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Deformation of an asymmetric thin film
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Experiments have investigated shape changes of polymer films induced by asymmetric swelling by a chemical
vapor. Inspired by recent work on the shaping of elastic sheets by non-Euclidean metrics [Y. Klein, E. Efrati,
and E. Sharon, Science 315, 1116 (2007)], we represent the effect of chemical vapors by a change in the target
metric tensor. In this problem, unlike that earlier work, the target metric is asymmetric between the two sides of
the film. Changing this metric induces a curvature of the film, which may curve into a partial cylinder or a partial
sphere. We calculate the elastic energy for each of these shapes and show that the sphere is favored for films
smaller than a critical size, which depends on the film thickness, while the cylinder is favored for larger films.
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I. INTRODUCTION

Thin films are three-dimensional (3D) objects with one
dimension much smaller than the other two. Such films are
not always flat; they can easily form buckled or wrinkled 3D
shapes. Over several years, there has been extensive theoretical
and experimental research to explore the mechanisms of
shape selection. This research is important to understand
the formation of biological structures, such as leaves and
flowers, in which thin films assume well-defined shapes with
biological functions. It is also important for the design of new
synthetic materials, which should spontaneously form desired
morphologies for applications in soft electronics and robotics,
control of microfluidic flow, and environmentally responsive
shape change [1–5].

Sharon and others have recently developed an important
theoretical approach for addressing shape selection in thin
elastic sheets [6–12]. In this approach, a film is characterized
by a “target metric tensor,” which describes the ideal spacings
between points in the film that minimize the local energy.
Depending on the mathematical properties of this tensor, there
may or may not be any global shape of the film embedded in 3D
Euclidean space that achieves the ideal spacings everywhere. If
this state is not achievable, the film is geometrically frustrated.
Its lowest-energy state will then have residual local stresses and
strains and will generally be curved in a complex way [13,14].
Sharon et al. have demonstrated this approach experimentally
by using thin films of gels, which can be expanded locally
by adding a nonuniform concentration of a dopant. The gels
then relax to the 3D shape that has been programmed by the
dopant concentration profile, in agreement with the geometric
calculations.

One limitation of Sharon’s theory is that it assumes the
films are uniform across their thickness. This limitation is
significant, because many types of films have some variation
in their elastic properties across their thickness. For example,
recent experiments have probed how soft materials respond
dynamically after inhomogeneous exposure to favorable sol-
vents [5]. Indeed, this type of variation might provide an
additional way to design films to form desired structures. The
purpose of this paper is to generalize the theory to describe
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asymmetric films, with arbitrary variation across the thickness.
Through this generalization, we show that the asymmetry leads
to new types of terms in the elastic free energy of the film, and
we investigate how these terms change the curvature.

As a specific example to motivate this study, we consider
the asymmetric swelling of a thin film by absorption of a gas
or liquid. A schematic view of this problem is shown in Fig. 1.
Here, a cross section through the film is illustrated by mass
points connected by springs, with bold lines indicating that a
spring is compressed relative to its stress-free length. Before
swelling, in Fig. 1(a), all the springs are at the stress-free
length, and the film is flat. After swelling, the intrinsic stress-
free lengths of the springs vary gradually along the thickness
direction, as shown in Fig. 1(b). Hence, the film deforms to
minimize the energy, as shown in Fig. 1(c). Because the film
is 3D, the actual geometry is more complex than the cross
section shown in the figure. It is not obvious whether the film
should deform into a partial cylinder (with mean curvature but
no Gaussian curvature) or a partial sphere (with both mean and
Gaussian curvature). In either case, some of the springs will be
unable to achieve their intrinsic stress-free length. Hence, this
is a simple example of a geometrically frustrated structure.

To address this problem, we extend the approach of Sharon
et al. to consider a target metric that depends on position
across the thickness of the film. We calculate the energy of
the deformed film in cylindrical and spherical geometries and
find there is a critical lateral size, which depends on the film
thickness and the gradient of the intrinsic metric. If the lateral
size of the film is smaller than this critical size, a partial sphere
is preferred; otherwise, a partial cylinder has lower energy.

