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Green’s function of the time-dependent radiative transport equation
in terms of rotated spherical harmonics

André Liemert and Alwin Kienle
Institut für Lasertechnologien in der Medizin und Meßtechnik, Helmholtzstr. 12, D-89081 Ulm, Germany

(Received 25 June 2012; published 17 September 2012)

The time-dependent radiative transport equation is solved for the three-dimensional spatially uniform infinite
medium which is illuminated by a point unidirectional source using a spherical harmonics transform under
rotation. Apart from the numerical evaluation of a spherical Hankel transform which connects the spatial distance
with the radial distance in Fourier space, the dependence on all variables is found analytically. For the special
case of a harmonically modulated source, even the spherical Hankel transform can be carried out analytically.
Additionally, a special solution for the isotropically scattering infinite medium is given. The Monte Carlo method
is used for a successful verification of the derived solution.
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I. INTRODUCTION

The radiative transport equation (RTE) has a central impor-
tance in many areas of physics for studying the propagation
of particles in random media, such as in astrophysics, nuclear
physics, biophotonics, heat transfer, computer graphics, and
climate research [1–5]. Due to the lack of analytical solutions
of the RTE even for relatively simple cases like the infinite
medium numerical methods or approximations such as the
diffusion equation were considered. However the well-known
restrictions of the diffusion theory lead in many applications
for example the solution of inverse problems to unsatisfactory
results. The Monte Carlo method is the most often used
approach for solving the RTE numerically [6–8], but also other
techniques like the finite element [9], the finite-difference [10],
or the discrete-ordinate method [11] were applied. However,
the simulation of Green’s function of the time-independent
RTE, e.g., with the Monte Carlo method, requires very
long calculation times until accurate results are received. In
the case of isotropic scattering media there exists an exact
analytical solution to the three-dimensional time-independent
RTE in Fourier space. However the corresponding solution
in spatial coordinates involves the numerical evaluation of a
complicated three-dimensional Fourier integral [3]. Regarding
the time-dependent RTE the above mentioned solution for
isotropic scattering media is not available with an analytical
dependence on time resulting in the evaluation of a four-
dimensional Fourier integral for finding the solution in space
and time [12]. Recently, analytical solutions and methods
regarding the three-dimensional time-independent RTE were
derived for the infinite space, the half-space, and the slab
geometry [13–17]. Faris [18] derived the solution of the RTE
in the frequency domain for an isotropic point source in
the infinite medium. Subsequently, the derived solution was
applied for measurements of strongly absorbing media [19].
Regarding the time-dependent RTE for the three-dimensional
infinite medium, there exists a cumulant solution [20] which
involves a three-dimensional Fourier integral that has to be
evaluated numerically. Further, a continued fraction solu-
tion dealing with a special case of the three-dimensional
infinite medium was presented [21]. The final formula is
given in the transformed space for both the time and one
spatial coordinate. Furthermore, Gershenson [22] developed

a higher-order spherical-harmonic approximation of the time-
dependent radiative transfer equation to reduce the well-known
breakdown of the diffusion theory at early times and short
distances.

Recently, we derived the infinite space Green’s function
to the time-dependent RTE for the isotropic point source
[23]. In this paper we present the derivation of the general
Green’s function to the time-dependent RTE of a three-
dimensional anisotropically scattering medium for a point
unidirectional source. The solution contains no approxima-
tions and is given in terms of analytical functions. The
derived solution in Fourier space is dependent analytically
on all variables whereas Green’s function in real space
involves a spherical Hankel transform which must be evaluated
numerically. The obtained Green’s function has most likely
the maximal possible analytical dependence on its variables
taking into account that no approximations are made. In ad-
dition, the corresponding Green’s function for a harmonically
modulated source is derived. Furthermore, the special case
of isotropic scattering is considered. The found solutions
were successfully verified by comparisons with Monte Carlo
simulations.

