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This work focuses on an improved multicomponent interparticle-potential lattice Boltzmann model. The
model results in viscosity-independent equilibrium densities and is capable of simulating kinematic viscosity
ratios greater than 1000. External forces are incorporated into the discrete Boltzmann equation, rather than
through an equilibrium velocity shift as in the original Shan and Chen (hereafter, SC) model. The model also
requires the derivation of a momentum conserving effective velocity, which is substituted into the equilibrium
distribution function and applies to both the single- and multiple-relaxation-time formulations. Additionally,
higher-order isotropy is used in the calculation of the fluid-fluid interaction forces to reduce the magnitude of
spurious currents (i.e., numerical errors) in the vicinity of interfaces. First, we compare the model to the SC
model for static bubble simulations. We demonstrate that the model results in viscosity-independent equilibrium
bubble densities for a wide range of kinematic viscosities, which is not the case for the SC model. Furthermore,
we show that the model is capable of simulating stable bubbles for kinematic viscosity ratios greater than 1000
(when higher-order isotropy is used), whereas the SC model is known to be limited to kinematic viscosity ratios
on the order of 10. Next we verify the model for surface tension via Laplace’s law and show that the model
results in the same surface tension values for a range of kinematic viscosities and kinematic viscosity ratios of
10, 100, and 1000. The model is also verified for layered cocurrent flow though parallel plates. We show that the
simulated velocity profiles preserve continuity at the interface for kinematic viscosity ratios ranging from 0.001
to 1000 and that the model accurately predicts nonwetting and wetting phase relative permeability for kinematic
viscosity ratios of 0.01 to 100.
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I. INTRODUCTION

The lattice Boltzmann (LB) method has become a promis-
ing alternative to traditional computational fluid dynamics
(CFD) for simulating complex fluid flows encountered in a
variety of engineering applications. This is partly due to the
relative ease with which complex boundaries are handled
and the method’s excellent scaling on parallel processing
systems [1,2]. The LB method is particularly attractive for
multicomponent and multiphase flows involving interfacial
dynamics and phase transitions since it is based on simplified
kinetic models. This makes it relatively easy to incorporate
underlying microscopic interactions at the interface, bypassing
the need for special interfacial treatment commonly required
in other CFD methods [1,3,4].

Numerous multicomponent and multiphase LB models
have been reported in the literature, all of which fall into four
basic categories: the color model [5], the interparticle-potential
model [6,7], the free-energy model [8], and the mean-field
model [9,10]. A number of reviews have been published
describing these models and discussing recent developments
[1,2,4,11]. In this work, we focus on the multicomponent
interparticle-potential model originally developed by Shan and
Chen [6,7] (SC), which is one of the most successful LB
models [12,13]. In the SC model, a pairwise interaction force
between components (or phases) is introduced that modifies
the collision operator through an equilibrium velocity [6,7].

*porterma@lanl.gov

This force includes a parameter controlling the interaction
strength that causes phase separation and introduces surface-
tension effects when sufficiently large.

Despite its success, the SC model has several limitations
including, but not limited to, large spurious currents in
the vicinity of the fluid-fluid interface, viscosity-dependent
equilibrium densities, numerical instabilities for large den-
sity ratios, and numerical instabilities for multicomponent
flows with large kinematic viscosity ratios. Recent work
has shown that spurious currents are caused by the lack
of sufficient isotropy in the calculation of the gradient in
the interaction potential, and by adopting a finite difference
gradient operator with sufficient spatial isotropy they can
be arbitrarily reduced [12,14]. Yu and Fan [15] presented a
single-component multiphase model that results in viscosity-
independent equilibrium densities; however, this has not been
addressed for multicomponent interparticle-potential models.
Instabilities for fluids with large density ratios have recently
been addressed for single-component systems [16–18] and
multicomponent systems [19]. To the best of our knowl-
edge, numerical instabilities encountered in multicomponent
flows with large kinematic viscosity ratios have not been
addressed in the literature. The ability to simulate a wider
range of kinematic viscosity ratios is important for immis-
cible displacement in porous media. In these systems the
value of the dynamic viscosity ratio (M = ρbνb

ρsνs
) determines

the resulting fluid configurations [21]. In addition, buoyancy
forces are often negligible since capillary forces dominate
(e.g., Ref. [22]). Thus, a model that can handle a wide range
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of kinematic viscosity ratios is important since M can be
matched while keeping the density ratio equal to 1. To date,
studies using multicomponent interparticle-potential models
have been constrained to fluids with kinematic viscosity ratios
less than 16 [19,22–29] or maintain a viscosity ratio of 1
and make simplifying assumptions regarding the simulated
system [30,31].

