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It has been recently demonstrated that self-defocusing (SDF) media with cubic nonlinearity, whose local
coefficient grows from the center to the periphery fast enough, support stable bright solitons without the use
of any linear potential. Our objective is to test the genericity of this mechanism for other nonlinearities, by
applying it to one- and two-dimensional (1D and 2D) quintic SDF media. The models may be implemented
in optics (in particular, in colloidal suspensions of nanoparticles), and the 1D model may be applied to the
description of the Tonks-Girardeau gas of ultracold bosons. In 1D, the nonlinearity-modulation function is
taken as g0 + sinh2 (βx). This model admits a subfamily of exact solutions for fundamental solitons. Generic
soliton solutions are constructed in a numerical form and also by means of the Thomas-Fermi and variational
approximations (TFA and VA). In particular, a new ansatz for the VA is proposed, in the form of “raised
sech,” which provides for an essentially better accuracy than the usual Gaussian ansatz. The stability of all the
fundamental (nodeless) 1D solitons is established through the computation of the corresponding eigenvalues
for small perturbations and also verified by direct simulations. Higher-order 1D solitons with two nodes have a
limited stability region, all the modes with more than two nodes being unstable. It is concluded that the recently
proposed inverted Vakhitov-Kolokolov stability criterion for fundamental bright solitons in systems with SDF
nonlinearities holds here too. Particular exact solutions for 2D solitons are produced as well.
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I. INTRODUCTION

The guiding of matter waves in Bose-Einstein condensates
(BECs) [1] and light in optical waveguides [2] by means of
effective potentials which are induced by optical lattices or
photonic crystals, has drawn a great deal of attention in recent
years. Such settings play a crucial role in the creation and
stabilization of ordinary and gap solitons [1,3,4], supported by
the balance of the diffraction, the lattice-induced potentials,
and the self-focusing or defocusing nonlinearity, respectively.

In addition to linear lattices, many works have been dealing
with their nonlinear counterparts (the spatial modulation
of the local nonlinearity coefficient) [4–10] and combined
linear-nonlinear [11–14] lattices. The nonlinear lattices may
be realized, severally in optics and BECs, by means of
properly designed photonic-crystal structures or nonlinearity
landscapes induced by the Feshbach resonance controlled
by nonuniform external fields. A recent noteworthy result
is the existence of stable bright solitons in self-defocusing
(SDF) D-dimensional media with the strength of the cubic
nonlinearity growing toward the periphery, as a function of
radius r , at any rate faster than rD [15,16].

Along with the cubic nonlinearity, quintic terms appear in
various physical settings too. In optics, the quintic nonlinearity
has been theoretically predicted [17,18] and experimentally
observed in fluids [19,20] and glasses [21–25]. In the con-
text of BEC, the quintic nonlinearity represents three-body
interactions in a dense condensate, provided that collision-
induced losses may be neglected [26]. The self-focusing
quintic nonlinearity is critical in the one-dimensional (1D)
case, similar to its cubic counterpart in the two-dimensional
(2D) case [27]; i.e., it gives rise to a degenerate family of
Townes solitons [28], with a single value of the norm for
the entire family. In the free space, the Townes solitons are
unstable, but they can be readily stabilized by linear potentials,

as demonstrated in 1D [29–31] and 2D [3,32] settings alike.
The use of nonlinear potentials for the same purpose turns out
to be tricky: in the 2D space with the cubic self-focusing, only
nonlinearity-modulation profiles with sharp edges are able to
stabilize the Townes solitons in a limited parameter region
[4,9]. In the 1D system with the quintic nonlinearity, nonlinear
lattices with a smooth (sinusoidal) modulation profile stabilize
the respective Townes solitons against the critical collapse, but
only in a narrow region [8,10].

On the other hand, in Ref. [33] it has been demonstrated
that the 1D Tonks-Girardeau (TG) gas of bosons with the
hard-core repulsion, emulating a degenerate Fermi gas, obeys
the 1D nonlinear Schrödinger (NLS) equation with the quintic
SDF term (an additional nonlocal cubic interaction appears if
the bosons carry dipole moments [34]). While this equation is
inappropriate for the description of dynamical effects caused
by interference of bosonic wave packets [35], it correctly
predicts stationary patterns in the trapped gas [33–35]. Ex-
perimentally, the TG gas has been realized in an ultracold
gas of 87Rb loaded into a tightly confined potential pipe [36].
In fact, the “quantum Newton’s cradle,” realized in a trapped
chain of 87Rb atoms [37], is another example of the TG gas.