II. THEORY

The three-dimensional time-dependent RTE for the specific
intensity ψ = ψ(r,ŝ,t) caused by the source S = S(r,ŝ,t) in
Cartesian coordinates is given by

1

c

∂ψ

∂t
+ ŝ · ∇ψ + μtψ = μs

∫
f (ŝ · ŝ′)ψ(r,ŝ′,t)d2s ′ + S,

(1)

where μt = μa + μs is the total attenuation coefficient, μa

the absorption coefficient, μs the scattering coefficient, and c

denotes the velocity of particles in the scattering medium. The
unit vector ŝ specifies the direction of the wave propagation,
and the phase function f (ŝ · ŝ′) which is assumed to be
rotationally invariant describes the probability that a particle
coming from direction ŝ′ is scattered into direction ŝ. For
illustration, Fig. 1 shows schematically the geometry of the
problem for the special case of a point unidirectional source
which is placed at the origin and is illuminating in the positive
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FIG. 1. (Color online) Illustrating the geometry of the problem
including the spatial and angular variables.

z direction. The resulting specific intensity is evaluated at the
position r in direction ŝ.

Green’s function of Eq. (1) is given by its solution for the
point unidirectional source S(r,ŝ,t) = δ(r − r0)δ(ŝ − ŝ0)δ(t).
Taking into account that the specific intensity and the source
can be expanded in form of the Fourier integral

ψ(r,ŝ,t) =
∫

d3k

(2π )3
ψ(k,ŝ,t) exp(ik · r), (2)

the RTE (1) transforms into the spatially independent equation(
1

c

∂

∂t
+ ik · ŝ + μt

)
ψ(k,ŝ,t)

= μs

∫
f (ŝ · ŝ′)ψ(k,ŝ′,t)d2s ′ + S(k,ŝ,t). (3)

Next, the quantities of Eq. (3) are expanded in terms of spheri-
cal harmonics (SH) which are rotated about the azimuthal and
polar angles of the wave vector k̂ leading to the series

ψ(k,ŝ,t) =
∞∑
l=0

l∑
M=−l

ψlM (k,t)YlM (ŝ; k̂), (4)

where the corresponding “forward” transform is

ψlM (k,t) =
∫

ψ(k,ŝ,t)Y ∗
lM (ŝ; k̂)d2s. (5)

The SH YlM (ŝ; k̂) under rotation are given as a linear com-
bination of 2l + 1 conventional spherical functions Ylm(ŝ) =
Ylm(ŝ; ẑ):

YlM (ŝ; k̂) =
l∑

m=−l

exp(−imϕk)dl
mM (θk)Ylm(ŝ), (6)

where dl
mM (θk) is the Wigner d function with the closed-form

expression [24]

dl
mM (θk)= (−1)m+M

√
(l + m)!(l−m)!(l+M)!(l−M)!

×
∑

k

(−1)k
(1+ cos θk)l−k− M−m

2 (1− cos θk)k+ m−M
2

2lk!(l−m−k)!(l+M−k)!(m−M+k)!

(7)

and max(M − m,0) � k � min(l − m,l + M). In accordance
with the conventional SH [25], the rotated functions satisfy the
relation

(k̂ · ŝ)YlM (ŝ; k̂) =
√

l2 − M2

4l2 − 1
Yl−1,M (ŝ; k̂)

+
√

(l + 1)2 − M2

4(l + 1)2 − 1
Yl+1,M (ŝ; k̂). (8)

The rotationally invariant phase function depends only on the
cosine ŝ · ŝ′ and becomes in SH decomposition the form

f (ŝ · ŝ′) =
∞∑
l=0

l∑
M=−l

flYlM (ŝ; k̂)Y ∗
lM (ŝ′; k̂), (9)

where fl are the expansion coefficients. Upon substitution of
all series in Eq. (3), one obtains the following block-diagonal
systems of first order differential equations parameterized by
M ∈ Z ∧ l � |M|:

1

c

d

dt
|ψM (k,t)〉 + AM (k)|ψM (k,t)〉 = |qM (k,t)〉, (10)

with the complex symmetric tridiagonal matrix

AM (k) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

σl ikβlM 0 0 · · · 0

ikβlM σl+1 ikβl+1,M 0 · · · ...

0 ikβl+1,M

. . .
. . . · · · 0

0 0
. . .