In this work, we describe a multicomponent interparticle-
potential LB model that simulates viscosity-independent equi-
librium densities and kinematic viscosity ratios greater than
1000. Our model, which we call the explicit forcing (EF)
model, is similar to the model proposed by Yu et al. [20] in that
external forces are incorporated into the discrete Boltzmann
equation for each component. However, the forcing term in
our model differs from the one in the Yu et al. [20] model,
which we discuss in the next section. In addition, the EF
model requires a momentum conserving effective velocity that
is substituted into the equilibrium distribution function. The
EF model is implemented for both the single- and multiple-
relaxation-time (SRT and MRT, respectively) schemes, and we
apply higher-order spatial isotropy in the fluid-fluid interaction
force to reduce spurious currents in the vicinity of interfaces.
We stress that the use of higher-order isotropy enabled us to
achieve kinematic viscosity ratios greater than 300 with the EF
model. We also note that our implementation is freely available
in the open source software TAXILA LBM [32].

The remainder of this manuscript is organized as follows.
In Sec. II, we first review the SC model, and then describe
higher-order isotropy in the approximation of the fluid-fluid
forces. Next, we discuss the theoretical details of the EF
model for both SRT and MRT. In Sec. III, we present extensive
numerical simulations that verify and highlight features of the
improved interparticle-potential model. These include static
bubbles for equilibrium densities and surface tension, as
well as layered cocurrent flow in a channel to investigate
continuity at the interface and relative permeability. The EF
model simulations are compared to SC model simulations
and analytical solutions. We conclude with a discussion and
summary of our findings in Sec. IV.

II. LATTICE BOLTZMANN METHOD

The LB method solves the discrete Boltzmann equation
for an ensemble-averaged distribution of particles, fi(x,t),
on a discrete lattice connected by fixed paths. The particles
move along the fixed paths at fixed velocities ei , where i

indicates the velocity direction. The set of ei is determined
by the lattice dimensions and the neighboring lattice sites
included in the lattice structure (see Ref. [11] for typical lattice
structures). In this study, we use the D2Q9 (two-dimensional
nine velocity) square lattice, and we note that the EF model is
implemented for the D3Q19 (three-dimensional 19 velocity)
lattice in TAXILA LBM [32].

A. Interparticle-potential model

For completeness, we first review the multicomponent
interparticle-potential model developed by Shan and Chen
[6,7]. In the SC model, k distribution functions are introduced
to represent a fluid mixture containing k fluid components.

In this work, we focus on binary mixtures (i.e., k = 2);
however, this formulation, and our implementation, applies
to any number of components. In addition, we only consider
components with the same molecular mass, but note that
the model is easily extended to components with different
molecular mass (see Refs. [6,33]). Each distribution function
satisfies the discrete Boltzmann equation

f k
i (x + ei�t,t + �t) − f k

i (x,t) = �k
coll, (1)

where �k
coll is the collision operator, which has the form for

SRT

�k
coll = f

eq,k

i (x,t) − f k
i (x,t)

τk

. (2)

The parameter τk is the dimensionless relaxation rate for each
component that is related to the kinematic viscosity by νk =
(τk − 0.5)/3. The equilibrium distribution function f

eq,k

i is
expressed as Ref. [34]

f
eq,k

i = wiρk

[
1 + ei · ueq

k

c2
s

+
(
ei · ueq

k

)2

2c4
s

− ueq
k · ueq

k

2c2
s

]
, (3)

where wi are weights specific to the chosen lattice (see Ref. [2],
Table 1) and cs = 1/

√
3 is the speed of sound. It is noted

that Eq. (3) was obtained via a posteriori matching of the
macroscopic dynamics using a Chapman-Enskog expansion.
It has been shown that Eq. (3) corresponds to the second-order
Hermite expansion, and higher-order approximations can be
systematically constructed through Hermite expansions [35].
The macroscopic density and momentum of the kth component
are defined as

