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It is shown that the dynamics of amplitude-modulated compressional dispersive Alfvénic (CDA) waves in a
collisional megnetoplasma is governed by a complex Ginzburg-Landau (CGL) equation. The nonlinear dispersion
relation for the modulational instability of the CDA waves is derived and investigated numerically. It is found
that the growth rate of the modulational instability decreases (increases) with the increase of the normalized
electron-ion collision frequency α (the plasma β). The modulational instability criterion for the CGL equation
is defined precisely and investigated numerically. The region of the modulational instability becomes narrower
with the increase of α and β, indicating that the system dissipates the wave energy by collisions, and a stable
CDA wave envelope packet in the form of a hole will be a dominant localized pulse. For a collisionless plasma,
i.e., α = 0, the CGL equation reduces to the standard nonlinear Schrödinger (NLS) equation. The latter is used to
investigate the modulational (in)stability region for the CDA waves in a collisionless magnetoplasma. It is shown
that, within unstable regions, a random set of nonlinearly interacting CDA perturbations leads to the formation of
CDA rogue waves. In order to demonstrate that the characteristics of the CDA rogue waves are influenced by the
plasma β, the relevant numerical analysis of the appropriate nonlinear solution of the NLS equation is presented.
The application of our investigation to space and laboratory magnetoplasmas is discussed.
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I. INTRODUCTION

In a cold magnetized plasma two different electromagnetic
waves can propagate [1] for a specified frequency. In general,
one wave propagates with a faster speed than the other, and
thus a reasonable nomenclature for them would be “fast
mode” and “slow mode.” Unfortunately, depending on the
specific frequency band, different research communities use
a different terminology to distinguish between these two
modes. This practice can be confusing when comparing
results across different research areas, especially when more
complicating features are considered, such as finite ion and
electron temperatures and multiple ion species. In a sense, the
present study falls into this category. Thus, it is useful to define,
at the outset, the wave modes that are being investigated.
For a single ion species, and in the frequency band near
the ion cyclotron frequency, the two plasma electromagnetic
modes are most commonly known as “Alfvén waves.” In the
laboratory-oriented community, the slower mode is frequently
described as the “shear” Alfvén wave, and the faster mode as
the “compressional” Alfvén wave. The present study focuses
entirely on the compressional mode [2]. The latter was reported
first by Adlam and Allen [3] for large-amplitude waves that
travel into a cold collisionless electron-ion plasma containing a
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magnetic field when it is rapidly compressed. Later, extensive
work was done to examine the properties of this mode; see, e.g.,
Refs. [4–8]. Some of these works incorporated the effect of
electron-ion collisions, so a compressional dispersive Alfvén
(CDA) wave exists. The appropriate dynamical equation for
studying the CDA waves is a complex Ginzburg-Landau
(CGL) equation. The CGL equation is one of the most-studied
nonlinear equations in the physics community. It describes
on a qualitative and often even on a quantitative level a vast
variety of phenomena from nonlinear waves to second-order
phase transitions and from superconductivity, superfluidity,
and Bose-Einstein condensation to liquid crystals, strings in
field theory, and plasmas [9–13]. On the other hand, the
CGL equation describes the slow modulation of a periodic
pattern in space and time near the threshold of an insta-
bility, where a band of modes become unstable. The CGL
equation admits localized soliton solutions, which have the
general name “dissipative solitons” [14]. However, when the
dissipation is neglected (in our case the electron-ion collision
vanishes) then the CGL equation reduces to the usual nonlinear
Schrödinger (NLS) equation. The latter predicts the regions
of the modulational instability of the compressional Alfvén
waves, when the electron-ion collision is neglected. Within the
modulational unstable envelope pulse region, it is possible for
a random perturbation of the amplitude to grow and this may
thus lead to the creation of Alfvénic rogue waves. Recently,
the rogue waves in a multicomponent plasma have been
experimentally observed [15], while the theoretical precursors
of the rogue waves in plasmas were reported by many authors
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(see e.g. Refs. [16–19]). Indeed, rogue waves have been
studied in many different systems including nonlinear fiber
optics [20], parametrically driven capillary waves [21], Bose-
Einstein condensates [22], superfluids [23], optical cavities
[24], plasmonics [25], and narrow-band directional ocean
waves [26].