. . .
. . . 0

... · · · · · · . . . σN−1 ikβNM

0 · · · 0 0 ikβNM σN

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

(11)

βlM =
√

(l2 − M2)/(4l2 − 1) and σl = μa + (1 − fl)μs .
Here |ψM (k,t)〉 and |qM (k,t)〉 are infinite-dimensional vectors
with components ψlM (k,t) and exp(−ik · r0)Y ∗

lM (ŝ0; k̂)δ(t),
respectively. The solution of the above differential equations
is given for t > 0 by

|ψM (k,t)〉 = c exp[−AM (k)ct]|qM (k,t)〉, (12)

where exp[−AM (k)ct] is the matrix exponential with elements
χM

ll′ (k,t) for l,l′ � |M|. Therefore, the time-dependent Green’s
function in Fourier space is obtained as

ψ(k,ŝ,ŝ0,t) = c exp(−ik · r0)
∞∑

M=−∞

∞∑
l,l′=|M|

Y ∗
l′M (ŝ0; k̂)

×χM
ll′ (k,t)YlM (ŝ; k̂). (13)

At this stage the solution is in principle completed and
must be integrated according to the Fourier integral (2). In
the Appendix readers will find some information regarding the
inverse Fourier transform. Once the integration regarding the
angular variables has been carried out analytically, we arrive
at Green’s function of the RTE (1) in terms of rotated SH

ψ(r,ŝ,r0,ŝ0,t) =
∞∑

m=−∞

∞∑
l,l′=|m|

Y ∗
l′m(ŝ0; R̂)ψm

ll′ (R,t)Ylm(ŝ; R̂),

(14)

036603-2



GREEN’s FUNCTION OF THE TIME-DEPENDENT . . . PHYSICAL REVIEW E 86, 036603 (2012)

with matrix elements

ψm
ll′ (R,t) = c(−1)m

l̄∑
M=−l̄

(−1)M
l+l′∑

L=|l−l′|
C

L,0
l,m,l′,−mC

L,0
l,M,l′,−M

iL

2π2

×
∫ ∞

0
χM

ll′ (k,t)jL(kR)k2dk, (15)

where l̄ = min(l,l′) and R = r − r0. Here jL(x) is the spher-
ical Bessel function of the first kind and C

l3,m3
l1,m1,l2,m2

are the
Clebsch-Gordan coefficients [26]. For the comparisons shown
in the Sec. III, the integral is evaluated using the Gauß
quadrature method. Green’s function for the particle density is
obtained via integration of the specific intensity resulting in a
simple Legendre polynomial series

�(r,r0,ŝ0,t) =
∫

ψ(r,ŝ,r0,ŝ0,t)d
2s

= c

∞∑
l=0

√
2l + 1χ0

0l(R,t)Pl(ŝ0 · R̂), (16)

with coefficients

χ0
0l(R,t) = il

2π2

∫ ∞

0
χ0

0l(k,t)jl(kR)k2dk. (17)

In some cases it is desirable to separate the ballistic component
of the RTE,

ψb(r,ŝ,r0,ŝ0,t) = c
exp(−μtct)

R2
δ(R − ct)δ(R̂ − ŝ0)δ(ŝ − ŝ0),

(18)

from the derived solution. In SH decomposition its matrix
elements can be obtained as

γ M
ll′ (R,t) = c

√
(2l + 1)(2l′ + 1) exp(−μtct)

δ(R − ct)

4πR2
δM0.

(19)

The elimination of the ballistic component can be accom-
plished either by modifying the source term in Eq. (1) or
via subtraction of matrix elements before carrying out the
spherical Hankel transform in the final solution (14). To this
end we also expand the ballistic component in Fourier space,

ψb(k,ŝ,ŝ0,t) = c exp(−μtct) exp[−ik · (r0 + ct ŝ0)]δ(ŝ − ŝ0),

(20)

in terms of rotated SH according to Eq. (13). Note that in this
case the diagonal elements of all block matrices (26) become
σl = μt . Due to this fact the infinite-dimensional matrix
exponentials exp[−AM (k)ct] can be evaluated analytically for
all M ∈ Z where the elements are obtained as

γ M
ll′ (k,t) = exp(−μtct)(−1)M

√
(2l + 1)(2l′ + 1)

×
l+l′∑

L=|l−l′|
(−i)LjL(kct)CL,0

l,0,l′,0C
L,0
l,M,l′,−M. (21)

The derived elements can now be subtracted from Green’s
function in Eq. (14). Note that for the isotropic scattering
medium the matrix elements χM

ll′ (k,t) are exactly the same as
that for the ballistic components γ M

ll′ (k,t) if |M| � 1. At the

end of the next section we also give an exact formula for the
more complicated matrix exponential exp[−A0(k)ct].