ρk =
∑

i

f k
i (4)

and

ρkuk =
∑

i

f k
i ei , (5)

respectively. The adjusted momentum for each component,
ueq

k , appearing in Eq. (3) is defined as Refs. [6,7]

ρkueq
k = ρku′ + τkFk, (6)

where u′ is an effective velocity and Fk is the total force (in-
cluding fluid-fluid interactions) acting on the kth component.
To conserve momentum in the absence of forces, u′ must
satisfy [6,7]

u′ =
∑

k

ρkuk

τk

/ ∑
k

ρk

τk

. (7)

Briefly, Eq. (7) can be derived by mapping Eq. (2) to moment
space for momentum by multiplying by ei , summing over i

and k, and setting the result equal to zero.
In the SC model, a mean-field interaction force models

nonlocal molecular interactions among particles, which is
expressed as

Fk(x) = −ψk(x)
∑

k̄

gkk̄

∑
i

ψk̄(x + ei)ei , (8)

where ψk is the interparticle potential (or “effective mass”)
that induces proper phase separation and gkk̄ is the interaction
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strength. Several functional forms of ψk have been proposed
in the literature [6,7,16,36]; for binary mixtures, ψk = ρk was
used in the original SC model. The interactions within each
component, g11 and g22, are typically set equal to zero for
binary mixtures, whereas the interactions between compo-
nents, g12 (=g21), must be sufficiently large to induce phase
separation. Thus, g12 effectively controls the surface tension
and immiscibility of the binary mixture. It should be noted
that multicomponent interparticle-potential LB models result
in partially miscible fluids. Thus, when modeling immiscible
systems it is important to choose g12 large enough that the
dissolution of one phase into the other is sufficiently small.

B. Higher-order isotropy

In recent works, it has been recognized that the right-hand
side of Eq. (8) is the finite difference representation of −ψ∇ψ

with unspecified interaction strengths at different distances
[14,16]. Thus, Eq. (8) can be expressed in potential form as
Ref. [16]

Fk(x) = −c0ψk(x)
∑

k̄

gkk̄∇ψk̄(x), (9)

where c0 is a constant depending on the lattice structure (c0 =
6 for the D2Q9 and D3Q19 lattices). With the generalized
form of Eq. (9) the finite difference gradient operator can be
constructed to include any number of neighbors as long as care
is taken to preserve a sufficient degree of isotropy. One of the
earlier works to report the use of higher-order isotropy was
Falcucci et al. [37]. In other works, Shan [14] and Sbragaglia
et al. [12] provide derivations of the appropriate weights for
several isotropy orders in 2D and 3D, and they showed that
spurious currents can be reduced in the vicinity of interfaces
when the isotropy order is increased. In our code, we have
implemented isotropy orders of 4, 8, and 10 in 2D as well
as 4 and 8 in 3D, and we have accounted for the presence of
arbitrarily shaped solids. An isotropy order of 4 corresponds
to evaluating the gradient using the nearest and next-nearest
neighbors in both the D2Q9 and D3Q19 lattices [14], which is
consistent with the original SC model. In both the SC and EF
models we use Eq. (9) for the fluid-fluid interaction force.

Given the interaction force in Eq. (9), the equation of state
(EOS) for the system is given by

p = c2
s

∑
k

ρk + c0

2

∑
kk̄

gkk̄ψkψk̄. (10)

If there are no fluid-fluid interaction forces, then the fluid will
act as an ideal gas. Different EOSs can be obtained by changing
ψk . We have set ψk = ρk for this work, but we note that Van
der Walls type EOSs are available in TAXILA LBM [32].

C. Explicit forcing model

In the SC model, momentum adjustments due to external
forces are incorporated into the equilibrium velocity [see
Eq. (6)]. In the EF model, the forcing term is directly included
in the discrete Boltzmann equation for each component. This
yields the implicit expression

f k
i (x + ei�t,t + �t) − f k

i (x,t)

= �k
coll + �t

2

[
f

F,k
i (x + ei�t,t + �t) + f

F,k
i (x,t)

]
, (11)

where f
F,k
i accounts for changes to the distribution function

due to external forces and �k
coll is the same as Eq. (2) for SRT.

