. In particular, we impose the cusp
conditions on a single Jastrow factor term and constrain all
other terms in the Jastrow factor so that their contribution to
the local kinetic energy is finite at e–e and e–n coalescence
points. For nondivergent interaction potentials, such as most
pseudopotentials, we simply require that the kinetic energy
remains finite at coalescence points. Our implementation is
also capable of not applying any constraints at e–e and e–n
coalescence points since this is advantageous in some cases
[20,21].

Imposing that the kinetic energy be finite at coalescence
points is nontrivial if the Jastrow factor contains anisotropic
functions. Consider the exponent of a Jastrow factor J near a
point where two particles coalesce, be it two electrons or an
electron and a nucleus. The dependence of J on coordinates
other than those of the coalescing particles should be smooth in
the vicinity of the coalescence point, and therefore one should
be able to write J = J (r), where r is the difference between the
position vector of the two particles, and all remaining particles
are held fixed.

The local kinetic energy is computed from two estimators,
one involving ∇J (r) and the other ∇2J (r). We require both
quantities to remain finite as r → 0. We expand the Jastrow
factor in spherical harmonics, J (r) = ∑∞

l=0

∑l
m=−l J

(l,m),
with J (l,m) = fl,m(r)Yl,m(θ,φ), and the gradient and Laplacian
of J (l,m) are

∇J (l,m) = f ′
l,m(r)Yl,m(θ,φ)ur + fl,m(r)

r

∂Yl,m(θ,φ)

∂θ
uθ

+fl,m(r)

r sin θ

∂Yl,m(θ,φ)

∂φ
uφ, (16)

∇2J (l,m) =
[
f ′′

l,m(r) + 2f ′
l,m(r)

r
− l(l + 1)fl,m(r)

r2

]
Yl,m(θ,φ).

(17)

Let us assume that fl,m(r) is finite at the origin and expand
it to second order about r = 0, fl,m(r) ≈ fl,m(0) + f ′

l,m(0)r +
f ′′

l,m(0)r2/2. Substituting into Eqs. (16) and (17), and ignoring
contributions of O(r) or higher, we arrive at

∇J (l,m) ≈ f ′
l,m(0)Yl,m(θ,φ)ur

+
[
fl,m(0)

r
+ f ′

l,m(0)

]
∂Yl,m(θ,φ)

∂θ
uθ

+
[
fl,m(0)

r sin θ
+ f ′

l,m(0)

sin θ

]
∂Yl,m(θ,φ)

∂φ
uφ, (18)

∇2J (l,m) ≈
{[

3 − l(l + 1)

2

]
f ′′

l,m(0) + [2 − l(l + 1)]
f ′

l,m(0)

r

− l(l + 1)
fl,m(0)

r2

}
Yl,m(θ,φ). (19)

The coefficient of the negative powers of r in Eqs. (18) and (19)
must vanish for ∇J and ∇2J to be finite at the coalescence
point. This gives rise to two conditions: (a) if l �= 0 then
fl,m(0) = 0, and (b) if l �= 1 then f ′

l,m(0) = 0.
Application of the Kato cusp or finite kinetic energy

constraints requires the construction of a linear system for
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each linear-parameter channel in each term of the Jastrow
factor based on the above equations. Let Pl,m be an operator
such that Pl,m

∑∞
l=0

∑l
m=−l fl,m(r)Yl,m(θ,φ) = fl,m(r). The

cusp equations associated with the coalescence of electrons
i and j have the form

u.t.,o.c.∑
ν

n.c.∑
μ

λP,S
ν,μ

{
∂P0,0

[
�

Pij

νij
(rij )

]
∂rij

}
rij =0

= �ij , (20)

where �ij is the right-hand side of Eq. (15). The label “o.c.”
(for “one contribution”) denotes that the sum is restricted
to values of the ν sets such that the elements of the upper
triangular portion of �P

ν (i) are all 1 except that corresponding
to the electron pair formed by i and j , and the label “n.c.” (for
“no contribution”) denotes that the sum is restricted to values
of μ such that all elements of �S

μ(i,I) are 1. These restrictions
are trivially satisfied by e–e terms.

Parameters that do not contribute to Eq. (20) should be set
by the condition that the kinetic energy does not diverge at e–e
coalescence points, resulting in

u.t.,e.p.∑
ν

e.p.∑
μ

λP,S
ν,μ

{
Pl,m

[
�

Pij

νij
(rij )

]}
rij =0 = 0, (21)

for l �= 0, and

u.t.,e.p.∑
ν

e.p.∑
μ

λP,S
ν,μ

{
∂Pl,m

[
�

Pij

νij
(rij )

]
∂rij

}
rij =0

= 0, (22)

for l �= 1. The anisotropy of �
Pij

νij
(rij ) at rij = 0 determines

which of Eq. (21) and Eq. (22) need be imposed. The label
e.p. (for “equal product”) denotes that the sum is only over
indices associated with electrons i and/or j , and these indices
take only values such that the product of the pair of functions
associated with νik and νjk (μiI and μjI in the e–n case) is
equal throughout the sum. Each set of distinct two-function
products and each value of (l,m) correspond to different
equations, and each set of possible values of the indices not
summed over corresponds to a separate set of equations.

For the coalescence of electron i and nucleus I the cusp
conditions take the form

u.t.,n.c.∑
ν

o.c.∑
μ

λP,S
ν,μ

{
∂Pl,m

[
�SiI

μiI
(riI )

]
∂riI

}
riI =0

= �iI , (23)

while the kinetic energy is kept finite if

u.t.,e.p.∑
ν,μ

λP,S
ν,μ

{
Pl,m

[
�SiI

μiI
(riI )

]}
riI =0 = 0 (24)

for l �= 0 and

u.t.,e.p.∑
ν,μ

λP,S
ν,μ

{
∂Pl,m

[
�SiI

μiI
(riI )

]
∂riI

}
riI =0

= 0 (25)

for l �= 1. The equal-product constraint on the sum is now
such that the sum is only over e–e indices associated with
electron i and e–n indices associated with nucleus I , and
these indices take values only such that the product of the pair
of functions associated with νik and μkI is equal throughout

the sum. Again, each set of distinct two-function products
corresponds to a different equation, and each set of possible
values of the indices not being summed over corresponds to a
separate set of equations.

Note that the equal-product constraints in the sums of
Eqs. (20) and (23) reduce to the equal-product constraints
described for the e–e–n f term of the Drummond-Towler-
Needs (DTN) Jastrow factor in the appendix of Ref. [7] when
natural-power basis functions are chosen.