A. Harmonically modulated source

Another important form of time-resolved measurements is
performed in the frequency domain in which the amplitude
of the source is modulated harmonically at a given angular
frequency ω and the phase shift as well as the amplitude at
that frequency is measured at the detector position. In that
case the source term in the RTE (1) becomes

S(r,ŝ,t) = δ(r − r0)δ(ŝ − ŝ0) exp(iωt). (22)

The specific intensity caused by a time-harmonic source takes
also the form

ψ(r,ŝ,r0,ŝ0,t) = ψ(r,ŝ,r0,ŝ0) exp(iωt), (23)

where the complex amplitude is given by the solution of the
time-independent RTE

[ŝ · ∇ + μt + iω/c]ψ(r,ŝ,r0,ŝ0)

= μs

∫
f (ŝ · ŝ′)ψ(r,ŝ′,r0,ŝ0)d2s ′ + δ(r − r0)δ(ŝ − ŝ0).

(24)

We now proceed in the same way as already done from Eq. (4)
until Eq. (9). Here we do not get systems of differential
equations but the following systems of linear equations for
M ∈ Z ∧ l � |M|:

[AM (k) + iω/cIM ]|ψM (k)〉 = |qM (k)〉, (25)

where IM is the identity matrix and the components of |qM (k)〉
are given by exp(−ik · r0)Y ∗

lM (ŝ0; k̂). Now, the real quantities
σl after Eq. (11) before become the complex numbers σl =
μa + (1 − fl)μs + iω/c. For a given angular modulation
frequency ω, we are indented to obtain the unknown vector
|ψM (k)〉 with an analytical dependence on the wave number
k. This task can be accomplished by performing an eigenvalue
decomposition (EVD) of matrices BM = B−M for M � 0
which have the form

BM =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 blM 0 0 · · · 0

blM 0 bl+1,M 0 · · · ...

0 bl+1,M

. . .
. . . · · · 0

0 0
. . .

. . .
. . . 0

... · · · · · · . . . 0 bNM

0 · · · 0 0 bNM 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (26)

where l = M + 1,M + 2, . . . and the complex quantities

blM =
√

l2 − M2

(4l2 − 1)σl−1σl

. (27)

Here it is assumed that the EVD of all block matrices leads
to the eigenvalues � = {λ1,λ2, . . .} with the corresponding
eigenvectors |u〉. Furthermore we define the block diagonal
matrix U where the column vectors of individual block ma-
trices UM contain the eigenvectors of BM . The inverse to this
matrix is also block diagonal and denoted with U−1 = V. Note
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that apart from the special case ω = 0 when all matrices are real
and symmetric, we must be aware that in general U−1 	= UT.
In addition, the eigenvector components are denoted as 〈l|ui〉
whereas 〈νi |l′〉 are the row vector components of the inverse
matrix V = U−1, where l,l′ � |M|. Upon the EVD of the
matrices BM the solution of the corresponding set of linear
equations from Eq. (25) is obtained as

ψlM (k) = exp(−ik · r0)
∞∑

l′=|M|

∑
μ

〈l|uμ〉〈νμ|l′〉
1 + ikλμ

Y ∗
l′M (ŝ0; k̂)√

σlσl′
,

(28)

where μ = (M,i) is a composite index. For a fixed value M the
inner summation regarding μ runs only over eigenvalues and
vectors arising from the corresponding block matrix BM . Ad-
ditionally, in the case of the harmonically modulated source the
matrices BM depend only on the angular modulation frequency
ω but not on the wave number k. Thus the complete EVD
must be performed once only. The performance of the inverse
Fourier transform according to Eq. (2) and the consideration
of symmetry properties of the vector components leads to
the complex amplitude of the time-harmonic specific intensity
from Eq. (23):

ψ(r,ŝ,r0,ŝ0) =
∞∑

m=−∞

∞∑
l,l′=|m|

Y ∗
l′m(ŝ0; R̂)ψm

ll′(R)Ylm(ŝ; R̂), (29)

with matrix elements

ψm
ll′ (R) = c(−1)m

2π
√

σlσl′

l̄∑
M=−l̄

(−1)M
l+l′∑

L=|l−l′|
C

L,0
l,m,l′,−mC

L,0
l,M,l′,−M

×
∑

n

〈l|un〉〈νn|l′〉
λ3

n

kL(R/λn), (30)

where kl(x) is the spherical Bessel function of the second
kind. The composite index n is practically the same as μ from
Eq. (28) with the restriction that only eigenvalues λi with
property Re(λi) > 0 are considered.