The forcing term is defined as Ref. [9]

f
F,k
i = Fk · (ei − ueq)

ρkc2
s

f
eq,k

i , (12)

where Fk are the external forces. The EF model in this work
differs from the model used by Yu et al. [20] in that we evaluate
all terms in Eq. (12), whereas Yu et al. [20] neglect terms
that are second order or higher. The equilibrium distribution
function f

eq,k

i has the same form as Eq. (3), but ueq
k is replaced

with an effective momentum for the fluid mixture, ueq, that
is equivalent to Eq. (7) (i.e., ueq = u′) for the SRT formu-
lation. The momentum substituted into Eq. (3) is different
between the two models because of the Fk treatment. In the
SC model, the external forces are introduced to the distribution
function through ueq

k . Thus, ueq
k is defined as an effective

momentum (independent of a specific component) plus the
changes in momentum due to the forces acting on each
component, making it component specific. Here, the forces
are directly incorporated into the distribution function, thus
ueq is simply an effective velocity for the fluid mixture.

The transformation f̄ k
i = f k

i − �t
2 f

F,k
i [9,38] is applied to

Eqs. (2) and (11) to yield an explicit scheme expressed as

f̄ k
i (x + ei�t,t + �t) − f̄ k

i (x,t)

= 1

τk

[
f

eq,k

i (x,t) − f̄ k
i (x,t) − �t

2
f

F,k
i

]
+ �tf

F,k
i . (13)

The macroscopic properties for each component are defined
as

ρk =
∑

i

f̄ k
i (14)

and

ρkuk =
∑

i

f̄ k
i ei + �t

2
Fk. (15)

Notice that the external forces naturally arise in the definition
of the component momentum, which differs from the SC
model [see Eq. (5)]. Thus, substitution of Eq. (15) into Eq. (7)
indicates that the effective velocity in the proposed model
accounts for external forces acting on each fluid component.
The total velocity of the fluid mixture is

u =
∑

k ρkuk∑
k ρk

. (16)

D. Multiple-relaxation-time formulation

We now provide details regarding MRT for the EF model.
It is noted that many of the developments described in this
section stem from the seminal works of Higuera et al. [39],
Higuera and Jiménez [40], and Benzi et al. [41].

In the MRT formulation both �k
coll and ueq are defined

differently than in the SRT formulation. The collision operator
is now defined as

�k
coll = T−1�̂kT

[
f

eq,k

i (x,t) − f̄ k
i (x,t)

]
, (17)
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where T is a transformation matrix and �̂k is a diagonal
relaxation matrix. For the D2Q9 square lattice, the
transformation matrix is defined as [42]

T =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1 1 1 1 1 1 1 1
−4 −1 −1 −1 −1 2 2 2 2

4 −2 −2 −2 −2 1 1 1 1
0 1 0 −1 0 1 −1 −1 1
0 −2 0 2 0 1 −1 −1 1
0 0 1 0 −1 1 1 −1 −1
0 0 −2 0 2 1 1 −1 −1
0 1 −1 1 −1 0 0 0 0
0 0 0 0 0 1 −1 1 −1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

(18)

where each row has physical significance related to the
moments of f̄ k

i in discrete velocity space (for details see
Refs. [42,43]). The diagonal relaxation matrix is defined as

�̂k = diag
[
sk
c ,s

k
e ,s

k
ε ,s

k
c ,s

k
q ,s

k
c ,s

k
q ,s

k
ν ,s

k
ν

]
, (19)

where sk
i are the relaxation rates for each f̄ k

i . The relaxation
parameter sk

c corresponds to the conserved moments (i.e.,
density and momentum) and should be nonzero [43], whereas
sk
e , sk

ε , sk
q , and sk

ν correspond to the nonconserved moments
(energy, energy squared, energy flux, and stress tensor,
respectively). In this formulation, sk

e , sk
ε , and sk

q are free
parameters and sk

ν = 1/τk . It is noted that if all sk
i in Eq. (19)

are set to 1/τk , then the MRT formulation reduces to SRT.
For details regarding T and �̂k for the D3Q19 lattice, see
D’Humières et al. [44] and Premnath and Abraham [45].