3. Other constraints

It is possible to construct terms containing dot products by
using appropriate constraints. For example, consider the basis
functions �1(r) = x, �2(r) = y, and �3(r) = z. In an e–n–n
term we can restrict the indices so that μ takes only the values
(11), (22), (33), so that the contribution of electron i and nuclei
I and J is riI · riJ , provided we also apply a linear constraint
that equates the three nonzero linear coefficients. Section III B
gives a practical example of a term containing dot products,
which is used in Sec. IV C4.

It is also possible to introduce Boys-Handy-style indexing,
[22] where the sum of all e–e and e–n indices is restricted
to be less than or equal to some fixed integer l. This is
accomplished by setting the e–e and e–n expansion orders to l

and then eliminating the parameters that violate the conditions
via indexing restrictions.

III. BASIS FUNCTIONS AND TERMS

A. Basis sets and cutoff functions

Possibly the simplest basis set is the natural powers,

Nν(r) = rν−1, (26)

as used in the DTN Jastrow factor for the localized u, χ , and f

terms [7]. These functions need to be cut off at some radius L,
for which purpose the DTN Jastrow factor uses the polynomial
cutoff function

D(r) = (r − L)C�(L − r), (27)

where L is an optimizable parameter, C is a positive integer,
and �(r) is the Heaviside step function. We also use a slightly
different version of this cutoff function,

P (r) = (1 − r/L)C�(L − r), (28)

which should be numerically superior to D(r).
A particular variant of P (r) is the anisotropic cutoff

function

A(r) = (1 − r/L)C�(L − r)
∑

i

ci

d∏
β

[
r · ûβ

r

]p
(i)
β

, (29)

where L is an optimizable parameter, C is a positive integer, d
is the dimensionality of the system, {ûβ}β=1,...,d are unit vectors
along d orthogonal directions, {ci} are real-valued constants,
and p

(i)
β are integer exponents, which are constrained so that∑d

β p
(i)
β is the same for all values of i. This cutoff function

is simply the product of an isotropic cutoff function and a
spherical harmonic. For example, with c1 = 3, c2 = −1, p(1) =
(211), and p(2) = (031), and the vectors pointing along the
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Cartesian axes, we obtain

A(r) = (1 − r/L)C�(L − r)

[
(3x2 − y2)yz

r4

]
, (30)

which is proportional to a real spherical harmonic with l = 4.
The advantage of describing anisotropy in the cutoff function
rather than in the basis functions is that the common spherical
harmonic can be factorized out of the sum over expansion
indices, which reduces the computational cost. We allow
different orientations to be used for different e–e or e–n
dependency indices, which is useful to adapt the functional
form to, e.g., the geometry of a molecule.

An alternative to the natural-power basis in finite systems is
a basis of powers of fractions which tend to a constant as r →
∞ and therefore do not need to be cut off. We define the basis

Fν(r) =
(

r

rb + a

)ν−1

, (31)

where a and b are real-valued optimizable parameters. Similar
basis sets with b = 1 have been used in the literature, often in
conjunction with Boys-Handy-style indexing [20,22–24], and
this basis was used in Ref. [25] with an early implementation
of the Jastrow factor presented here.

In extended systems it is important to use a basis that is
consistent with the geometry of the simulation cell and has the
periodicity of the system, such as a cosine basis,

Cν(r) =
∑

G∈ν-th star

cos(G · r), (32)

where the G vectors are arranged in stars defined by the cell
geometry. This basis is used in the DTN Jastrow factor for the
extended p and q terms.

A suitable basis set for building specialized terms contain-
ing dot products is

Vν(r) = r INT[(ν−1)/d] r · ûMOD(ν−1,d)+1

r
, (33)

where d is the dimensionality of the system and {ûβ}β=1,...,d are
unit vectors parallel to the d Cartesian axes. A term constructed
using these functions with appropriate index-restriction con-
straints would consist of dot products between two vectors
multiplied by a natural-power expansion in their moduli.

B. Terms and notation

We employ a condensed notation to refer to Jastrow
terms that use certain basis functions, cutoff functions, and
constraints. Each term is represented by a single capital letter,
with n and m as subindices. Any other relevant information is
given as a superindex. Typically we use expansion orders p

and q of 7–9 for two-body terms, 4–5 for three-body terms,
and 2–3 for four-body terms, except when indicated otherwise.

For simple Jastrow terms we use the natural power basis
functions Nν and the polynomial cutoff functions P or D.
We refer to these terms as Nn,m. N2,0, N1,1, and N2,1 are the
equivalent of the DTN u, χ , and f terms, respectively. In the
N2,1 term, and in any term where more than one electron and
one or more nuclei are involved, we choose not to apply e–e
cutoff functions, relying instead on the e–n cutoffs to fulfill
this role. Additional Nn,m terms used in this paper that were

not part of the DTN Jastrow factor are N1,2, N3,0, N1,3, N2,2,
N3,1, and N4,0. In Nn,m we typically use a truncation order in
the cutoff function of C = 3.

We use As.h.
n,m to refer to the anisotropic variant of Nn,m. The

As.h.
n,m term consists of natural power basis functions Nν and

the anisotropic cutoff function A, and “s.h.” is a placeholder
for describing the spherical harmonic. For example, for the
highly anisotropic N2 molecule we use terms such as Az

1,1,

Az2

1,1, Az
2,1, and Az2

2,1.
In finite systems we also use the Fν basis functions in terms

without explicit cutoff functions which we call Fn,m, or Fb=1
n,m

when we force b = 1 in the basis functions. In some systems
it is useful to apply Boys-Handy-style indexing to Fb=1

n,m , and
we refer to the resulting term as Bn,m.

In extended systems we make use of the cosine basis
functions Cν in terms denoted Cn,m, where we choose
expansion orders so that at least as many G vectors as electrons
in each spin channel are included in the expansion.