In this paper, we study the dynamics of amplitude-
modulated CDA waves across an external magnetic field in
a collisional magnetoplasma. In Sec. II, the basic set of
fluid equations for the nonlinear CDA waves are presented
and the CGL equation is derived. In Sec. III, the stability
analysis and the propagation properties of the amplitude-
modulated CDA waves are discussed. Furthermore, when the
electron-ion collision vanishes the CGL equation reduces to
the NLS equation. By using the latter, the nonlinear evolution
of the modulationally unstable CDA rogue waves has been
investigated numerically. Finally, a summary of our results
and their applications appear in Sec. IV.

II. GOVERNING EQUATIONS AND THE DERIVATION
OF THE CGL EQUATION

We consider the nonlinear propagation of CDA waves
across a uniform magnetic field (B0ẑ) in an electron-ion
plasma, where ẑ is the unit vector along the z axis in a
Cartesian coordinate system and B0 is the strength of the
magnetic field. The restoring force on the CDA waves comes
from the magnetic pressure, whereas the ion mass provides the
inertia to sustain the CDA waves. The CDA wave dispersion
is due to the electron polarization drift in the wave electric
field E⊥ = Exx̂ + Eyŷ, where x̂ and ŷ are the unit vectors
along the x and y axes, respectively. The CDA wave magnetic
field is aligned along the z axis. In a quasineutral plasma with
ne = ni ≡ n, where ne and ni are the electron and ion number
densities, respectively, the x components of the electron and
ion fluid velocities are equal (i.e., uex = uix ≡ u), whereas
the x and y components of the electron fluid velocities differ
owing to the electron polarization drift. The electrons carry
currents only along the y direction. The CDA waves compress
the magnetic-field lines without bending them, and they are
accompanied by density perturbations.

We are interested in examining the nonlinear propagation of
one-dimensional CDA waves along the x axis in a quasineutral
collisional magnetoplasma. The nonlinear dynamics of the
CDA waves in our plasma is governed by [8]
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(3)
where β = 4πn0kBT /B2

0 , α = νei/ωLH , D/Dt = (∂/∂t) +
u∂/∂x, νei is the constant electron-ion collision frequency,
B(= B0 + B1) the sum of the ambient and wave magnetic
fields, me and mi are the electron and ion masses, respectively,

T (= Te + Ti) is the sum of the electron and ion temperatures,
n0 is the equilibrium plasma number density, e is the magni-
tude of the electron charge, kB is the Boltzmann constant,
ωLH (= √

ωceωci) is the lower-hybrid resonance frequency,
ωce(= eB0/mec) and ωci(= eB0/mic) are the electron and
ion gyrofrequencies, respectively, and c is the speed of light
in vacuum. Here, n is normalized by n0, B by B0, u by
the Alfvén speed VA = B0/

√
4πn0mi , t by ω−1

LH , and x by
the electron skin depth λe(= c/ωpe ≡ CA/ωLH ), with ωpe =
(4πn0e

2/me)1/2 the electron plasma frequency.
To examine the nonlinear wave modulation of the CDA

waves, the independent variables are stretched as [27–30]

ξ = ε(x − vgt) and τ = ε2t, (4)

where 0 < ε < 1 is a small (real) parameter and vg is the
envelope group velocity to be determined later. The dependent
variables are expanded as

A(x,t) = A0 +
∞∑

m=1

εm

m∑
L=−m

A(m)
L (ξ,τ ) exp(iL�), (5)

where

A(m)
L = [

n
(m)
L u

(m)
L B

(m)
L

]T
,

A(0)
L = [1 0 1]T ,and � = kx − ωt .

Here k and ω are real variables representing the fundamental
(carrier) wave number and the angular frequency, respectively.
All elements of A(m)

L satisfy the reality condition A(m)
−L = A∗(m)

L ,
where the asterisk denotes the complex conjugate.