B. Isotropic scattering

In the Introduction we have already mentioned that there
exists an exact analytical Green’s function to the three-
dimensional steady-state RTE for isotropic scattering. The
corresponding expression is only available in Fourier space
and given by Ref. [12]

ψ(k,ŝ) = δ(ŝ − ŝ0)

μt + ik · ŝ0
+ μs

4π

1

(μt + ik · ŝ)(μt + ik · ŝ0)

×
[

1 − μs

k
arctan

k

μt

]−1

, (31)

where the left-hand side term represents the ballistic compo-
nent. If no special symmetry is considered, the corresponding
inverse Fourier transform must be carried out numerically
over three dimensions which is not easy to perform. It is
possible to reduce the inverse Fourier transform to a one-
dimensional integral by writing the above specific intensity in
SH decomposition according to Eq. (13). After that we can

proceed in the same way as shown in the Appendix. If we take
advantage of the relation

1

μt + ik · ŝ
= i

k

∞∑
l=0

(2l + 1)Ql(iμt/k)Pl(k̂ · ŝ), (32)

where Re(μt ) > 0 and Ql(x) is the associated Legendre
function of the second kind, we obtain an alternative expression
for the specific intensity given in Eq. (31):

ψ(k,ŝ) = δ(ŝ − ŝ0)

μt + ik · ŝ0
+

∞∑
l,l′=0

Y ∗
l′0(ŝ0; k̂)Ill′ (k)Yl0(ŝ; k̂), (33)

with matrix elements

Ill′ (k) = −μs

k2

√
(2l + 1)(2l′ + 1)Ql(iμt/k)Ql′(iμt/k)

×
[

1 − μs

k
arctan

k

μt

]−1

. (34)

Note that the addition of the elements of the time-independent
ballistic component for M = 0,

γ M
ll′ (k) = i

(−1)M

k

√
(2l + 1)(2l′ + 1)

×
l+l′∑

L=|l−l′|
QL(iμt/k)CL,0

l,0,l′,0C
L,0
l,M,l′,−M, (35)

to that of Eq. (34) results exactly in the elements of the
infinite-dimensional inverse matrix A0(k) from Eq. (10). Now
we can give the exact solution for the elements χ0

ll′(k,t) of the
matrix exponential exp[−A0(k)ct] by replacing μt by μt + s

in Eq. (34) and performing

χ0
ll′ (k,t) = γ 0

ll′(k,t) + 1

2π i

∫
L

Ill′ (k,s) exp(sct)ds, (36)

where γ 0
ll′(k,t) is adopted from Eq. (21) and L denotes

a line along the imaginary axis in the complex s plane;
see Fig. 2. The function Ill′ (k,s) has one real-valued pole
at s0 = k cot(k/μs) − μt , where −μt � s0 � −μa , which is
only existent when |k| � μsπ/2. Furthermore the denominator
of Ill′ (k,s) has additionally two branch points at s = −μt ± ik
so it is necessary to introduce a branch cut parallel to the
imaginary axis with parametrization s(η) = −μt + ikη, where
|η| � 1.

Thus, by using the residue theorem the contour integral in
relation (36) can be written as

1

2π i

∫
L

Ill′ (k,s) exp(sct)ds = Res{Ill′(k,s) exp(sct),s = s0}

+ 1

2π i

∫
B

Ill′ (k,s) exp(sct)ds, (37)
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so that the time-dependent matrix elements can be obtained as

χ0
ll′(k,t)=γ 0

ll′ (k,t)+ μs

2π
( − 1)l+l′

√
(2l+1)(2l′+1) exp( − μtct)

∫ 1

−1

[
Ql(η+i0)Ql′(η+i0)

k − z1(η)
− Ql(η − i0)Ql′(η − i0)

k − z2(η)

]
exp(ikηct)dη

−
√

(2l + 1)(2l′ + 1) exp(−μtct)
Ql[i cot(k/μs)]Ql′[i cot(k/μs)]

sin2(k/μs)
exp[k cot(k/μs)ct]�

(
μs

π

2
− |k|

)
, (38)

where Ql(η ± i0) = Ql(η) ∓ iπ/2Pl(η) and z1/2(η) = μs{∓π − i ln[(1 + η)/(1 − η)]}/2. The function �(x) is the unit step
function. We additionally note that the spherical symmetric particle density �(r,t) caused by the isotropic point source S(r,t) =
δ(r)δ(t)/(4πr2) corresponds in Fourier space with the element �(k,t) = cχ0