To test the flexibility of our implementation we have de-
signed an e–e–n–n Jastrow term for describing the correlations
associated with van der Waals interactions, which we call V2,2.
This term is capable of distinguishing between configurations
where the electron-nucleus relative position vectors riI and rjJ

are parallel from those where they are antiparallel. Introducing
a dot product achieves this effect, and V2,2 has the following
functional form:

V2,2 = 1

2

N∑
i �=j

M∑
I �=J

P (riI )P (rjJ )
p∑
νij

q∑
μiI ,μjJ

λνij μiI μiJ

×Nνij
(rij )NμiI

(riI )NμjJ
(rjJ )riI · rjJ . (34)

We require basis functions to be scalars in our Jastrow factor,
so the dot product is separated into its components. Hence, we
construct the V2,2 term using Vν for the e–n basis with P as
the e–n cutoff functions, and Nν for the e–e basis. We allow
e–n indices to be zero and apply a number of constraints on
the linear parameters: (a) we eliminate all index sets except
those in which the e–n indices are of the form μ = ( k 0

0 l ) or

( 0 k

l 0 ), with k,l > 0; (b) we eliminate all parameters that do not
satisfy MOD(k − 1,3) = MOD(l − 1,3); (c) we equate any
two linear parameters λν,μ

1
and λν,μ

2
if the zeros of μ

1
and μ

2
are in the same position and their nonzero components satisfy
INT[(k1 − 1)/3)] = INT[(k2 − 1)/3] and INT[(l1 − 1)/3)] =
INT[(l2 − 1)/3]. These constraints are applied in addition to
the generic symmetry and cusp constraints. Table I summarizes
the notation for the terms we have introduced.

IV. RESULTS

In the present work we have used a variety of methods to
optimize our Jastrow factors, namely, variance minimization,
minimization of the mean absolute deviation of the local en-
ergy with respect to the median energy, and linear least-squares
energy minimization [26,27]. All of our final wave functions
are energy-minimized except where otherwise stated. Starting
with the Hartree-Fock (HF) wave function, we progressively
introduce Jastrow terms and reoptimize all of the parameters
simultaneously. Optimizing the Jastrow factor term by term
is unnecessary in practical applications, but here it allows us
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TABLE I. Notation for Jastrow terms correlating n electrons and m nuclei using different basis functions.

Name Basis set Cutoff function Special constraints

Nn,m Natural powers Polynomial None
Fn,m Powers of r/(rb + a) None None
Bn,m Powers of r/(r + a) None Boys-Handy-style indexing
As.h.

n,m Natural powers Anisotropic polynomial None
Cn,m Cosines None None
Vn,m Natural powers times unit vectors Polynomial Dot product

to understand the importance of the different terms. We refer
to the total number of optimizable parameters in the wave
function as Np.

The correlation energy is defined as the difference between
the HF energy and the exact energy, EHF − Eexact. The fraction
of the correlation energy retrieved in a VMC calculation with
a given trial wave function �,

fCE[�] = EHF − EVMC[�]

EHF − Eexact
, (35)

is a measure of the quality of �. We refer to the difference
between the DMC and HF energies as the DMC correlation
energy, EHF − EDMC[�]. The fraction of the DMC correlation
energy retrieved in VMC,

fDCE[�] = EHF − EVMC[�]

EHF − EDMC[�]
, (36)

measures the quality of the Jastrow factor, since a perfect
Jastrow factor would make the VMC and DMC energies
coincide [28]. We define the fraction of the remaining DMC
correlation energy recovered by a wave function �2 with
respect to another �1 as

EVMC[�1] − EVMC[�2]

EVMC[�1] − EDMC[�2]
. (37)

The local energy of an electronic configuration R is
defined as EL(R) = �−1

T (R)Ĥ (R)�T(R), where Ĥ (R) is the
Hamiltonian operator. The variance of the local energies
encountered in a VMC calculation, which we shall refer to
as the VMC variance, tends to its lower bound of zero as �T

tends to an eigenstate of the Hamiltonian and is thus a measure
of the overall quality of the trial wave function.

A. Homogeneous electron gases

1. One-dimensional homogeneous electron gas

We have studied a 1D HEG of density parameter rs =
5 a.u. consisting of 19 electrons subject to periodic boundary
conditions using a single Slater determinant of plane-wave
orbitals. The ground-state energy of an infinitely thin 1D HEG
in which electrons interact by the full Coulomb potential is
independent of the magnetic state, and hence we have chosen
all the electrons to have the same spin. This system is unusual
in that the nodal surface of the trial function is exact, and
therefore DMC gives the exact ground-state energy, which
we have estimated to be −0.2040834(3) a.u. per electron.
Excellent results were reported for this system in Refs. [29,30]
using wave functions with e–e backflow transformations

[6,13] which preserve the (exact) nodal surface of the Slater
determinant.

We have investigated the improvement in VMC results
when various terms are added to an e–e Jastrow factor J =
N2,0 + C2,0, both with and without backflow transformations.
In the absence of backflow, we find that including N3,0,
C3,0, or N3,0 + C3,0 improves the VMC energy, while the
subsequent addition of C4,0 yields no further gain. VMC
gives an almost exact energy with backflow and J = N2,0, and
therefore no further reduction is possible by including more
Jastrow terms. However, the addition of N3,0 + C3,0 reduces
the VMC variance by a factor of five, giving a variance that is
an order of magnitude smaller than that reported in Ref. [29]
for a similar calculation.

2. Two-dimensional homogeneous electron gas

We have studied a paramagnetic 2D HEG with 42 electrons
per simulation cell at rs = 35 a.u., which lies close to
the Wigner crystallization density predicted by Drummond
and Needs [31]. Kwon et al. [13] found that three-electron
correlations are important at low densities, and that the effect
of a three-electron Jastrow factor on the VMC energy is
comparable to that of backflow. This makes low densities
appealing for testing higher-rank Jastrow terms.

The VMC energy and variance obtained using different
Jastrow factors with and without backflow is plotted in Fig. 1.
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FIG. 1. (Color online) VMC energies EVMC against the VMC
variance for the 2D HEG at rs = 35 a.u. using different Jastrow
factors, along with the DMC energies for reference. The error bars
are smaller than the size of the symbols, and “(BF)” indicates the use
of backflow.
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The addition of an N3,0 term to J = N2,0 recovers 81% of
the remaining DMC correlation energy without backflow and
49% with backflow. The C2,0 term further reduces both the
VMC energy and variance. The use of a C3,0 term recovers
10% of the remaining DMC correlation energy when added to
J = N2,0 + C2,0, but it was not used further since the lack of
a cutoff function makes calculations with C3,0 too costly for
the little benefit it provides.

We have also performed DMC calculations using two
different Jastrow factors in the presence of backflow in order to
quantify the indirect effect of the quality of the Jastrow factor
on the quality of the nodes of the wave function. We obtain a
DMC energy of −0.0277072(1) a.u. per electron for J = N2,0,
and a lower energy of −0.0277087(1) a.u. per electron for
J = N2,0 + N3,0 + C2,0. This supports the idea that a better
Jastrow factor allows the backflow transformation to shift its
focus from the “bulk” of the wave function to its nodes, thus
improving the DMC energy.