In order to ensure that the EF model conserves momentum
in the absence of forces (i.e., Fk = 0), ueq must be derived
for the MRT formulation. In this case, the collision operator
is defined by Eq. (17) and we observe that rows 4 and 6 of
T map f̄ k

i to the x and y components of the kth-component’s
momentum. Thus, to conserve momentum in the absence of
forces, we consider the following:(

T

[∑
k

T−1�̂kT
[
f

eq,k

i (x,t) − f̄ k
i (x,t)

]])
4,6

= 0. (20)

As T is independent of k and noting that �̂k
4 = �̂k

6 = sk
c , we

have ∑
k

sk
c T4,6

[
f

eq,k

i (x,t) − f̄ k
i (x,t)

] = 0, (21)

or equivalently∑
k

sk
c

∑
i

ei

[
f

eq,k

i (x,t) − f̄ k
i (x,t)

] = 0. (22)

Thus, an appropriate definition for ueq that conserves momen-
tum is

ueq =
∑

k

sk
c ρkuk

/ ∑
k

sk
c ρk. (23)

Note that Eq. (23) reduces to Eq. (7) when sk
c = 1/τk and

ueq = u [Eq. (16)] when sk
c = 1. Furthermore, Eq. (23) can

easily be extended to 3D by considering the terms associated
with the momentum in �̂k for the D3Q19 lattice.

III. NUMERICAL RESULTS AND DISCUSSION

To verify the EF model, we conduct numerical simulations
for static bubbles and layered cocurrent flow between two
parallel plates for several fluid systems. For the static bubble
simulations we compare EF model results with simulation
results from the SC model and verify the EF model with
Laplace’s law. For layered cocurrent flow, we compare EF
model simulations to analytical solutions for the velocity
profiles and relative permeability curves.

A. Static bubbles

Static bubble simulations consist of initializing a spherical
bubble of one fluid located at the center of a domain containing
a different suspending fluid. Periodic boundary conditions are
applied on all boundaries and the system is allowed to relax to
equilibrium. We are interested in the kinematic viscosity ratio
νb/νs , where the subscripts b and s refer to the bubble and
suspending fluids, respectively. First we compare simulation
results between the two models for 2D static bubbles, in which
the kinematic viscosity ratio is 1 and νb has values from 0.03
to 0.37. The radius of the bubble is R = 24 and it is placed
within a suspending fluid domain of 62 × 62 lattice sites. The
interaction strength between components is g12 = g21 = 0.17,
which produces sufficient phase separation. In addition, we
used the SRT formulation and set the isotropy order to 4 to
be consistent with the original formulation of the SC model.
Figure 1 compares the bubble density ρb and the maximum
magnitude of the spurious currents |us | obtained from the SC
and EF models. The SC model results in a bubble density that
is dependent on the chosen viscosity, whereas the EF model
results in a bubble density that is independent of viscosity.
In addition, the spurious currents are reduced by almost two
orders of magnitude with the EF model. Overall, Fig. 1 shows
considerable improvement with the EF model as compared to
the SC model for static bubbles with a kinematic viscosity
ratio of 1.

Next we consider static bubble simulations for kinematic
viscosity ratios greater than 1. With the SC model we
obtained stable results up to νb/νs = 5. This is consistent with

FIG. 1. Comparison between the SC and EF models of (a) bubble
density and (b) magnitude of spurious currents for static bubble
simulations consisting of several viscosities and a kinematic viscosity
ratio of 1.
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FIG. 2. Comparison of (a) bubble density and (b) magnitude of
spurious currents resulting from static bubble simulations using the
EF model with isotropy orders of 4 and 10.

previously published results [28,29], thus they are not shown
here. It is also noted that, in order to obtain stable bubbles
for higher kinematic viscosity ratios with the SC model,
g12 had to be reduced, which resulted in greater miscibility
between the two fluids. For the EF simulations a bubble with
R = 24 is placed within a suspending fluid domain of 62 × 62
lattice sites and the interaction strength between components
is g12 = g21 = 0.17. The viscosity of the suspending fluid is
νs = 0.0067, whereas the viscosity of the bubble is varied to
achieve different kinematic viscosity ratios. We ran two sets
of simulations, one using an isotropy order of 4 and the other
using an isotropy order of 10. Both sets of simulations were run
with the SRT formulation. Figure 2 shows the bubble densities
and magnitude of spurious currents resulting from the EF
model using the two different isotropy orders. The isotropy 4
simulations result in stable bubbles up to νb/νs = 300, whereas
the isotropy 10 simulations result in stable bubbles for νb/νs up
to 1050. This is a viscosity ratio that is more than two orders
of magnitude greater than the SC model can simulate. The
increased stability of the isotropy 10 simulations is a direct
result of the reduction in |us |, which is approximately a factor
of 2 for all values of νb/νs . There is clearly a jump in |us | going
from νb/νs = 10 to νb/νs > 100 for both isotropy orders. In
the isotropy 4 simulations, this causes a small difference in ρb,
however in the isotropy 10 simulations there is no significant
difference in ρb for all values of νb/νs . In addition, there is
an increase in ρb by approximately 1.65% for the isotropy 10
simulations as compared to the isotropy 4 simulations. These
differences in ρb are again caused by the differences in |us |,
which are numerical errors that occur in the vicinity of the
interface.