In this work, we address the possibilities to support stable
bright solitons in 1D and 2D media with the SDF quintic
term whose local strength grows fast enough at r → ∞
(in fact, the solitons exist for the growth rates faster than
r2D). These results generalize those recently reported in
Refs. [15] and [16] for SDF media with the modulated
cubic nonlinearity and thus demonstrate the genericity of
the method for creating robust bright solitons using solely
the SDF nonlinearity. We focus on 1D and 2D models with
modulation profiles in the form of hyperbolic functions, see
Eqs. (5) and (27) below, for which some soliton solutions
can be obtained in an exact analytical form and generic ones
are constructed numerically. The family of the fundamental
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solitons is completely stable, similar to the situation reported
in Refs. [15] and [16] in the case of the spatially modulated
cubic SDF nonlinearity. We give an additional argument,
based on energy estimates, in favor of the conjecture that the
fundamental solitons may realize the system’s ground state. In
terms of the dependence between the soliton’s propagation
constant and norm, k(N ), the bright solitons in the SDF
medium obey the inverted Vakhitov-Kolokolov (alias anti-VK
[11]) criterion, dk/dN < 0, contrary to the usual VK criterion
for fundamental solitons in self-focusing media, dk/dN > 0
[27,38]. It appears that, as conjectured in Ref. [11], the anti-VK
criterion is a necessary but, in the general case, not sufficient
condition for the stability of bright solitons supported by SDF
nonlinearity. Higher-order 1D solitons, whose shapes feature
different numbers of nodes (n), are found too. A part of the
soliton family with n = 2 is stable, while all the modes with
n � 3 are found to be unstable.

It is relevant to mention that the model considered here,
as well as its previously studied counterpart with cubic
nonlinearity [15,16], is not integrable. Indeed, it was proven
(see, e.g., Ref. [39]) that the NLS equation in 1D with
any nonlinearity different from pure cubic is nonintegrable;
hence our quintic model is definitely nonintegrable too. For
this reason, the localized modes that we study in this paper
are not “solitons” in the rigorous mathematical meaning
of the word, but rather “solitary waves.” Nevertheless, we
call the modes “solitons,” following the usage commonly
adopted in the current literature. In this work, we do not
study interactions between the solitons because multisoliton
configurations trapped in the nonlinear potential well are less
relevant than single-soliton states.

The rest of the paper is organized as follows. In Sec. II,
we introduce the model, report particular exact solutions, and
develop the variational approximation (VA) for generic 1D
solitons, based on Gaussian and sech ansätze (the latter one is
taken in a generalized form, based on “raised sech,” which is
an essential technical novelty). Numerical results for the 1D
fundamental and higher-order solitons, including the stability
analysis, are reported in Sec. III. Two-dimensional solitons are
briefly considered in Sec. IV, and the paper is concluded by
Sec. V.

II. THE QUINTIC MODEL AND ANALYTICAL
APPROXIMATIONS

A. The model and exact solutions

The NLS equation with the quintic SDF nonlinearity for
field amplitude u(r,z) is

iuz = − 1
2∇2u + [g0 + g(r)]|u|4u, (1)

where g0 � 0 is the strength of the uniform quintic term;
Laplacian ∇2 = ∂2

x + ∂2
y or ∇2 = ∂2

x acts on transverse co-
ordinates r = (x,y) or x in 2D and 1D settings, respectively;
z is the propagation coordinate in the optical medium (in the
Gross-Pitaevskii equation for matter waves, z is replaced by
time t); and positive function g(r) accounts for the nonlinearity
strength growing at r → ∞. In optics, the 1D version of
this modulated nonlinearity may be implemented in a planar
waveguide of a variable transverse width, filled with a colloidal
suspension of metallic nanoparticles, as proposed in Ref. [10].

The same 1D model applies to the TG gas trapped in a
potential pipe whose confinement strength varies along the
axial coordinate, similar to how it was recently proposed to
induce a modulated cubic nonlinearity in the effectively 1D
BEC with attractive interatomic interactions [40].