B. Be, B, and O atoms

While excellent descriptions of these atoms can be obtained
within VMC and DMC using multideterminant wave functions
with backflow correlations [25,32], we have used single-
determinant wave functions since we are interested only in
the effects of the Jastrow factor. We have studied the ground
states of the Be, B, and O atoms, corresponding to 1S, 2P, and 3P
electronic configurations, respectively. The ATSP2K code [33]
was used to generate numerical single-electron HF orbitals
tabulated on a radial grid. We have investigated the use of
Jastrow factors with up to four-body terms, but we have not
used backflow for these systems. The energies of Chakravorty
et al. [34] have been used as “exact” reference values.

We obtain lower single-determinant VMC energies for the
Be, B, and O atoms with J = F2,0 + F1,1 + F2,1 than reported
in Refs. [32,35]. We obtain further small improvements in
the VMC energies by including either F3,0 or F3,1 Jastrow
terms, but their combination, F3,0 + F3,1, is not found to be
advantageous over using the terms individually. This indicates
that F3,0 and F3,1, the latter of which provides a slightly lower
VMC energy than the former, have nearly the same effect in
atoms. These three-electron terms should be particularly useful
in describing correlations involving electrons in the atomic
core region. We expect F3,1 to be more useful than F3,0 in
molecules and solids because it should be able to adapt to the
different length scales in these systems, whereas F3,0 offers
a homogeneous description of three-electron correlations. We
have investigated the effect of adding a F4,1 term in Be and
O, but it does not reduce the VMC energy or variance when
added to J = F2,0 + F1,1 + F2,1 + F3,1.

Our best VMC energies of −14.6522(1) a.u. (Be),
−24.6309(2) a.u. (B), and −75.0381(3) a.u. (O) correspond
to fractions of the DMC correlation energy of 94.0(1)%,
91.8(1)%, and 94.6(1)%, respectively. The VMC energies are
compared with the best single-determinant nonbackflow VMC
values we could find in the literature in Table III.

C. BeH, N2, H2O, and H2 molecules

The BeH, N2, H2O, and H2 molecules are strongly inho-
mogeneous and anisotropic systems. We have used basis sets

of moderate quality for the single-electron orbitals of BeH and
N2 in order to investigate the extent to which the Jastrow factor
can compensate for the deficiencies of the basis sets, especially
via one-electron terms N1,m. For H2O and H2 we have used
very good basis sets. We have also tested anisotropic Jastrow
factors in N2, and a van der Waals-like Jastrow factor for H2.

1. BeH molecule

We have studied the all-electron BeH molecule in
the 2�+ ground state configuration at a bond length of
2.535 a.u. [36]. We have used a single-determinant wave
function containing Slater-type orbitals generated with the
ADF package [37], with which we obtain a reference DMC
energy of −15.24603(4) a.u.

The addition of N1,2 to J = N2,0 + N1,1 + N2,1 recovers
11% of the remaining DMC correlation energy. We find no
significant gain from adding either an N2,2 term or an N3,1

term to J = N2,0 + N1,1 + N2,1 + N1,2.

2. N2 molecule

We have studied the 1�+
g ground state of the N2 molecule

at the experimental bond length of 2.074 a.u. [36] HF orbitals
were generated in a Slater-type basis using the ADF package
[37]. Our VMC results for different Jastrow factors are given
in Table II along with relevant reference energies.

Adding an N1,2 term to J = N2,0 + N1,1 + N2,1 factor
recovers 33% of the remaining DMC correlation energy
and leads to a significant reduction in the VMC variance.
The subsequent addition of N2,2 provides a reduction in the
VMC energy of 13% of the remaining DMC correlation
energy. We have tested adding N3,0, N3,1, and N4,0 terms to
J = N2,0 + N1,1 + N2,1 + N2,2, but neither of these yield any
improvements in the VMC energy.

The anisotropy of this system is expected to be captured
by terms containing e–n functions that treat the bond as a
special direction. We have aligned the z axis of our reference
frame along the N–N bond in our calculations, and Az

1,1 is
then the simplest explicitly anisotropic term that reflects the
geometry of the system. The Ax

1,1 and A
y

1,1 terms must be zero
by symmetry, and we have therefore not used them. There are
five spherical harmonics with l = 2, which are respectively
proportional to xy, xz, yz, x2 − y2, and −x2 − y2 + 2z2. In
our calculations we find that only the last one of these, which
we refer to as z2, has a significant effect on the VMC energy.

The VMC energy with J = N2,0 + N1,1 + N2,1 + Az
1,1 is

within statistical uncertainty of that with J = N2,0 + N1,1 +
N2,1 + N1,2, but the former Jastrow factor contains about a
third fewer parameters than the latter. The combination of the
N1,2 and Az

1,1 terms into J = N2,0 + N1,1 + N2,1 + N1,2 +
Az

1,1 does not improve the VMC energy compared with the
other two Jastrow factors. These results suggest that the terms
N1,2 and Az

1,1 play similar roles in the wave function, which we
find reasonable since N1,2, although constructed from isotropic
basis functions, contains the right variables to capture the
symmetry of the molecule in much the same way as Az

1,1 does.
We have plotted the Az

1,1 term for J = N2,0 + N1,1 + N2,1 +
Az

1,1 and the N1,2 term for J = N2,0 + N1,1 + N2,1 + N1,2 in
Fig. 2, where the similarity between the terms can be seen. The
value of the N1,2 term is roughly the same as that of Az

1,1 offset
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TABLE II. VMC energies (E) and variances (V ) for the N2 molecule using different Jastrow factors, including explicitly anisotropic terms.
We have used a bond length of rNN = 2.074a.u [36].