This paper is organized as follows. In Sec. II, we briefly
review the theory of non-Euclidean plates and use it to
calculate the energy in the general case where the target metric
is proportional to the distance from the midplane. We then use
this general formula to calculate the energy for a cylinder
in Sec. III and for a sphere in Sec. IV. Finally, in Sec. V,
we discuss the results of this study and compare them with
previous work on related elastic problems.

II. THEORY

In the first part of this section, we briefly review the non-
Euclidean theory developed by Sharon et al. for the special
case in which the target metric is uniform across the thickness
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FIG. 1. Schematic illustration of the deformation of a thin shell
due to swelling: (a) before swelling, (b) after swelling without any
deformation, and (c) deformed shell.

of the film [8,9]. We then introduce our calculation for the
asymmetric film with a target metric tensor that depends on
the distance from the midplane of the film.

A. Brief review of non-Euclidean theory

Following Sharon et al., we define the elastic free energy
for any configuration of a material through the following
construction. First, we construct a coordinate system xi , for
i = 1, 2, and 3, in the material frame. The current 3D position
of a point (x1, x2, x3) is then given by R(x1, x2, x3). As a
result, the current spacing between two nearby material points
(x1, x2, x3) and (x1 + dx1, x2 + dx2, x3 + dx3) is given by
(ds)2 = gij dxidxj (using the Einstein summation convention,
where Latin indices range from 1 to 3 and Greek indices range
from 1 to 2). Here, the metric tensor is gij = ∂xi R · ∂xj R =
∂iR · ∂j R. By comparison, if we were to cut out a very small
piece of material around the point (x1, x2, x3), and let this
small piece relax to its lowest-energy state, then the spacing
between those points would be (ds)2 = ḡij dxidxj , where ḡij

is the target metric tensor that characterizes the intrinsic,
ideal spacing between the points. The Green-Lagrangian strain
tensor is then defined as the difference between the current
metric and the target metric,

εij = 1
2 (gij − ḡij ). (1)

If the material is isotropic, the most general expression for the
3D elastic energy density can be written as

f3 = 1
2Aijklεij εkl, (2)

where

Aijkl = λḡij ḡkl + μ(ḡikḡj l + ḡil ḡjk) (3)

are the contravariant components of the 3D elasticity tensor
in curvilinear coordinates [15]. If the target metric ḡij is
independent of the coordinate x3 across the thickness of the
cell, then the 3D elastic energy density can be integrated across
thickness to construct the 2D elastic energy density of the
plate,

f2 =
∫

f3dx3. (4)

This 2D elastic energy density includes a stretching energy
(proportional to thickness h) and a bending energy (propor-
tional to h3). The total elastic energy then becomes

F =
∫

f2

√
|ḡ|dx1dx2 =

∫
f3

√
|ḡ|dx1dx2dx3, (5)

integrated over the whole body.
Note that the target metric tensor ḡij represents an ideal

local configuration of the plate with zero stress and zero
elastic energy density. There might or might not be any global
configuration in 3D Euclidean space that has this target metric
tensor everywhere. If such a configuration exists, then it is
a stress-free reference configuration, which can be used to
formulate Truesdell’s hyperelasticity principle [16]. On the
other hand, if such a configuration does not exist, then there is
no such stress-free reference configuration. It is still possible
to minimize the elastic energy to find the equilibrium state of
the plate, but this equilibrium state must be a frustrated state
with residual local stress. In this case, the object can be called a
non-Euclidean plane, whose midplane has no immersion with
zero stretching in 3D Euclidean space.

B. Asymmetric film

In our problem of asymmetric swelling of a thin film, as
shown in Fig. 1, the target metric must depend on position
across the thickness of the film. If the gas vapor induces
expansion of the polymer film, the expansions at the top
and the bottom of the film are different due to the different
concentrations of the gas. Assuming the gas concentration
varies linearly across the thickness, the target tangent vectors
can be written as

ḡi = (p + qx3)g̊i , (6)

and hence the target metric is

ḡij = ḡi · ḡj = [p2 + 2pqx3 + q2(x3)2]g̊ij . (7)

In our notation, all symbols with rings represent quantities
before swelling; in particular, g̊i is the tangent vector and
g̊ij is the metric before swelling. Likewise, all symbols with
bars represent target quantities after swelling. The coefficients
p and q define how the gas concentration is distributed,
p represents a uniform expansion or compression, and q

represents a linear gradient in the expansion factor across the
thickness of the film.