We now verify the EF model for surface tension via
Laplace’s law and compare the results to those obtained
with the SC model. According to Laplace’s law, the capillary
pressure, pc, for a 2D bubble at equilibrium is defined as

pc = pb − ps = σ

R
, (24)

where σ is the surface tension, R is the radius (or curvature)
of the bubble, and pb and ps are the bubble and suspending
fluid pressures, respectively. These simulations are the same
as the isotropy order 10 simulations described above, except

FIG. 3. Verification of Laplace’s law for the SC and EF models.
The lines represent least-square-fit lines to the simulation results.

that R ranges from 18 to 46 lattice sites and is placed in
the center of a 121 × 121 lattice domain. Figure 3 shows
the simulation results along with the least-square-fit lines, the
slopes of which correspond to the surface tension. It can be
seen that both models obey Laplace’s law as demonstrated
by the least-square-fit lines. However, the EF model obtains
practically identical surface tensions for νb/νs = 1, νb/νs =
100, and νb/νs = 1000, whereas the SC model surface tension
is clearly dependent upon the kinematic viscosity ratio. It is
noted that the SC model results shown in Fig. 3 are consistent
with those published by Dong et al. (Ref. [29], Fig. 1) for
viscosity ratios ranging from 1 to 5. In addition, the EF
model results in a reduction of surface tension by a factor of
approximately 3 compared to the SC model, which is largely
due to the reduction in |us | in the EF model. One implication
of the reduced spurious currents and surface tension is that
the improved model can achieve a wider range of capillary
numbers in the simulation of multicomponent fluids than the
original SC model.

The results presented thus far suggest that with the EF
model there is a unique relationship between surface tension
and the interaction strength g12 that is independent of the
chosen viscosity and viscosity ratio. Thus, we conducted a
series of static bubble simulations each with a radius of R = 43
in a domain that is 121 × 121 lattice sites, and varied g12 for
kinematic viscosities ranging from 0.17 to 1.5. The results
of these simulations are presented in Fig. 4 along with those
from the SC model for viscosities of 0.17 and 0.5. Clearly,
the surface tension from the EF model shows very little de-
pendence upon the viscosity (especially for small g12 values),
whereas the SC model shows a strong dependence. Thus, a
simple quadratic fit (σ = −1.361g2

12 + 1.721g12 − 0.178) can
be used as a tool to estimate surface tension for a given g12

for any viscosity with the EF model. This greatly decreases
the computational cost and effort when using multicomponent
interparticle-potential LB models since the EF model bypasses
the need to run static bubble simulations for every fluid pair of
interest, which has been a drawback of the SC model.

B. Two-phase cocurrent flow

In order to test the EF model under steady state, laminar flow
conditions, we consider two-phase cocurrent flow between
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FIG. 4. Surface tension as a function of g12 for different viscosity
values (M = 1).

two parallel plates. In this system, the wetting phase flows
between the nonwetting phase and the wall, whereas the
nonwetting phase flows between the wetting phase only and
does not contact the wall. A schematic of the system along
with the analytical solution for the velocity profile and relative
permeability of each phase is provided in the Appendix. It
is noted that the analytical solution for the nonwetting phase
relative permeability [Eq. (A5)] is a function of the dynamic
viscosity ratio M = ρbνb