Np E (a.u.) V (a.u.) fCE (%) fDCE (%)

HF limit from Ref. [38] − 108.9929 0 0
N2,0 18 − 109.102(1) − 5.275(4) − 19.9(2) − 21.3(2)
N2,0 + N1,1 27 − 109.3739(6) − 3.681(3) − 69.4(1) − 74.3(2)
N2,0 + N1,1 + N1,2 49 − 109.3796(6) − 3.595(2) − 70.4(1) − 75.4(2)
N2,0 + N1,1 + N2,1 80 − 109.4441(4) − 1.667(2) − 82.16(7) − 87.9(1)
N2,0 + N1,1 + N2,1 + N1,2 102 − 109.4644(4) − 1.149(2) − 85.85(7) − 91.9(1)
N2,0 + N1,1 + N2,1 + N1,2 + N2,2 219 − 109.4697(4) − 1.088(3) − 86.82(7) − 92.9(1)
N2,0 + N1,1 + N2,1 + N1,2 + N2,2 + N3,0 260 − 109.4702(3) − 1.083(2) − 86.91(5) − 93.0(1)
N2,0 + N1,1 + Az

1,1 36 − 109.3770(6) − 3.670(2) − 69.9(1) − 74.9(2)
N2,0 + N1,1 + N2,1 + Az

1,1 89 − 109.4660(3) − 1.116(2) − 86.14(5) − 92.2(1)

N2,0 + N1,1 + N2,1 + Az
1,1 + Az2

1,1 97 − 109.4669(3) − 1.073(2) − 86.31(5) − 92.4(1)
N2,0 + N1,1 + N2,1 + Az

1,1 + Az
2,1 142 − 109.4707(3) − 1.072(2) − 87.00(5) − 93.1(1)

N2,0 + N1,1 + N2,1 + Az
1,1 + Az2

1,1 + Az
2,1 + Az2

2,1 191 − 109.4714(3) − 1.036(4) − 87.13(5) − 93.3(1)
SD VMC from Ref. [35]a − 109.4520(5) − 83.59(9) − 89.5(2)
SD DMC − 109.5060(7) − 93.4(1) 100.0(2)
Exact from Ref. [38] − 109.5421 100

aFor rNN = 2.075 a.u. We do not expect that this small difference in bond length will affect the comparison between energies significantly.

by a positive amount, and this shift is likely to be compensated
for by the other Jastrow factor terms. Both terms increase the
value of the wave function in the outer region of the molecule
with respect to that in the bond region.

We have added different combinations of anisotropic terms
to J = N2,0 + N1,1 + N2,1. The e–e–n Az

2,1 term retrieves less
correlation energy than the e–n Az

1,1 term. Combining terms
with spherical harmonics of l = 1 and l = 2 improves the
VMC energy significantly with respect to using l = 1 only. The
anisotropic Jastrow factor J = N2,0 + N1,1 + N2,1 + Az

1,1 +
Az2

1,1 + Az
2,1 + Az2

2,1, which contains up to e–e–n correlations
and has 191 optimizable parameters, recovers 93.3(1)% of the
DMC correlation energy, which is greater than the 93.0(1)% re-
trieved by our best isotropic Jastrow factor J = N2,0 + N1,1 +
N2,1 + N1,2 + N2,2 + N3,0, which includes more costly e–e–
n–n and e–e–e correlations and contains 260 optimizable
parameters. We conclude that anisotropic functions are an
important tool in the construction of compact Jastrow factors
for strongly anisotropic systems.

Toulouse and Umrigar obtained 90% of the DMC cor-
relation energy with a single-determinant wave function in

FIG. 2. (Color online) Plots of the Az
1,1 term (left) and N1,2 term

(right) of different Jastrow factors for N2 as a function of the position
of an electron in a plane containing the nuclei (black circles).

Ref. [35], and with our best Jastrow factor we retrieve 93% of
the DMC correlation energy. We have also optimized a single-
determinant backflow wave function with our best Jastrow fac-
tor, and we obtain a VMC energy of −109.4820(6) a.u. (89%
of the correlation energy), which is of similar accuracy to the
multideterminant VMC energy of −109.4851(3) a.u. (89.6%
of the correlation energy) obtained by Toulouse and Umrigar.

3. H2O molecule

Single-particle spin-unrestricted HF orbitals for the 1A1

ground state of H2O were generated using the CRYSTAL

Gaussian basis set code [39]. The basis set for O contains
14 s, 9 p, and 4 d orbitals, and that for H contains 8 s, 4 p, and
3 d orbitals. Electron-nucleus cusps have been added using the
scheme of Ma et al. [40]. We have simulated a water molecule
with a bond length of rOH = 1.8088 a.u. and a bond angle of
∠HOH = 104.52◦ [41].

Adding an N1,2 term to J = N2,0 + N1,1 + N2,1 gives only
a very small improvement for H2O, compared with the more
substantial improvements obtained with this e–n–n term for
BeH and N2. The N1,2 term acts as a correction to the
single-electron orbitals, and we believe that it is unimportant
in this case because we have used very accurate HF orbitals,
whereas the single-electron orbitals used for BeH and N2

are considerably less accurate. We find additional small
improvements to the energy of H2O from adding N3,0 and
N3,1 terms to J = N2,0 + N1,1 + N2,1.

Clark et al. obtained 92% of the DMC correlation energy
with a single-determinant wave function in Ref. [42], and
with our best Jastrow factor we recover 95.5% of the DMC
correlation energy.

4. H2 molecule

The energy of the first triplet excited state (3�+
u ) of H2

has a very shallow minimum corresponding to a large bond
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length of nearly 8 a.u. Although the exchange interaction falls
exponentially with increasing internuclear separation, Kolos
and Wolniewicz found that it contributed significantly to the
energy even at the large distance of 10 a.u. [43]. The strong
interplay between the attractive dispersion forces and the
repulsive exchange interaction requires that both be accounted
for to afford an accurate description of the triplet state. This
makes the system appealing for studying the construction of
four-body Jastrow factor terms to describe van der Waals-like
interactions.

We generated numerical HF orbitals tabulated on an
elliptical grid using the 2DHF package [44]. HF theory predicts
no binding for the triplet state at any separation, and therefore
any binding that occurs in VMC can be attributed to the Jastrow
factor. We have studied the H2 molecule in its triplet spin state
at the internuclear distance of 7.8358 a.u. This separation and
the corresponding energy of −1.0000208957 a.u. were found
by fitting a quadratic function to the data of Staszewska and
Wolniewicz [45].

Previous QMC calculations on H2 at different interatomic
distances have used Jastrow factors with up to four-body
correlations where the cusp conditions were not enforced
[14,20], instead relying on the variance minimization method
to find parameter values that approximately satisfy the cusp
conditions. This was found to be advantageous for this system
because the additional variational freedom yielded a better
description in VMC than when the cusp conditions were
obeyed exactly [21]. The violation of the cusp conditions
is potentially catastrophic in DMC calculations, but previous
studies have restricted the use of such terms to VMC.

For H2 we have optimized Jastrow factors consisting of
the single e–e–n–n terms V2,2, Fb=1

2,2 , and B2,2 (see Table I) at
several expansion orders, where no constraints are enforced
at e–e or e–n coalescence points. We have used variance
minimization for these Jastrow factors as we found that it
produces better results than energy minimization. We have also
optimized Jastrow factors consisting of different sums of terms
which satisfy the cusp conditions using energy minimization.
The results are shown in Fig. 3 .