From Eq. (1), the strain tensor is defined as the difference
between the actual metric gij and the target metric ḡij after
swelling. To find the actual metric, we must consider a specific
configuration of the plate. Following the second Kirchhoff-
Love assumption, we assume that points located on any normal
to the midplane in the initial state remain on that normal in the

036602-2



DEFORMATION OF AN ASYMMETRIC THIN FILM PHYSICAL REVIEW E 86, 036602 (2012)

deformed state, but the distance to the midplane may change.
Thus, a point (x1, x2, x3 = 0) on the midplane before swelling
becomes R(x1, x2, x3 = 0) = Rmid(x1, x2) after swelling, and
a point (x1,x2,x3) off the midplane becomes

R(x1, x2, x3) = Rmid(x1, x2) + ξ (x3)N̂(x1, x2). (8)

Here, N̂ is the unit normal vector to the midplane, and ξ (x3)
is the new distance to the midplane along the normal. Because
of swelling, ξ (x3) is no longer equal to x3. To lowest order for
a thin film, ξ (x3) can be written as the power series

ξ (x3) = mx3 + 1
2m′(x3)2. (9)

If we assume that the local volume everywhere remains
constant during deformation, equal to the swelled local volume
of the target metric, then the coefficients in this expansion are
constrained to be m = p and m′ = 3q.

Using this configuration of the plate, we can calculate the
metric tensor gij as a power series in x3. From Eqs. (8) and
(9), the first 2 × 2 components of gij can be written as

gαβ = aαβ − 2mbαβx3 − m′bαβ (x3)2, (10)

where aαβ = ∂αR · ∂βR is the first fundamental form of the
midplane (i.e., the 2D metric tensor) and bαβ = N̂ · ∂α∂βR is
the second fundamental form of the midplane (i.e., the 2D
curvature tensor). The first 2 × 2 components of the strain
tensor are then εαβ = 1

2 (gαβ − ḡαβ).
We can now calculate the elastic energy density of the plate.

Based on the first Kirchhoff-Love assumption that the stress is
in the local midplane [8,17], we can express the full 3D elastic
energy density of Eq. (2) in terms of the first 2 × 2 components
of the strain tensor as

f3 = 1
2Aαβγ δεαβεγ δ, (11)

where

Aαβγ δ = 2μ

(
λ

λ + 2μ
ḡαβḡγ δ + ḡαγ ḡβδ

)
. (12)

If we assume that the local volume everywhere remains
constant during deformation, then ḡij εij = 0, and hence the
elastic modulus λ → ∞. As a result, the elasticity tensor
becomes

Aαβγ δ = 2μ(ḡαβ ḡγ δ + ḡαγ ḡβδ). (13)

The contravariant components of the target metric tensor in
this expression are the inverse of the covariant components of
Eq. (7). Hence, the elasticity tensor depends on x3 as

Aαβγ δ = 1

p4
Åαβγ δ

[
1 − 4q

p
x3 + 10q2

p2
(x3)2

]
. (14)

Thus, the 2D elastic energy density can be calculated by
integrating the 3D elastic energy density over the film thickness
w, and neglecting terms that have higher order than q2, to
obtain

f2 =
∫ w/2

−w/2
f3dx3 = 1

p4
Åαβγ δ

(
w

2
ε2D
αβ ε2D

γ δ + p2w3

24
bαβbγ δ

+ qw3

24
ε2D
αβ bγ δ + qw3

12
aαβbγ δ

+ q2w3

p2
ε2D
αβ aγ δ + q2w3

3p2
aαβaγ δ

)
. (15)

To interpret this 2D elastic energy density f2, note that it
depends on three tensors characterizing the local geometry of
the midplane: the 2D strain tensor

ε2D
αβ = 1

2 (aαβ − āαβ), (16)

which gives the difference between the actual metric and
the target metric on the midplane, as well as the 2D metric
tensor aαβ and the 2D curvature tensor bαβ . If there is no
swelling, so that p = 1 and q = 0, then f2 becomes the
deformation energy of a symmetric film. In that case, the first
and second terms in Eq. (15) are the stretching and bending
terms, and the other terms vanish. However, if the film is
swollen asymmetrically, with q �= 0, then the last four terms
provide new couplings that are permitted by the asymmetry.
Two of these terms are odd in the curvature tensor bαβ , so they
favor spontaneous curvature of the film; i.e., the lowest-energy
state of a film is not flat but has a preferred curvature.
The concept of spontaneous curvature was first introduced in
classic work on fluid lipid membranes by Helfrich [18], purely
on a macroscopic phenomenological basis, in order to describe
membranes where the two sides are chemically different. Here,
we see that it arises through our more microscopic model of
elastic films when there is asymmetric swelling, consistent
with Helfrich’s symmetry argument. In addition, we see that
the asymmetric swelling couples the curvature tensor to the
in-plane strain ε2D