By substituting Eqs. (4) and (5) into Eqs. (1)–(3) and
collecting terms of the same powers of ε, the first-order
(m = 1) equations with L = 1 gives

n
(1)
1 = k2

ω2 − 3k2β
B

(1)
1 , u

(1)
1 = ωk

ω2 − 3k2β
B

(1)
1 , (6)

with ω satisfying the relation

ω3 +
(

ik2α

1 + k2

)
ω2 −

(
k2 + 3k2β(1 + k2)

1 + k2

)
ω

− 3ik4αβ

1 + k2
= 0. (7)

Clearly, the linear dispersion relation (7) has three complex
roots for real values of k. The imaginary (ωi) and the real (ωr )
parts of ω are numerically investigated in Figs. 1 and 2. The real
frequency ωr represents the CDA wave frequency, while the
imaginary frequency ωi indicates the damping rate. It is clear
that increasing α, for k > 0.2, decreases the damping rate, as
shown in Fig. 1(a), while the increase of α does not affect the
CDA wave frequency, as depicted in Fig. 1(b). The effect of
the plasma β on ωi and ωr is depicted in Fig. 2. It is found
that, for large k, the increase of β would lead to an increase in
the damping rate. Also, it is seen that increasing β makes the
CDA wave frequency become higher. It is worth mentioning
that only one root of the complex dispersion relation (7) is
plotted in Figs. 1 and 2. The numerical investigation for the
second root shows that the increase of both α and β would
lead to enhance the damping rate, but the CDA wave frequency
does not change. The third root yields a negative CDA wave
frequency, which is not physically acceptable.
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FIG. 1. (Color online) The variation of (a) the imaginary fre-
quency ωi and (b) the real frequency ωr in the k-α plane for β = 0.6.

The second-order (m = 2) reduced equations with L = 1
yield

n
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FIG. 2. (Color online) The variation of (a) the imaginary fre-
quency ωi and (b) the real frequency ωr in the k-β plane for α = 0.1.

with the compatibility condition

vg = ∂ω

∂k
= −k

δ

[
2iα − 2ω(ω2 − (ω2 − 3k2β)2)

(ω2 − 3k2β)2

]
, (10)

where

δ = 1 + k2

[
1 + (ω2 + 3k2β)

(ω2 − 3k2β)2

]
.

The compatibility condition (10) represents the group velocity
of the CDA waves. It is seen that the group velocity is
composed of real (vgr ) and imaginary (vgi) parts. The complex
group velocity is common in absorbing and active media,
yet its precise physical meaning is unclear. While in the
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FIG. 3. (Color online) The profile of the complex group velocityvgi (a) in the k-α plane for β = 0.1 and (b) in the k-β plane for α = 0.1.

The profile of the real group velocity vgr (c) in the k-α plane for β = 0.1 and (d) in the k-β plane for α = 0.1.

case of a nondissipative medium the group velocity of the
propagating waves is exactly equal to the observable energy
velocity defined as the ratio between the energy flux and the
total energy density, in a dissipative medium it is in general a
complex quantity which cannot be associated with the velocity
of energy transport. Nevertheless, we find that the complex
group velocity may contain information about the wave energy
absorption in the medium [31]. The effects of the plasma
parameters α and β on vgi and vgr are shown in Fig. 3. It
is found that the increase of α and β would lead to a decrease
in vgi, as illustrated in Figs. 3(a) and 3(b), respectively. We
speculate that due to such behavior the system dissipates wave

energy for higher collision frequency and weaker magnetic
field. However, the increase of α and β causes the real group
velocity vgr to increase, as depicted in Figs. 3(c) and 3(d),
respectively.

The second-harmonic modes (m = L = 2) arising from the
nonlinear self-interaction of the carrier waves are obtained in
terms of (B(1)

1 )2 as

n
(2)
2 = c

(22)
1

(
B

(1)
1

)2
, (11)

u
(2)
2 = c

(22)
2

(
B

(1)
1

)2
, (12)
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and

B
(2)
2 = c

(22)
3

(
B

(1)
1

)2
, (13)

where c
(22)
1 , c

(22)
2 , and c

(22)
3 are given in the Appendix.