We have performed the DMC calculations using our best
B2,2 Jastrow factor and obtain a reference DMC energy of
−1.0000207(1) a.u. We have not encountered any statistical
problems in the DMC calculations with this cusp-violating
wave function. Such issues can occur when the local energy
presents a negative divergence in a region of configuration
space with a significant probability of being sampled. We have
verified that our wave function causes a negative divergence
in the local energy when an electron coalesces with a nucleus,
a point at which the wave function is likely to be relatively
large. We therefore conclude that the region of influence of
this divergence is sufficiently small that statistical problems
do not arise in practice.

The Fb=1
2,2 and B2,2 terms only differ in that the latter uses

Boys-Handy-style indexing, which yields slightly lower VMC
energies than standard indexing in most cases for a fixed
number of parameters. Our best Fb=1

2,2 and B2,2 Jastrow factors
retrieve 99% of the DMC correlation energy in VMC.

The V2,2 term is designed to describe van der Waals
correlations, and contains e–e functions which introduce other
correlations. Our best V2,2 term recovers 92% of the DMC
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FIG. 3. (Color online) Difference between the VMC and exact
energy against the number of wave function parameters for the
H2 triplet ground state using different Jastrow factors. Only the
“multiterm” Jastrow factor enforces the cusp conditions. The error
bars are smaller than the size of the symbol where not shown. All
of the energies in this plot are lower than −1 a.u., and therefore the
wave functions predict binding.

correlation energy, offering a good description of the system
without reaching the accuracy of the more generic Fb=1

2,2 and
B2,2 terms.

A V2,2 term without e–e functions consists of contributions
proportional to riI · rjJ , where the prefactors depend explicitly
on riI and rjJ , and implicitly on rIJ , and this functional form
is that of a dipole-dipole interaction potential. Our best such
V2,2 term retrieves 69% of the DMC correlation energy, which
amounts to 0.0000262(3) a.u., and we regard this as a measure
of the pure van der Waals correlation energy of this system.

The multiterm Jastrow factors contain the usual N2,0, N1,1,
N1,2, and N2,1 terms, and for each combination of these we
have added a V2,2 term without e–e functions obeying the
cusp conditions to study its effect. J = N2,0 retrieves 44%
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FIG. 4. (Color online) Fraction of the DMC correlation energy
retrieved by different Jastrow factor terms, added in the specific order
depicted in the graph (starting from the bottom), for the molecules
studied in this paper.
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TABLE III. Best single-determinant nonbackflow VMC energies (a.u.) found in the literature and those from this work, along with
single-determinant DMC and exact energies for reference.

System This work Literature DMC Exact

1D HEG (rs = 5, N = 19) − 0.2040833(2) − 0.2040834(3) − 0.2040834(3)
2D HEG (rs = 35, N = 42) − 0.0276112(6) − 0.0277087(1)
Be − 14.6522(1) − 14.64972(5)a − 14.65717(4) − 14.66736
B − 24.6309(2) − 24.62936(5)a − 24.64002(6) − 24.65391
O − 75.0381(3) − 75.0352(1)a − 75.0511(1) − 75.0673
BeH − 15.2412(3) − 15.228(1)b − 15.24603(4) − 15.2482
N2 − 109.4714(3) − 109.4520(5)c − 109.5060(7) − 109.5421
H2O − 76.4068(2) − 76.3938(4)d − 76.4226(1) − 76.438
H2 (3�+

u ) − 1.00002045(3) − 1.0000207(1) − 1.0000208957

aReference [35].
bReference [46].
cReference [35] (using a slightly different bond length).
dReference [42].

of the DMC correlation energy, and adding the V2,2 term
retrieves 85% of the remaining DMC correlation energy. The
effectiveness of V2,2 progressively drops as more terms are
added, and it retrieves 43% of the remaining DMC correlation
energy when added to J = N2,0 + N1,1 + N2,1 + N1,2. In all
cases, V2,2 is found to lower the VMC energy by a larger
amount than any of the Nn,m terms.

Our best multiterm cusp-enforcing Jastrow factor retrieves
97% of the DMC correlation energy with 77 wave-function
parameters, comparable with the 98% retrieved with the
cusp-violating Fb=1

2,2 and B2,2 terms with a similar number
of parameters. For larger systems where van der Waals
interactions are important, we expect the violation of cusp
conditions to cause statistical problems, and the V2,2 term
would become an effective way of improving the description
of the system in a multiterm Jastrow factor.

D. Discussion of molecular results

In Fig. 4 we have plotted the fraction of the DMC correlation
energy retrieved by different Jastrow factor terms for BeH, N2,
H2O, and H2. Our purpose is to visualize the importance of
different terms in different systems, and to this end we do not
include anisotropic or cusp-violating terms, and we consider
only the addition of terms in a specific order.

The N2,0 term represents the simplest description of
electronic correlations and typically retrieves 20%–25% of
the DMC correlation energy. This e–e term greatly distorts the
charge density of the HF wave function, and the N1,1 term
repairs this, retrieving an additional 45%–50% of the DMC
correlation energy. In the case of the more diffuse H2 molecule
the N2,0 and N1,1 terms have a different relative importance, but
J = N2,0 + N1,1 retrieves 70%–75% of the DMC correlation
energy in the four molecules.

Like N1,1, N1,2 acts as a correction to the single-electron
orbitals. This term provides no significant benefit in H2O,
where we have used high-quality orbitals, but it recovers 7%
of the DMC correlation energy in H2.

The effect of N1,2 in N2 is noteworthy in that the energy
reduction obtained by adding this term to J = N2,0 + N1,1

is about a factor of four times smaller than when added to

the more accurate J = N2,0 + N1,1 + N2,1. One would expect
a term to retrieve more correlation energy when added to a
smaller Jastrow factor, and this is the case for N1,2 in the other
molecules. We think that the distortion in the charge density
caused by N2,1 in N2 is such that the single-electron correction
effected by N1,2 becomes more useful in its presence.

The N2,1 term added to J = N2,0 + N1,1 + N1,2 captures an
additional 15%–20% of the DMC correlation energy. Higher-
order terms added to J = N2,0 + N1,1 + N2,1 + N1,2 yield
significant gains in relative terms, with e–e–n–n terms retriev-
ing 13% and 43% of the remaining DMC correlation energy
remaining for N2 and H2, respectively, and the e–e–e–n term
recovering 17% of the remaining DMC correlation energy.

E. Summary of results

Table III gives a comparison of the best single-determinant
nonbackflow VMC energies we have found in the literature
with those obtained in this work.