Stationary solutions to Eq. (1) with propagation constant
k are sought for as u(r,z) = U (r) exp(ikz), where the real
function U (r) obeys the equation

kU − 1
2∇2U + [g0 + g(r)]U 5 = 0, (2)

which can be derived from the Lagrangian density

2L = kU 2 + 1
2 (∇U )2 + 1

3 [g0 + g(r)] U 6. (3)

In the 1D case, Eq. (2) taken at the inflexion point, U ′′ = 0,
demonstrates that all solitons may exist only with k < 0. A
similar argument readily predicts k < 0 for 2D solitons. With
regard to this, the Thomas-Fermi approximation (TFA), which
neglects the diffraction term, ∇2U , yields the solution

U 2
TFA(r) ≈

√
−k/g(r) (4)

at r → ∞; hence, as mentioned above, the modes with a finite
norm, N2D = ∫∫

U 2(r)dxdy or N1D = ∫ +∞
−∞ U 2(x)dx, exist if

g(r) grows faster than r2D at r → ∞.
In the present work, the 1D modulation function is taken as

g(x) = sinh2(βx), (5)

the coefficient in front of which is scaled to be 1, while g0

is kept as a free parameter in Eq. (1). In fact, the unlimited
exponential growth of the nonlinearity strength at |x| → ∞,
which may be difficult to realize in real physical settings, is
not necessary for the creation of the solitons supported by
the spatially modulated SDF nonlinearity. Indeed, the strong
localization of the solitons predicted by expressions (6) and
(11) (see below) implies that the modulation profile must
actually represent a deep nonlinear-potential well of a finite
extension, rather than the unlimitedly growing structure, as
a particular form of g(x) at |x| � β−1 does not affect the
solution.

In the case of g0 < 1, Eq. (2) with g(x) taken as per Eq. (5)
admits an exact soliton at a particular value of k:

U 2(x) =
√

3β2

8(1 − g0)
sech(βx), (6)

k = −β2

8

2 + g0

1 − g0
. (7)

It is worthy to mention that a particular exact solution can be
also found in the 1D model with a more general nonlinearity-
modulation function:

iuz = − 1
2uxx + [cosh(βx)]μ[g0 + sinh2(βx)]|u|4u, (8)

where the real power takes values μ > −2. In fact, most
interesting are the negative values, −2 < μ < 0, because in
that case the growth of the nonlinearity at |x| → ∞ is slower.

036607-2



BRIGHT SOLITONS IN DEFOCUSING MEDIA WITH . . . PHYSICAL REVIEW E 86, 036607 (2012)

The exact soliton solution found in this model is

u = eikzA[sech(βx)](2+μ)/4, (9)

A4 = β2(2 + μ)(6 + μ)

32(1 − g0)
,

k = −β2(2 + μ)

32

[
6 + μ

1 − g0
− (2 + μ)

]
. (10)

In the limit of μ → −2, when the nonlinearity modulation in
Eq. (8) ceases to be growing at |x| → ∞, expression (10) for
the amplitude degenerates into A = 0. On the other hand, in
the limit of 2 + μ ≈ C(1 − g0) → 0 with fixed C > 0, Eq. (8)
degenerates into the NLS equation with the constant coefficient
of the SDF quintic nonlinearity. In this case, the soliton goes
over into the continuous-wave (cw) solution with the constant
amplitude, A4

cw = β2C/8. It is obvious that the latter solution
is modulationally stable [27]; hence the continuity suggests
that the fundamental soliton solutions of Eq. (8) may be stable
too, which is confirmed below (for μ = 0).

Coming back to general soliton solutions to the 1D version
of Eq. (1) with modulation function (5), it is easy to find the
asymptotic form of the soliton solutions at |x| → ∞, which
accounts for its strong localization:

U (x) ≈ (
1
2β2 − 4k

)1/4
exp

(− 1
2β|x|) (11)

(note that, unlike the usual solitons, the localization length
determined by this expression, ∼β−1, does not depend on k).
Further, the TFA applies to the entire 1D solution in the case
of −8k � β2, predicting the solution in the form of Eq. (4) at
all x, the respective norm being

NTFA ≈ (2I/β)
√−k, (12)

with constant I ≡ ∫ ∞
0 (2g0 − 1 + cosh y)−1/2dy. It is obvious

that the fundamental (nodeless) solitons are stable within the
framework of the TFA.