ρsνs
. Thus, in this section we will refer to

the viscosity ratio as M , but it is stressed that in all cases
the density ratio is 1 and M simplifies to the kinematic
viscosity ratio. A body force Fb is applied to both fluids to
induce flow. Periodic boundaries are applied at the inlet and
outlet and bounce-back boundary conditions are applied at
the walls. We conduct simulations for 0.001 � M � 1000, in
which the smallest viscosity was 3.33 × 10−4 and the largest
viscosity was 1.5 to cover the range of kinematic viscosity
ratios. We stress that MRT and higher-order isotropy of 10
was required for the M = 0.001 and M = 1000 simulations
to preserve continuity at the interface. Figure 5 shows the
comparison between the velocity profiles for the analytical
solution [Eqs. (A1) and (A2)] and the EF model. The velocity
profiles have been normalized by the maximum analytical
velocity û for each value of M . There is good agreement
between the EF model simulations and the analytical solution
for each value of M , as indicated by the root-mean-squared
error, which ranges from 3.18 × 10−3 to 9.85 × 10−3. In
all cases, the largest error occurs at the interface between
the two fluids. For 0.1 � M � 1000 the maximum relative
percent error is less than 2.5%. For M = 0.01 and M = 0.001
the maximum relative percent error is approximately 26%,
however, this does not have a significant affect on the simulated
velocity profile away from the interface. Thus, it can be
concluded that continuity at the interface is preserved with
the EF model. This is a considerable improvement over most
multicomponent LB models that have been used to address this
problem, with the notable exception of Ginzburg [46], who
used the color model and a two-relaxation-time (TRT) model
to obtain continuity at the interface for kinematic viscosity
ratios up to 1000. Kang et al. [25] and Rannou [47] reported
discontinuities at the interface for kinematic viscosity ratios
of 3 and 0.08, respectively, using the interparticle-potential

FIG. 5. Simulated (symbols) and analytical (lines) velocity pro-
files for cocurrent two-phase flow between parallel plates for 0.001 <

M < 1000. In each case, the velocities are normalized by the
maximum analytical velocity û.

model. Moreover, Rannou [47] observed considerable mixing
between the fluids when the kinematic viscosity was not 1,
which was not observed in our simulations with the EF model.
Rannou [47] also showed discontinuities at the interface for
both the free-energy model and the mean-field model for
kinematic viscosities of 0.01 and 0.052, respectively. In both
cases the discontinuity caused significant discrepancies with
the analytical solution for one of the fluids and not the other.
For all cases in Fig. 5, g12 was chosen such that the interface
thickness was approximately 4 pixels, which is close to the
smallest attainable interface thickness for the EF model in
this system. Simulations with larger interface thicknesses (i.e.,
smaller g12 values) showed notable discrepancies with the
analytical solution. This is to be expected since the analytical
solution assumes a sharp interface and smaller g12 values lead
to thicker interfaces.

We now present EF simulations for the relative permeability
of each phase [Eqs. (A5) and (A6)] as a function of the wetting
phase saturation, Sw = 1 − a/L (see Fig. 7), in which we vary
a to obtain different Sw values. The nonwetting and wetting
phase relative permeability for the EF simulations is calculated
using Eqs. (A3) and (A4), respectively. Results for 0.01 �
M � 100 using MRT and an isotropy order of 10 are shown in
Fig. 6, and the root-mean-squared error and maximum relative
percent error are provided in Table I. Overall, the simulations
agree well with the analytical solutions for all cases. The most
notable errors are exhibited in the M = 100 simulations for
kr,n corresponding to Sw between 0.25 and 0.50. This can be
explained by considering the size of the region occupied by
the nonwetting phase for Sw < 0.50 and the velocity profile
within this region, which is relatively constant (see Fig. 5).
For Sw < 0.50 the nonwetting phase region is larger than that
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FIG. 6. Comparison between the EF simulations and the ana-
lytical solution for the nonwetting (left) and wetting (right) phase
relative permeability for cocurrent flow between two parallel plates.
The results for M = 100 are plotted separately due to the difference
in scale for kr,n.

for Sw > 0.50, thus any discrepancies in the nonwetting phase
velocity for simulations corresponding to Sw < 0.50 have a
more profound affect on the relative permeability estimate than
for Sw > 0.50. We also found that using MRT and an isotropy
order greater than 4 significantly improved the kr,n estimates
for Sw < 0.50. We expect this to be important for accurate
predictions of kr,n in real porous media since grid resolution
within the pores is often coarse for sufficiently large porous
media samples.