V. CONCLUSIONS

We have described a generalized Jastrow factor allowing
terms that explicitly correlate the motions of n electrons
with m static nuclei. These terms can be parameterized using
various basis sets, including terms that involve dot products
of interparticle position vectors. We have also introduced
anisotropic cutoff functions. The formalism may be applied
to systems with particle types and external potentials other
than electrons and Coulomb potentials.

Optimization of the wave function is one of the most human-
and computer-time consuming tasks in performing QMC
calculations. We have performed term-by-term optimizations
to understand how different terms in the Jastrow factor
contribute to the electronic description of a system, and we
hope that our analysis will serve as a guideline for constructing
Jastrow factors for other systems.

We have tested these terms on HEGs, atoms, and molecules.
The variational freedom from the higher-order terms generally
improves the quality of the wave function. We have only
considered single-determinant wave functions in this study,
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although our Jastrow factor can, of course, be used with other
wave function forms.

We have demonstrated the construction and application of
an e–e–n–n Jastrow factor term designed to describe van der
Waals interactions between atoms. This term retrieves a large
fraction of the van der Waals correlation energy in tests on the
triplet state of H2 at the proton separation that minimizes the
total energy of the system.

We have found evidence for the importance of three-
electron Jastrow terms in the low-density 1D and 2D HEGs.
Improving the Jastrow factor for single-determinant backflow
wave functions also leads to small improvements in the DMC
energy of the 2D HEG. This demonstrates the indirect effect
that improving the Jastrow factor can have on improving the
nodal surface, as reported in Ref. [13].

We have made efforts to obtain accurate single-determinant
VMC energies for most of the systems studied, but for BeH
and N2 we deliberately used inferior one-electron basis sets to
see whether we could compensate for this with one-electron
Jastrow terms. We find that this goal can be achieved by
including an N1,2 Jastrow term or anisotropic e–n terms, along
with the usual N1,1 term.

ACKNOWLEDGMENTS

We thank John Trail for producing the HF wave function
for H2. The calculations were performed on the Cambridge
High Performance Computing Service facility.

APPENDIX A: IMPLEMENTATION

In this section we describe our design choices in imple-
menting our Jastrow factor in the CASINO code [16]. The
implementation principles are modularity and extensibility,
embracing the flexibility that this Jastrow factor has by design
rather than impeding it by focusing too strictly on performance.

1. Basis functions

The most important design requirement for modularity is
that basis sets be dealt with separately rather than included
in the Jastrow factor code. Basis functions, along with their
derivatives when required, are evaluated and stored for later
use. For any given term with expansion orders p and q there
are pN (N − 1)/2 e–e and qNM e–n functions to evaluate and
store. Single-electron updates involve recalculating p(N − 1)
and qM of these functions. Note that the number of basis
functions that must be evaluated is independent of the term
ranks n and m. Furthermore, it is possible to allow different
terms to share basis functions that do not contain optimizable
parameters so that, e.g., the natural powers involved in
computing N2,0 and N1,1 can be reused for N2,1.

A number of properties of the basis functions are required to
construct the Jastrow factor. Equation (12) requires knowledge
of whether basis functions are symmetric or antisymmetric,
and their value, first radial derivative, and angular dependency
at the origin are required by Eqs. (20), (21), (22), (23), (24),
and (25). The one-contribution, no-contribution, and equal-
product constraints in these equations require a table indexing
distinct products of two basis functions at any value of
their arguments. We implement interfaces that make these

properties available so that basis functions can be treated as
abstract objects in the construction of the Jastrow factor, which
makes implementing new basis sets straightforward.

Cutoff functions are dealt with as additional basis sets
with an expansion order of one, and we store information
identifying the cutoff functions that are strictly zero, which we
use to speed up evaluation of the Jastrow factor.

2. Evaluation of the Jastrow factor

For the evaluation of an arbitrary-rank Jastrow factor term it
is necessary to use efficient procedures that iterate from a given
set of electronic and nuclear indices i and I to the next in a
specific order; explicit loops over scalar integer indices are not
an option in static code since the loop depth is variable, and the
memory usage of precomputing all possible i and I scales badly
with system size for high ranks n and m. These procedures
should take into account which cutoff functions are zero so
that particle sets that do not contribute to the Jastrow factor are
skipped. Efficient handling of localized Jastrow factor terms
is important because it allows the cost of evaluating a term of
any rank to scale linearly with system size if the cutoff lengths
are held fixed. We implement a scheme where we construct a
list of the electrons that are “connected” to each electron and
each nucleus via nonzero cutoff functions. For the electronic
indices, the value of i1 is iterated between 1 and N , then the
value of i2 is iterated over the values in the list associated with
electron i1 that are greater than i1, then the value of i3 is iterated
over the values in the intersection between the lists associated
with i1 and i2 that are greater than i2, and so on. The procedure
that iterates over nuclear indices selects sets of nuclei whose
connected-electron lists have nonzero intersections. We iterate
over I in the outermost loop so that we can feed the intersection
of all e–n lists into the i iterator as an initial list for index i1.

The signature {P̃(i),S̃(i,I)} of each group of particles is
computed inside the electronic and nuclear loops, identifying
the linear parameter channel associated with the group of
particles. We then loop over linear parameters in the channel,
computing the products of the relevant basis functions which
have already been precomputed. In terms without indexing
constraints, consecutive linear parameters tend to have very
similar expansion indices; i.e., they multiply most of the same
basis functions. In order to save multiplications, it is convenient
to buffer partial products so that, e.g., if only the last two of
six expansion indices change from one parameter to the next,
we can recover the product of the first four functions from the
previous index set and save three of the five multiplications
required to combine the six basis functions.

In typical QMC calculations individual electron moves,
rather than full configuration moves, are proposed, which
requires computing an acceptance probability involving the
ratio of the trial wave function at the proposed and original
positions. To calculate this efficiently one needs to compute
the part of the Jastrow factor which depends on the position of
a single particle i, ignoring the contributions not involving i.
In our implementation we evaluate this one-electron Jastrow
factor using Eq. (5), where we fix i1 = i and iterate over the rest
of i. The main difference from the evaluation of the full Jastrow
factor is that i is not sorted, and the permutation required to sort
i, which amounts to inserting i at the correct position in i, needs
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to be taken into account in the presence of antisymmetric e–e
basis functions, since sign changes will be required by Eq. (12).
The evaluation of gradients and Laplacians of the Jastrow
factor term can be easily accommodated in the one-electron
Jastrow evaluation code.