The nonlinear self-interaction of the carrier wave also leads
to the creation of a zeroth-order harmonic. Its strength is
analytically determined by taking the L = 0 component of
the third-order reduced equations, which can be expressed as

n
(2)
0 = c

(20)
1

∣∣B(1)
1

∣∣2
, (14)

u
(2)
0 = c

(20)
2

∣∣B(1)
1

∣∣2
, (15)

and

B
(2)
0 = c

(20)
3

∣∣B(1)
1

∣∣2
, (16)

where c
(20)
1 , c

(20)
2 , and c

(20)
3 are given in the Appendix.

Finally, the third-harmonic modes (m = 3 and L = 1),
with the aid of Eqs. (11)–(16), give a set of equations. The
compatibility condition for these equations yields the CGL
equation

i
∂�

∂τ
+ P

∂2�

∂ξ 2
+ Q|�|2� = 0, (17)

where B
(1)
1 ≡ � for simplicity. The dispersion coefficient P (=

Pr + iPi) is

P = L1

(ω2 − 3k2β)3

[
1 + k2

(
1 + ω2 + 3k2β

(ω2 − 3k2β)2

)]−1

, (18)

where L1 is

L1 = ω3(9k2β + ω2) − i(α − iω)[ω6 − 9k2βω4 − 27k4β2(k2β − ω2)]

+kvg[54k4β2(k2β − ω2) − 18k2βω2(1 − ω2) − 2ω4(1 + ω2) + kωvg(9k2β + ω2)],

and the nonlinear coefficient Q(= Qr + iQi) is

Q = L2

(ω2 − 3k2β)4

[
1 + k2

(
1 + ω2 + 3k2β

(ω2 − 3k2β)2

)]−1

, (19)

where

L2 = k

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

k5[9k4β2(iα + 3ω) + ω3(−1 + iαω + 3ω2) − 3k2βω(1 + 2iαω + 6ω2)]

−2c
(20)
3 kω(ω2 − 3k2β)3 − 2c

(22)
3 k(ω2 − 3k2β)3[ω + k2(iα + 3ω)]

+c
(22)
2 (ω2 − 3k2β)3[3k4β − ω2 + k2(1 + 3β − ω2)]

−c
(20)
2 (ω2 − 3k2β)2[9k6β2 + ω4 + 3k4β(1 + 3β − 2ω2) + k2ω2(1 − 6β + ω2)]

−c
(20)
1 k(ω2 − 3k2β)2{9k4β2(ω + iα) + ω3[ω(ω + iα) − 1] − 3k2βω[2ω(ω + iα) − 3]}

+c
(22)
1 k(ω2 − 3k2β)2{9k4β2(ω + iα) + ω3[ω(ω + iα) − 1] − 3k2βω[2ω(ω + iα) + 3]}

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

III. STABILITY ANALYSIS AND DISCUSSION

We study the stability of the CDA waves in a warm
collisional plasma across a uniform magnetic field, when
the modulation of the wave packet amplitude takes place in
the direction of the carrier wave propagation. We consider the
dynamic solution of the CGL equation (17). Accordingly, we
separate the amplitude � into two parts:

� = [�0 + δ�(ξ,τ )] exp(iQ|�0|2τ ), (20)

where �0 is the constant-amplitude perturbation,
δ�(δ� � �0) is the small-amplitude perturbation, and
the nonlinear frequency shift is (−Q|�0|2). After substituting
Eq. (20) into Eq. (17) and linearizing the result with respect
to δ�(ξ,τ ), the evolution equation for the perturbation will be

i
∂

∂τ
δ� + P

∂2

∂ξ 2
δ� + Q|�0|2(δ� + δ�∗) = 0, (21)

where δ�∗ is the complex conjugate of δ�. We introduce

δ�(ξ,τ ) = U exp[i(Kξ − �τ )] + V exp[−i(Kξ − �∗τ )],

(22)

where U and V are complex constant amplitudes, with
(Kξ − �τ ) as the modulation phase, and where K(|K| � k)
and �(� � ω) are the wave number and the frequency of the
modulated waves, respectively. Using Eq. (22) into Eq. (21)
gives a linear homogeneous system of equations for U and V :