It may be conjectured that the fundamental solitons realize
the ground state in the systems of the present type [15]. A
“naive” counterargument against this assumption is a proposal
to spread out the given norm, N , into a layer of an indefinitely
large length, L, with a vanishingly small squared amplitude,
N/L, so that the energy of such a state would fall to
zero, along with its amplitude, while the total energy of the
fundamental solitons would, obviously, be positive. However,
a straightforward estimate of the energy of the stretching layer
[the energy density is actually the same as the Lagrangian
density (3), except for the first term in it] yields an estimate,
E(L) ≈ (N3/12βL3) exp(2βL), which diverges, rather than
vanishes, in the limit of L → ∞.

A curious fact is that expression (11) gives an exact solution
for the entire family of fundamental solitons in the model
with g(x) = (1/4) exp(2β|x|), which emulates the asymptotic
form of function (5), if, in addition to the effective nonlinear
potential, an attractive linear δ-functional potential is placed
at x = 0 . The respective stationary equation is

kU − 1

2
U ′′ + 1

4
e2β|x|U 5 − β

2
δ(x)U = 0. (13)

The linear potential −(β/2)δ(x) in Eq. (13) is necessary to
balance the peakon singularity in expression (11), if it is

considered as the exact solution. Obviously, the norm of this
solution is N (k) = β−1

√
2(β2 − 8k), with the propagation

constant taking values k � β2/8 (note that this k may be
positive too).

Furthermore, the spatially modulated SDF nonlinearity can
trap a soliton against the action of the linear repulsive potential.
To demonstrate this possibility, one can take the following
modification of Eqs. (2) and (5),

kU − 1
2∇2U + [g0 + sinh2(βx)]U 5 + W sech2(βx)U = 0,

(14)

where W > 0 is the strength of the repulsive linear potential.
An exact solution to Eq. (14) for the trapped mode can be found
in the following form, which generalizes the above solution
given by Eqs. (6) and (7):

U 2(x) =
√

1

1 − g0

(
3β2

8
+ W

)
sech(βx), (15)

k = − 1

1 − g0

[
β2

8
(2 + g0) + W

]
. (16)

Numerical results [not shown here in detail, but essentially
the same as presented below, i.e., based on the analysis of
small perturbations—see Eq. (24)—and direct simulations]
demonstrate that this solution is stable.

B. The variational approximation

1. The Gaussian ansatz

To search for soliton solutions of Eq. (2) by means of the
VA, we start with the simplest Gaussian ansatz,

U 2(x) = N√
πW

exp

(
− x2

2W 2

)
, (17)

where W and N are the width and norm of the soliton.
The substitution of this ansatz into the Lagrangian density
(3) and subsequent integration yields the total Lagrangian,
L = ∫ +∞

−∞ Ldx, from which it is straightforward to derive the
variational equations, ∂Leff/∂N = ∂Leff/∂W = 0:

1

4W 2
+ N2

2
√

3πW 2

[
2g0 + 1 − e− (βW )2

3

]
= −k, (18)

1

2W 2
+ N2

3
√

3π

[
(2g0 + 1)

W 2
+

(
β2

3
− 1

W 2

)
e

(βW )2

3

]
= 0.

(19)

2. The raised-sech ansatz

The availability of the particular exact solution (6), ex-
pressed in terms of sech, suggests to use this function as an
alternative variational ansatz, as it is natural to have one which
is able to reproduce a particular exact solution, suggesting a
better accuracy in the general case too (which turns out to
be correct, see below). Usually, the ansatz based on sech is
introduced with arbitrary amplitude and width [41]. However,
in the present model the functional form of the ansatz must
be fixed as sech(βx), with the same β as in Eq. (5), as
otherwise the integration of the term in the Lagrangian density
(3) containing g(x) is impossible in an analytical form. The
arbitrary width can be accommodated differently, adopting the

036607-3



JIANHUA ZENG AND BORIS A. MALOMED PHYSICAL REVIEW E 86, 036607 (2012)

following raised-sech ansatz (sech raised to arbitrary power
ν > 0):

U (x) = A[sech(βx)]ν, (20)

where A and ν are to be treated as variational parameters.
In particular, in the case of ν � 1, the standard full width
at half maximum width of ansatz (20) is (ln 2)/(βν), which
demonstrates how ν controls the width.