αβ . The last two terms might seem to be of
higher order in q than the others, but we show later that the
equilibrium curvature bαβ is proportional to q, and hence the
last five terms are all of order q2.

For further insight into the 2D elastic energy of Eq. (15), in
the following two sections we use it to calculate the energy of
an asymmetrically swollen film curving into a partial cylinder
or a partial sphere, as shown in Fig. 2. In each case, we calculate
the optimal curvature and determine how it depends on the
asymmetry parameter q. We then compare the energies of
these two shapes to see which is favored, as a function of the
film parameters. We do not consider a saddle shape because
the saddle does not have an asymmetry between the two sides
of the film, which is favored by the swelling, and also because
the saddle is not seen in experiments such as Ref. [5].

III. CYLINDER

We first use Eq. (15) to calculate the energy when the film
deforms into a partial cylinder, as shown in Fig. 2(a). For
this calculation, we use an orthogonal curvilinear coordinate
system (ξ1, ξ2) on the midplane in the material frame, where ξ1

FIG. 2. (Color online) Illustration of the curved film shapes
considered in Secs. III and IV. (a) Partial cylinder. (b) Partial sphere.
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is the direction around the circumference of the cylinder and
ξ2 is the direction along the axis. The 3D position of any point
on the midplane can be written as

Rmid = rc cos

(
C1ξ1

rc

)
x̂ + C2ξ2ŷ + rc sin

(
C1ξ1

rc

)
ẑ, (17)

where rc is the cylinder radius; C1 and C2 are parameters
that measure how much the coordinates elongate or shrink;
and x̂, ŷ, and ẑ are unit vectors in Cartesian coordinates for
the laboratory frame. From Eq. (7), the target metric of the
midplane is

āαβ =
(

p2 0

0 p2

)
. (18)

From Eq. (17), the actual metric and curvature tensors (first and
second fundamental forms) of the partial cylinder are given by

aαβ =
(

C2
1 0

0 C2
2

)
(19)

and

bαβ =
(−C2

1/rc 0

0 0

)
. (20)

The elasticity tensor Åαβγ δ can be calculated by noticing that
the target metric tensor before swelling is just the identity
matrix, independent of position. Hence, the nonzero terms
in the elasticity tensor are Å1111 = Å2222 = 4μ and Å1122 =
Å1212 = Å2121 = Å2211 = 2μ.

We now insert the target metric, actual metric, and curvature
tensors into the 2D elastic energy of Eq. (15) and minimize
over the parameters C1, C2, and rc. To lowest order in w, we
find that the stretching factors are C1 = C2 = p, the cylinder
radius is

rc = 2p2

3q
, (21)

and the corresponding 2D elastic energy density at that
minimum is

f2 = 29q2

8p2
w3μ. (22)

These results imply that the curvature tensor bαβ is proportional
to q and that the strain tensor ε2D

αβ = 0; i.e., there is no strain
on the midplane. Note, however, that there is still nonzero
shear strain off the midplane because the metric tensor off
midplane shows anisotropic swelling while the target metric
favors isotropic swelling; that is the reason why the elastic
energy is nonzero. In the limit of a symmetric film with q → 0,
then rc → ∞, the film remains flat, and there is only uniform
swelling without energy cost.