(� + PK2 − Q|�0|2)U − Q|�0|2V = 0 (23)

and

Q∗|�0|2U + (� − P ∗K2 + Q∗|�0|2)V = 0. (24)

The coupled system of Eqs. (23) and (24) gives the following
nonlinear dispersion relation for the CDA wave:

�2 + 2i(K2Pi − Qi |�0|2)� − K2
[
K2

(
P 2

i + Q2
i

)
− 2(PiQi + PrQr )|�0|2

] = 0. (25)
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Solving Eq. (25), we obtain

�± = −i(K2Pi − Qi |�0|2)

±
√

PrK2(PrK2 − 2Qr |�0|2) − Q2
i |�0|4. (26)

Substituting Eq. (26) into Eq. (22) and after mathematical
manipulation we arrive at the modulational instability criterion
for the CDA waves as

PiQi + PrQr > 0. (27)

The inequality (27) fulfils the well-known Lange and Newell’s
criterion [32]. Consequently, the CDA wave is stable for
PiQi + PrQr < 0 and it is unstable for PiQi + PrQr > 0.

Based upon the above finding, we determine in various
regimes the modulational instability of the CDA waves that
are based on the inequality (27). The latter is investigated in
Figs. 4 and 5. It is obvious that there are two domains for the
unstable pulses and one for stable pulses. Increasing α would
lead to a decrease of the instability domain and an increase
of the stable regime, as illustrated in Figs. 4, for low k. The
instability region shifts to higher k with the increase of α.
This behavior supports our result that is depicted in Fig. 1(a),
where the modulational instability growth rate decreases with
the increase of electron-ion collisions. The effect of the plasma
β on the modulational instability of the CDA wave packets is
investigated in Fig. 5. It is seen that the increase of the plasma
β (i.e., the magnetic field decreases or the ion temperature
increases) would lead to a shrinkage of the stability region.
On the other hand, the instability region becomes wider for
large k.

When electron-ion collision is neglected, i.e., α = Pi =
Qi = 0, then the CGL equation (17) reduces to the standard
NLS equation. Hence, the nonlinear dispersion relation (26)
for the amplitude modulation reduces to

�2 = (PrK
2)2

(
1 − (2Qr/Pr )|�0|2

K2

)
. (28)

One immediately sees that, if PrQr > 0, the amplitude-
modulated envelope is unstable for K < Kc = √

2Qr/Pr |�0|,
i.e., for perturbation wavelengths larger than a critical value
2π/Kc (and stable for shorter wavelengths). The maximum
instability growth rate occurs at Km = Kc/

√
2, where the

local-instability growth rate is given by

� = Im(�) =
[

(PrK
2)2

(
K2

c

K2
− 1

)]1/2

. (29)

However, if PrQr < 0, the CDA will be stable against
external perturbations. On the other hand, if PrQr < 0,
the amplitude-modulated envelope will be stable against
external perturbations and the CDA carrier wave will be
modulationally “stable” and may propagate in the form of
“dark” (“black” or “gray”) envelope wavepackets, i.e., a
propagating localized “hole” (a “void”) amidst a uniform wave
energy region. However, for “positive” PrQr , the carrier wave
is modulationally “unstable”; it may either “collapse,” due
to (possibly random) external perturbations, or lead to the
formation of “bright” envelope-modulated wavepackets, i.e.,
localized envelope “pulses” confining the carrier wave [33,34].

FIG. 4. (Color online) The stability criteria PiQi + PrQr < 0
and the instability condition PiQi + PrQr > 0 determined in the
k-β plane for (a) α = 0.3 and (b) α = 0.6.