To the best of our knowledge, the VA based on ansatz
(20), with power ν dealt with as the variational parameter, is a
technical novelty, which may be helpful too in studies of other

models with the width of the shape-defining function fixed
by the form of the given equation(s). As shown below, this
ansatz leads to rather complex variational equations which,
nevertheless, can be solved, leading to a good agreement with
directly found numerical results. It is relevant to note that some
still more sophisticated trial functions were recently proposed
for the description of solitons, such as the so-called q-Gaussian
ansatz [42], with an extra parameter (q) controlling a transition
between the limit cases of the Gaussian and the TFA ansätze.

The effective Lagrangian, produced by the integration of
density (3) with ansatz (20) substituted into it is

2√
πβ

L =
[
k + ν2β2

2(2ν + 1)

]
A2�(ν)

�
(
ν + 1

2

) + A6

3

g0�(3ν)

�
(
3ν + 1

2

) + A6

3(6ν − 1)

�(3ν − 1)

�
(
3ν − 1

2

) , (21)

where � is the Gamma function (below, �′ stands for its derivative). The corresponding variational equations, ∂L/∂(A2) = 0
and ∂L/∂ν = 0, take the following forms:[

k + ν2β2

2(2ν + 1)

]
�(ν)

�
(
ν + 1

2

) + g0A
4�(3ν)

�
(
3ν + 1

2

) + A4

6ν − 1

�(3ν − 1)

�
(
3ν − 1

2

) = 0, (22)

[
k + ν2β2

2(2ν + 1)

][
�′(ν)

�
(
ν + 1

2

) − �(ν)�′(ν + 1
2

)
�2

(
ν + 1

2

)
]

+ β2ν(ν + 1)

(2ν + 1)2

�(ν)

�
(
ν + 1

2

) + g0A
4

3

[
�′(3ν)

�
(
3ν + 1

2

) − �(3ν)�′(3ν + 1
2

)
�2

(
3ν + 1

2

)
]

+ A4

3(6ν − 1)

[
�′(3ν − 1)

�
(
3ν − 1

2

) − �(3ν − 1)�′(3ν − 1
2

)
�2

(
3ν − 1

2

)
]

= 0. (23)

Despite the relative complexity of these equations, it is possible
to check that, setting ν = 1/2 and g0 = 0, they reproduce the
corresponding exact solution (6) with k given by Eq. (7).

The comparison between both versions of the VA, produced
by numerical solutions of Eqs. (18) and (19) and Eqs. (22) and
(23), respectively, and the results obtained from a numerical
solution of Eq. (2) are presented in Fig. 1. It is observed
that ansatz (20) provides for a substantial improvement of
the accuracy of the VA [expect for the limit case of small
N in Fig. 1(b)]. It is interesting to note that, according to
the variational and numerical results alike, the entire family
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−3

−2

−1

0

N

k

 

 

VA:sech
VA:Gaussian
numerical

0 1 2 3

−3

−2

−1

0

N

k

 

 

VA:sech
VA:Gaussian
numerical

(b)(a)

FIG. 1. The comparison of predictions of the VA for fundamental
solitons, based on the Gaussian and raised-sech ansätze, with
numerically found dependencies k(N ), for β = 2 and g0 = 0 (a) and
g0 = 0.5 (b).

of the fundamental solitons satisfies the above-mentioned
anti-VK criterion, dk/dN < 0, which was recently proposed,
at a semiempiric level, as a stability criterion for fundamental
bright solitons in media with repulsive nonlinearities [11,14].
Indeed, it is demonstrated below that the fundamental solitons
are fully stable in the present model.

It is also worth stressing that, as shown by the k(N )
curves (the numerical and VA-predicted ones alike) in Fig. 1,
the family of the fundamental solitons features no existence
threshold; i.e., the solutions persist up to the limit of N → 0.
An analytical consideration of Eqs. (2) and (5) suggests
that, in this limit, the soliton acquires a shape of a quasiflat
shelf of width L � (2/β) ln(β/N ), with the squared amplitude
A2 � N/L.