For performance reasons it is advisable to implement
versions of the evaluation procedure for fixed ranks, with
fixed-depth loops that can be optimized by compilers. We
implement three optimized versions: one for e–e terms, one for
e–n terms, and one for e–e–n terms. Other terms are handled by
three generic procedures: one for terms without e–e functions,
one for terms without e–n functions, and one for terms with
both e–e and e–n functions.

APPENDIX B: TERM CONSTRUCTION EXAMPLE

Let us consider the N3,0 term used for the 2D HEG in
Sec. IV A2. This is a system with N = 42 electrons, half of
each spin, and the N3,0 term corresponds to n = 3, m = 0,
expansion order p = 4, and basis functions

�P
ν (r) = rν−1

(
LP − r

LP

)
. (B1)

The spin-pair dependency matrix P is of size N × N , but in
practice we specify a reduced 2 × 2 version of this matrix
where each row (column) corresponds to different spins. For
this system this matrix is

P =
(

1 2

2 1

)
, (B2)

where we assign parallel-spin electron pairs a spin-pair
dependency index of 1, and antiparallel-spin electron pairs an
index of 2. The P matrix can be regarded as an intrinsic property
of the system, but in some cases additional symmetries can be
imposed in order to reduce the number of parameters in the
Jastrow factor term; for example, we would achieve this by
setting all elements of P to 1 in the 2D HEG, choosing to
ignore the distinction between parallel- and antiparallel-spin
electron pairs.

The elements in P determine pairwise properties and
objects. For example, there are as many sets of nonlinear
parameters in a Jastrow factor term as different values in P;
in this case, there are two cutoff lengths, L1 for parallel-spin
electron pairs and L2 for antiparallel-spin electron pairs.

Four distinct types of three-electron groups can be formed:
three up-spin electrons (↑↑↑), two up-spins and one down-
spin (↑↑↓), one up-spin and two down-spins (↑↓↓), and
three down-spin electrons (↓↓↓). The spin-pair dependency
matrices for these four groups are

P(↑↑↑) =

⎛
⎜⎝

0 1 1

1 0 1

1 1 0

⎞
⎟⎠ ; P(↓↓↓) =

⎛
⎜⎝

0 1 1

1 0 1

1 1 0

⎞
⎟⎠ , (B3)

P(↑↑↓) =

⎛
⎜⎝

0 1 2

1 0 2

2 2 0

⎞
⎟⎠ ; P(↑↓↓) =

⎛
⎜⎝

0 2 2

2 0 1

2 1 0

⎞
⎟⎠ . (B4)

The matrices P(↑↑↑) and P(↓↓↓) are identical, and therefore
correspond to a linear parameter channel which is used for

groups of three electrons with parallel spins. The matrix
P(↑↓↓) can be transformed into P(↑↑↓) via, e.g., the
permutation matrix

U =

⎛
⎜⎝

0 0 1

0 1 0

1 0 0

⎞
⎟⎠ , (B5)

and therefore both matrices correspond to a second linear
parameter channel which is used for groups of three electrons
with mixed spins. The signature of the first channel, which
we refer to as the ↑↑↑ channel, is P(↑↑↑), and the signature
of the ↑↑↓ channel is P(↑↑↓). Both of these matrices are
considered sorted by our matrix-sorting algorithm.

The symmetry constraints for the parameters in each of
the two channels depend on the above matrices. P(↑↑↑) is
invariant with respect to the application of any permutation,
and for the ↑↑↑ channel Eq. (12) equates any two parameters
with the same indices in a different order. The signature of the
↑↑↓ channel is invariant only with respect to one nontrivial
permutation,

U =

⎛
⎜⎝

0 1 0

1 0 0

0 0 1

⎞
⎟⎠ , (B6)

and therefore the symmetry constraints for this channel are

λ

⎛
⎜⎜⎜⎝

0 1 2

1 0 2

2 2 0

⎞
⎟⎟⎟⎠

⎛
⎜⎜⎜⎝

0 νij νik

νij 0 νjk

νik νjk 0

⎞
⎟⎟⎟⎠

= λ

⎛
⎜⎜⎜⎝

0 1 2

1 0 2

2 2 0

⎞
⎟⎟⎟⎠

⎛
⎜⎜⎜⎝

0 νij νjk

νij 0 νik

νjk νik 0

⎞
⎟⎟⎟⎠
. (B7)

We do not allow expansion indices to be zero in the N3,0

term, and the presence of cutoff functions prevents the “one
contribution” constraint of Eq. (20) from being satisfied. It is
therefore not possible to impose the Kato cusp conditions on
the N3,0 term. This is not a problem in practice because we use
this term in conjunction with N2,0.

Since the basis functions are isotropic, the only constraint
applicable to this term at coalescence points is Eq. (22) for
l = m = 0. The derivative of the radial projection of the basis
function is[

∂P0,0
[
�P

ν (r)
]

∂r

]
r=0

= δν2 − δν1
C

LP

, (B8)

and the constraint equation for index νij is

e.p.∑
νij νikνjk

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

λ

⎛
⎜⎜⎜⎝

0 Pij Pik

Pij 0 Pjk

Pik Pjk 0

⎞
⎟⎟⎟⎠

⎛
⎜⎜⎜⎝

0 νij νik

νij 0 νjk

νik νjk 0

⎞
⎟⎟⎟⎠

δνij 2 − δνij 1
C

LPij

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

= 0. (B9)

Any two products of pairs of natural powers is equal if the
sum of the exponents in each of them is equal. Therefore the
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“equal-product” constraint for the N3,0 term is

e.p.∑
νikνjk

=
min(l−1,p)∑

νik=1

δνjk,l−νik
, (B10)

where l ranges from 2 to 2p, and the constraint equation for index νij thus reduces to

min(l−1,p)∑
νik=1

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

λ

⎛
⎜⎜⎜⎝

0 Pij Pik

Pij 0 Pjk

Pik Pjk 0

⎞
⎟⎟⎟⎠

⎛
⎜⎜⎜⎝

0 2 νik

2 0 l − νik

νik l − νik 0

⎞
⎟⎟⎟⎠

− λ

⎛
⎜⎜⎜⎝

0 Pij Pik

Pij 0 Pjk

Pik Pjk 0

⎞
⎟⎟⎟⎠

⎛
⎜⎜⎜⎝

0 1 νik

1 0 l − νik

νik l − νik 0

⎞
⎟⎟⎟⎠

C

LPij

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

= 0. (B11)

The constraints for the three expansion indices are equal by symmetry in the ↑↑↑ channel, and there are two sets of constraints
in the ↑↑↓ channel.
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