00(k,t). Thus, the application of the inverse Fourier
transform for spherically symmetric functions

�(r,t) = 1

2π2

∫ ∞

0
�(k,t)j0(kr)k2dk (39)

leads to the time-domain particle density for values t > r/c:

�(r,t) = c
δ(r − ct)

4πr2
exp(−μtct) + μs

4πrt
exp(−μtct) ln

ct + r

ct − r

+ cμ2
s

16π2r
exp(−μtct)

∫ 1

0

∣∣∣∣1 − η

1 + η

∣∣∣∣
μs (r−ηct)/2 [(

π3 − 3π ln2 1 − η

1 + η

)
cos

(
μsπ

r − ηct

2

)

+ ln
1 − η

1 + η

(
3π2 − ln2 1 − η

1 + η

)
sin

(
μsπ

r − ηct

2

)]
�(r − ηct)dη

+ c

2π2μ2
s r

exp(−μtct)
∫ π/2μs

0

exp[k cot(k/μs)ct]

sin2(k/μs)
sin(kr)k3dk. (40)

Note that a very similar expression for the density caused by
a isotropic point source has already been derived in the work
of Ref. [27].

III. NUMERICAL RESULTS

The derived Green’s function is validated against the Monte
Carlo method [6], which converges in the limit of an infinitely

)Im( s

)Re( s

L

ik

ik

B
0

s

FIG. 2. (Color online) Complex s plane with corresponding
curves for evaluation of the contour integral.

large number of simulated particles to the exact solution of the
RTE. For the following comparison, the Henyey-Greenstein
phase function with anisotropy parameter g = 0.9 is used.
The optical properties of the scattering medium are assumed
to be μa = 0.1 mm−1, μs = 10 mm−1, and c = 3 × 108 m/s.
In the Monte Carlo simulations the angular resolution for the
detected particles was �θ = ±π/90,�ϕ = ±π/45, whereas
the spatial resolution was ±0.25 mm.

Due to convenience the point unidirectional source is
placed at the origin of the coordinate system of Fig. 1 so that
r0 = 0. The corresponding unit vectors ŝ and ŝ0 are denoted in

0 0.02 0.04 0.06 0.08
10

−3

10
−2

10
−1

t (ns)

ψ
 (

m
m

−
2 sr

−
1 ns

−
1 )

 

 

ŝ = (π/3, π)

ŝ = (π/3, 0)

FIG. 3. (Color online) Time-resolved Green’s function of the RTE
caused by a point unidirectional source with direction ŝ0 = (π/4,0)
evaluated for two different directions ŝ. The detection of the specific
intensity takes place at the point (r,θr ,ϕr ) = (3 mm,0,0).
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FIG. 4. (Color online) Amplitude as a function of the
angular modulation frequency evaluated for two different source
directions ŝ0.

the form

ŝ := (θ,ϕ) =
⎛
⎝ sin θ cos ϕ

sin θ sin ϕ

cos θ

⎞
⎠ . (41)

For the first comparison the time-domain Green’s function
is calculated with formula (14) and simulated with the Monte
Carlo method [7] for two different directions ŝ of propagation.
We note that the simulation time needed to obtain the Monte
Carlo results was more than 100 days using a single state of
the art processor. The resulting specific intensity is shown
in Fig. 3. The derived analytical Green’s function (solid
curves) agrees in both cases with the Monte Carlo method
(symbols).

Next the Green’s function is considered as function of
the angular modulation frequency ω using Eq. (29). In
order to verify the derived formula we performed a discrete-
time Fourier transform (DTFT) of the time-domain Green’s
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ŝ0 = (π/4, 0)

FIG. 5. (Color online) Argument of the complex amplitude as
a function of the angular modulation frequency evaluated for two
different source directions ŝ0.

function. For fixed vectors of the source direction, the direction
of propagation, and the position vector, one obtains the
function

ψ(ω) =
∞∑

n=−∞
T ψ(nT )e−iωnT , (42)

where T is the sampling interval. The corresponding amplitude
A(ω) = |ψ(ω)| and phase φ(ω) = − arg{ψ(ω)} are evaluated
for ŝ = (π/3,0) at the point (r,θr ,ϕr ) = (5 mm,0,0) and shown
in Figs. 4 and 5, respectively, for two source directions ŝ0.
The symbols correspond with formula (29) whereas the solid
curves are the results of the DTFT. It can be seen that the
amplitude and phase obtained from Eq. (29) agree well with
the results obtained from the DTFT.