III. NUMERICAL RESULTS

A. The linear stability analysis

It is crucially important to test stability of the solitons. To
this end, perturbed solutions are taken as

u(x,z) = exp(ikz)[U (x) + V (x) exp(λz)

+W ∗(x) exp(λ∗z)], (24)

where V and W are components of a perturbation mode
with growth rate λ, while U (x) is the stationary solution to
Eq. (1) with propagation constant k (the asterisk stands for the
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complex conjugate). The substitution of expression (24) into
Eq. (1) and subsequent linearization gives rise to the eigenvalue
problem for λ:

iλV = −(1/2)Vxx + kV + [g0 + g(x)]U 4(3V + 2W ),

(25)

iλW = +(1/2)Wxx − kW − [g0 + g(x)]U 4(3W + 2V ).

(26)

Obviously, the stationary solution, U (x), is stable only if
Re{λ} = 0 for all the eigenvalues.

The eigenvalue problem can be solved numerically by
means of a finite-difference scheme. Specifically, we first took
the Gaussian ansatz as the initial guess to construct solutions
U (x) of Eq. (2) and then tested the stability of the so found
solutions by solving the eigenvalue problem based on Eqs. (25)
and (26). Finally, the predicted (in)stability was tested in direct
simulations of Eq. (1). The numerical computations were
performed in the domain of size −10 � x � 10 on a grid
of 128 points, with the usual absorbing boundary conditions.
This method is reliable, as it has been applied extensively
to soliton-related problems. For further details, see Ref. [43],
which contains the relevant code. Results produced by the
linear-stability analysis are presented below.

B. Fundamental and higher-order solitons

Examples of fundamental (nodeless) and higher-order
solitons found in the numerical form are displayed in Fig. 2(a)
and Figs. 2(b) and 2(c), respectively. Note that the raised-sech
ansatz predicts the profile of the fundamental soliton which is
virtually identical to its numerically found counterpart. Both
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Gaussian
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(d)

(b)

(c)

(a)

Stable soliton

FIG. 2. (a) An example of a stable 1D fundamental soliton and
the comparison with the Gaussian and raised-sech ansätze. The
latter one is indistinguishable from the numerically found profile.
(b,c) Examples of stable higher-order solitons with two nodes.
These examples are displayed for β = 2 and g0 = 0, other param-
eters being (a) k = −1, N = 1.91, (b) k = −8.65, N = 1.6, and
(c) k = −7.1, N = 1.2. (d) The propagation constant vs the norm for
the higher-order solitons with two nodes at β = 2 and g0 = 0. The
solitons are stable between the dashed lines.
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−0.5

0

0.5

1

x

U

0 2 4
−8

−6

−4

−2

0

N

k

(a) (b)
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FIG. 3. (a) Examples of stable dipole solitons for β = 2 and g0 =
0. Other parameters are k = −2.6, N = 1.32 and k = −4.8, N =
1.56 (the dashed and solid profiles, respectively). (b) Curve k(N )
for the dipole solitons at β = 2 and g0 = 0. The solitons are stable
between the dashed lines.

the computation of the eigenvalues for small perturbations and
the direct simulations demonstrate that the entire family of the
fundamental solitons is stable.

Higher-order solitons are characterized by the number of
nodes (zeros of the field). In particular, the examples shown in
Figs. 2(b) and 2(c) feature two zero crossings, and examples
of dipole solitons, with the single node, are presented in Fig. 3.

The solitons with two nodes, as well as the dipole solitons,
are stable in a part of their existence regions, as shown in
Figs. 2(d) and 3(b), respectively. Note that the entire k(N )
curves in these figures satisfy the anti-VK criterion, dk/kN <

0, like they did for the fundamental solitons (cf. Fig. 1). The
fact that only a part of the families of the higher-order solitons
is stable complies with the general fact that the usual VK crite-
rion, in models with self-focusing nonlinearities, is necessary
but not sufficient for the full stability of bright solitons [27,38].
Further, the conclusion that the fundamental solitons supported
by the SDF nonlinearity with the local coefficient growing at
r → ∞ are completely stable, while a part of higher-order
families are unstable, agrees with the results recently reported
in Refs. [15] and [16] for the cubic nonlinearity with similar
modulation profiles. In fact, it was found that, in the case of
the steep (anti-Gaussian) modulation, the solitons with one and
two nodes are completely stable, instability regions appearing
for modes with three zeros [15], while, under the action of
a milder algebraic modulation, with g(x) ∼ |x|α (α > 1), the
solitons with one and two zeros may be unstable too, only
the fundamental family remaining completely stable. The
exponential modulation function adopted in the present model,
see Eq. (5), is intermediate between its steep anti-Gaussian and
mild algebraic counterparts.