Equation (22) shows that the elastic energy density of the
partial cylinder is uniform in 2D, independent of position
on the midplane, and hence the total elastic energy is just
proportional to the film area. In particular, if the initial shape
of the film is a disk with radius rmax in the material frame,
hence radius prmax in the midplane after swelling, then the
total elastic energy is

Fc = 29
8 πq2r2

maxw
3μ. (23)

IV. SPHERE

Let us now consider a circular thin film deforming into a
partial of a sphere, as shown in Fig. 2(b). For this problem, it
is convenient to use polar coordinates (r, φ) on the midplane
in the material frame, where r is the radial displacement
from the center of the circular film before swelling and φ

is the azimuthal angle, which is assumed not to change during
swelling and deformation. The 3D position of any point on the
midplane can then be written as

Rmid = rs sin θ (r) cos φx̂ + rs sin θ (r) sin φŷ + rs cos θ (r)ẑ,

(24)

where rs is the radius of the sphere and θ (r) is a monotonically
increasing function of r , to be determined, which describes
how the material stretches or shrinks in the radial direction. [In
particular, θ (r) gives the angular position on the partial sphere
up from the (−z) axis corresponding to the radial position r

in the material frame.] In this coordinate system, the target
metric of the middle plane is

āαβ =
(

p2 0

0 p2r2

)
. (25)

Note that this target metric is equivalent to Eq. (18), but in a
different coordinate system. From Eq. (24), the actual metric
and curvature tensors (first and second fundamental forms) are
given by

aαβ =
(

r2
s θ ′(r)2 0

0 r2
s sin2 θ (r)

)
(26)

and

bαβ =
(−rsθ

′(r)2 0

0 −rs sin2 θ (r)

)
. (27)

In this coordinate system, the nonzero components of the
elasticity tensor Åαβγ δ are Å1111 = 4μ, Å2222 = 4μ/r4, and
Å1122 = Å1212 = Å2121 = Å2211 = 2μ/r2.

The 2D elastic energy of Eq. (15) is now a functional of the
stretching function θ (r) and the sphere radius rs . To minimize
this energy over θ (r), we expand θ (r) as a power series in r

and minimize over the series coefficients. The leading terms
are then

θ (r) = π −
(

p − p3w2

6r2
s

+ 3pqw2

8rs

)
r

rs

. (28)

To minimize the energy over rs , we must consider two regimes
in terms of q, w, and rmax, the radius of the film in the material
frame. In the first regime, where qr2

max/w � 1, the optimum
sphere radius is rs = p2/q, and the total elastic energy is

Fs = 7
2πq2r2

maxw
3μ. (29)

By comparison, in the second regime, where qr2
max/w � 1,

the sphere radius is rs = (prmax)4/3(26qw2)−1/3, and the total
elastic energy is

Fs = 4πq2r2
maxw

3μ. (30)
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V. DISCUSSION

Our calculations in the preceding sections lead to specific
conclusions about the cylindrical and spherical shapes, as well
as more general insight into elastic theory for asymmetric
films. For the specific problem of cylindrical and spherical
shapes, we can see that Eq. (23) for the elastic energy of a
partial cylinder is between the two regimes of Eqs. (29) and
(30) for a partial sphere. This result implies that the spherical
deformation is favored for disks of small radius rmax < rcritical,
while the cylindrical deformation is favored for disks of large
rmax > rcritical. Calculating the actual value of rcritical requires
higher-order terms than we have presented here, and the
numerical result is rcritical = 1.6(wp/q)1/2. To understand this
result, note that the partial sphere has an isotropic deformation
in the midplane, which is consistent with the target metric,
while the partial cylinder is anisotropic in the midplane and
disagrees with the target, which costs extra energy. For that
reason, the partial sphere is favored for small rmax. By contrast,
for large rmax the partial sphere must have extra stretching in the
midplane, and hence it becomes disfavored with respect to the
partial cylinder. This trend is at least qualitatively consistent
with experiments on inhomogeneous solvent exposure, as

shown in Fig. 3 of Ref. [5], although our calculation describes
equilibrium behavior as a function of concentration while those
experiments probe dynamic behavior as a function of time.

More generally, we have shown that the theoretical
approach of Sharon and collaborators can be applied to
asymmetric films. Through this approach, we transform the 3D
elastic energy into the effective 2D elastic energy of Eq. (15).
This effective 2D elastic energy shows the standard stretching
and bending energies, which have been studied extensively
for symmetric films, as well as new terms arising from the
asymmetry. These new terms include a spontaneous curvature
term, which is linear in the curvature tensor and hence favors
curvature of the asymmetric film, as well as a coupling between
spontaneous curvature and in-plane strain. These new terms
should provide new opportunities to design synthetic materials
that will spontaneously form desired shapes for technological
applications.
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