IV. CONCLUSIONS

In this study the general Green’s function for an anisotrop-
ically scattering unbounded medium illuminated by a point
unidirectional source was derived. The dependence on all
variables is found analytically apart from the radial distance
between source and detector. This quantity is given by a
spherical Hankel transform which has to be carried out
numerically. The derived formulas have been successfully
validated with Monte Carlo simulations.

In addition, the corresponding Green’s function for an
harmonically modulated source was derived and successfully
validated using the solution for a δ source in time and
performing the discrete-time Fourier transform. Furthermore,
a special solution for the general Green’s function of an
isotropically scattering unbounded medium was presented.

Besides the direct application of the derived Green’s
function, it also represents the particular solution to the RTE
which is needed for solving boundary value problems. Finally,
we note that the solution is also usable for the validation of
numerical methods, such as the Monte Carlo method.

APPENDIX: EVALUATION OF THE FOURIER INTEGRAL

This Appendix contains one possibility for performing the
inverse Fourier transform according to Eq. (2). The matrix
elements of Green’s function in Fourier space (13) depends
only on the length k of the wave vector k. Therefore the inverse
transform regarding the angular variables requires knowledge
of the integral

∫
Y ∗

l′M (ŝ0; k̂)YlM (ŝ; k̂) exp(ik · R)d2sk. (A1)

In the following we make use of the rotational invariance
and determine at first the specific intensity in the positive z

direction leading to R̂ = ẑ. The Fourier kernel becomes now
independent of the azimuthal angle and can be written in terms
of the Wigner d function as

exp(ikR cos θk) =
∞∑

L=0

iL(2L + 1)jL(kR)dL
00(θk). (A2)
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The product of the SH in Eq. (A1) is considered in the explicit
form

Y ∗
l′M (ŝ0; k̂)YlM (ŝ; k̂) =

l∑
m=−l

l′∑
n=−l′

dl
mM (θk) exp(−imϕk)

×Ylm(ŝ)dl′
nM (θk) exp(inϕk)Y ∗

l′n(ŝ0).

(A3)

The integration of Eq. (A3) over the azimuthal angle can be
immediately performed resulting in∫ 2π

0
Y ∗

l′M (ŝ0; k̂)YlM (ŝ; k̂)dϕk

= 2π

l̄∑
m=−l̄

d l
mM (θk)Ylm(ŝ)dl′

mM (θk)Y ∗
l′m(ŝ0), (A4)

where l̄ = min(l,l′). The result of the integration regarding the
polar angle yields∫ π

0
dl

mM (θk)dl′
mM (θk)dL

00(θk) sin θkdθk

= (−1)m+M 2

2L + 1
C

L,0
l,m,l′,−mC

L,0
l,M,l′,−M. (A5)

Note that the above integral is only nonzero for values which
satisfy the triangular condition |l − l′| � L � l + l′. At this

stage the inverse Fourier transform regarding the angular
variables is completed under the assumption that R̂ = ẑ.
However, the obtained result can be directly expanded to the
general case R̂ 	= ẑ via rotation of the whole system into
the direction of an arbitrary unit vector R̂. In other words
it is possible to rotate virtually the whole system until the
unit vectors R̂ and ẑ become parallel. Then, we also must
rotate the unit vectors of the direction ŝ and the source ŝ0 in
the same way to reconstitute the original situation. This task
can be accomplished by rotating the SH in Eq. (A4) about
the azimuthal and polar angles of R̂. Taking into account all
results and discussions above, we arrive at the following useful
integral transform pair for rotated SH:∫

Y ∗
l′M (ŝ0; k̂)YlM (ŝ; k̂) exp(ik · R)d2sk

= 4π (−1)M
l̄∑

m=−l̄

(−1)mY ∗
l′m(ŝ0; R̂)Ylm(ŝ; R̂)

×
l+l′∑

L=|l−l′|
iLjL(kR)CL,0

l,m,l′,−mC
L,0
l,M,l′,−M. (A6)

Multiplying the obtained result with cχM
ll′ (k,t)/(2π )3 and

performing the integration regarding the radial coordinate k

leads to the real space Green’s function from Eq. (14).
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