We have found that all the higher-orders modes with �3
zeros are unstable in the present model, as illustrated by
Figs. 4 and 5. The instability transforms the unstable solitons
into chaotically oscillating localized modes (see examples in
Fig. 5).

IV. SOLITONS IN THE 2D MODEL

An issue of obvious interest is to extend the model and its
analysis to the 2D geometry (cf. Refs. [15] and [16]). Although
the TG model is irrelevant in 2D, the abovementioned optical
realization, in terms of the colloidal suspensions, applies to
the 2D case too. To produce an example of exact 2D solutions,
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FIG. 4. The shapes (left) and their perturbation spectra (right) of
unstable 1D modes with three (a,b) and four (c,d) zeros, at β = 2 and
g0 = 0. (a,b) k = −5, N = 1.03; (c,d) k = −7.6, N = 1.07.

we set g0 = 0 in Eq. (1) and take

g(x,y) = g0 + [β−2 sinh2(βx) cosh2(αy)

+α−2 sinh2(αy) cosh2(βx)] (27)

[cf. Eq. (5) in 1D]. In this case, the following exact fundamental
soliton can be found for g0 = 0: u(x,y,t) = U (x,y) exp(ikz),
with k = −(α2 + β2)/4 and

U 2(x,y) =
√

3/8αβsech(βx)sech(αy). (28)

Examples of isotropic (α = β = 1) and anisotropic (α = 1
and β = 1/2) 2D solitons, found in the numerical form for
modulation function (27) with g0 = 0.1, when exact solutions

FIG. 5. (Color online) The evolution, shown in terms of
Re{u(x,z)}, of unstable 1D higher-order solitons with the number
of nodes n = 3, 4, 5, and 6 at β = 2 and g0 = 0. (a) k =
−5.3, N = 1.05; (b) k = −8.9, N = 1.35; (c) k = −7.6, N = 1.07;
(d) k = −7.7, N = 1.2.

FIG. 6. (Color online) Shapes of stable isotropic and anisotropic
2D fundamental solitons found from Eqs. (2) and (27) with g0 = 0.1.
(a, b) α = β = 1 and k = −0.5, N = 4; (c, d) α = 2β = 1 and k =
−0.3125, N = 3.5.

are not available, are shown in Fig. 6. The stability of these
solitons was verified by direct simulations of the perturbed
evolution. Systematic results for 2D solitons will be reported
elsewhere.

V. CONCLUSION

We have introduced the 1D and 2D models with the SDF
quintic nonlinearity growing at r → ∞. The model may be
realized in optical media, and its 1D version can be also
implemented in the TG gas. Recently, stable bright solitons
were found in similar models with the cubic nonlinearity. The
objective of the present work was to test the genericity of the
mechanism creating bright solitons in cubic SDF media with
the spatially modulated nonlinearity coefficient, by testing it
with the other (quintic) nonlinearity. We found particular exact
solutions for fundamental solitons in the 1D model with the
modulation function defined as per Eqs. (2) and (5). General
solutions have been found in the numerical form and also
analytically in the framework of the TFA and the VA. In
particular, a new ansatz for the VA, based on the raised sech,
was developed. It yields an accuracy essentially better than
that of the usual Gaussian ansatz. All the fundamental solitons
are stable, while higher-order ones have a finite stability
region for modes with one and two nodes, all the solitons
with �3 nodes being unstable. It has been found that the
recently proposed anti-VK stability criterion for bright solitons
in SDF media is valid, as a necessary stability condition, in
the present model too. The 2D model was also considered, in
a brief form. Particular exact solutions for 2D solitons were
produced, and examples of numerically found stable solitons
in 2D were reported, both isotropic and anisotropic ones. The
analysis of the 2D model calls for an extension; in particular,
a challenging problem is to construct solutions for vortex
solitons.
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