IV. CONCLUSIONS

In this work, we demonstrated that the explicit forcing
model is superior to the original SC model for static bubble
simulations and layered cocurrent flow between two parallel
plates, in that it is capable of simulating fluid pairs with
larger kinematic viscosity ratios. The ability to simulate
large kinematic viscosity ratios largely results from (1) the
treatment of the external forces, which eliminates the un-
physical dependence of density on the chosen viscosity; and
(2) the use of higher-order isotropy in the evaluation of the
fluid-fluid forces, which reduces the magnitude of spurious

TABLE I. The root-mean-squared error (RMSE) and the max-
imum relative percent error (MRPE) for the relative permeability
simulations presented in Fig. 6.

RMSE MRPE (%)

M kr,n kr,w kr,n kr,w

0.01 0.002 0.017 6.6 5.4
0.1 0.010 0.013 3.7 5.1
10 0.086 0.008 4.4 3.9
100 1.73 0.012 6.6 4.8

currents in the vicinity of the interface. In addition, for the
layered flow simulations, we found that we also need to use the
MRT formulation to further reduce the magnitude of spurious
currents in the vicinity of the interface. The combination
of all of these features results in a much more stable
model that allows us to achieve the large kinematic viscosity
ratios.

We also showed that the surface tension is not a function
of the viscosity and that a simple quadratic function can
be used to estimate surface tension for a given interaction
strength, bypassing the need for additional static bubble
simulations, which is required when using the original SC
model. For layered cocurrent flow, we showed that the velocity
profiles simulated with this model preserve continuity at the
interface for viscosity ratios ranging from 0.001 to 1000,
and that it results in accurate predictions of relative perme-
ability for both phases for viscosity ratios raging from 0.01
to 100.

Overall, the model formulation presented here is more
stable, has smaller spurious currents near interfaces, and can
simulate a wider range of fluid pairs and flow conditions
than the original SC model. It is expected that this model
formulation will extend the applicability of multicomponent
interparticle-potential LB models to more realistic and com-
plex multicomponent fluid systems; especially for systems
involving complex porous media, which will be addressed in
future work. As a final note, an implementation of the model
is freely available through the open source software TAXILA

LBM [32].
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APPENDIX: LAYERED COCURRENT FLOW

For completeness we provide a schematic of the layered
co-current flow system along with the analytical solution
for the velocity profile and relative permeability of each phase.
The system under consideration is shown in Fig. 7 where
the wetting fluid flows along the walls (a � |y| � L) and the
nonwetting fluid flows between the wetting phase (0 � |y| �
a). We are interested in the velocity profile perpendicular to
the direction of flow. Assuming laminar flow, the analytical

FIG. 7. Schematic of the two-phase cocurrent flow between two
parallel plates.
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solution for the velocity profile in this system is

u(y) = Fb

2νnρn

(a2 − y2) + Fb

2νwρw

(L2 − a2), 0 � |y| � a,

(A1)

u(y) = Fb

2νwρw

(L2 − y2), a � |y| � L, (A2)

where Fb is the body force and the subscripts n and w

refer to the nonwetting and wetting phase, respectively. In
this work, we apply the same body force to both fluids
and the dynamic viscosity ratio produces different average
velocities within each phase. The relative permeability of each
phase is defined as the ratio of the volumetric flow rate of
that phase within the region it occupies during two-phase
flow and the volumetric flow rate of that phase over the
whole domain during single-phase flow, which is expressed

as

kr,n(Sw) =
∫ a

|y|=0un dy∫ L

|y|=0un dy
, (A3)

kr,w(Sw) =
∫ L

|y|=a
uw dy∫ L

|y|=0uw dy
, (A4)

where kr,n and kr,w represent the relative permeabilities for the
nonwetting and wetting phases, respectively. The analytical
solution for the relative permeability of each phase as a
function of Sw and M is expressed as [48]

kr,n = (1 − Sw)
[

3
2M + (1 − Sw)2

(
1 − 3

2M
)]

. (A5)

kr,w = 1
2S2

w(3 − Sw), (A6)

Equations (A5) and (A6) show that kr,n is a function of both
Sw and M , whereas kr,w is a function of Sw only.
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