To investigate the role of the plasma β on the CDA waves,
we have plotted the variation of the product PrQr against
K for different values of β, as depicted in Fig. 6(a). It is
found that increasing β would make the stable regime (i.e.,
PrQr < 0) wider, while the unstable region becomes narrower
(i.e., PrQr > 0). Furthermore, the increase of β decreases the
critical wave number at which the instability sets in. This
behavior is confirmed in Fig. 6(b), where the modulational
instability growth rate � decreases with the increase of the
plasma β. Furthermore, the increase of K would lead to an
increase in the growth rate, for small wave numbers, till �

reached a critical value, � ≡ �c, then the growth rate would
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FIG. 5. (Color online) The stability criteria PiQi + PrQr < 0
and the instability condition PiQi + PrQr > 0 determined in the
k-α plane for (a) β = 0.1 and (b) β = 0.3.

decrease again at higher K. Such a behavior illustrates that
the compressional Alfvén waves become much more unstable
for small K, but the instability decreases for large wave
numbers.

Now, we have determined precisely the regions of a special
modulational unstable solution, i.e., for PrQr > 0, which
is local in both space and time. Within the modulational
instability region, a random perturbation of the amplitude
grows and thus creates a CDA rogue wave. Equation (17),
with real Pr and Qr , has a rational solution that is located
on a nonzero background and localized both in τ and ξ
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FIG. 6. (Color online) The effect of the plasma β on (a) the
product PrQr against K , (b) the critical wave number Kc, and (c)
the growth rate � against K .

directions [19,35]:

�(ξ,τ ) =
√

Pr

Qr

[
4(1 + 2iPrτ )

1 + 4P 2
r τ 2 + 4ξ 2

− 1

]
exp(iPrτ ). (30)

The solution (30) predicts that the CDA wave energy is concen-
trated into a small region due to the nonlinear properties of the

036408-7



R. SABRY, W. M. MOSLEM, AND P. K. SHUKLA PHYSICAL REVIEW E 86, 036408 (2012)

A 0.05
B 0.1
C 0.3

2
1

0
1

2
Ξ

2

1

0

1
2

Τ
0
20
40
60Ξ,Τ 2

A

B

C

0.05

2 1 0 1 2
Ξ

10

20

30

40

50

60

70

Ξ,0 2

FIG. 7. (Color online) The absolute value of the magnetic field
envelope B represented by Eq. (30) for different values of the
plasma β.

medium. Therefore, the CDA rogue waves carry a significant
amount of the wave energy into a relatively small area in space.
It is worthwhile explaining that rogue wave creation is still
unsolved question. On the other hand, theories vary depending
on the conditions under which these waves appear [36]. One
remarkable feature of rogue waves is that they appear visibly
from nowhere and disappear without a trace [37]. Nonlinear
dynamics is one of the approaches that has been successful
in predicting the basic features of rogue waves [38]. So,
the spontaneous development of rogue waves is still under
investigation by many authors, using studies of optics [39],
plasmas [17], water-wave tank experiments [40], etc. However,
one of the prototypes suggested to model rogue waves is
the so-called Peregrine soliton [41]. This solution describes
the growing evolution of a small, localized perturbation of
a plane wave with the subsequent peak amplification above
the plane wave. The large-amplitude peak appears just once in
evolution (being doubly localized rather than periodic in space
and time). The present work predicts and defines the possible
existence region for propagating Alfvénic rogue waves and
the effect of the plasma β on the wave amplitude. Therefore,
the present nonlinear approach is fruitful in a description of
Alfvénic rogue waves. The profile of the CDA rogue wave
and its dependence on the plasma β is depicted in Fig. 7. It is
seen that increasing the plasma β causes the CDA rogue wave
amplitude to become shorter. We speculate that this behavior
could be explained as follows: the stronger magnetic field
increases the nonlinearity of the system, and therefore the
rogue wave amplitude becomes greater.

IV. SUMMARY

Summing up, we have investigated the modulational in-
stability of the CDA waves that are propagating across a
uniform magnetic field in a warm electron-ion plasma. The
dynamics of the modulated CDA wave packets is governed
by the CGL equation, with real and complex coefficients
of the group dispersion and the nonlinearities. The CDA
wave group velocity has real and imaginary components.
The imaginary part of the group velocity decreases with the
increase of α and β, while the real group velocity exhibits an
opposite behavior. Furthermore, the region of the modulational
instability of the CDA waves becomes narrower with the
increase of α and β, which indicates that the system dissipates
the wave energy via electron-ion collisions and hence a
stable envelope wave packet in the form of a hole will be a
dominant feature of an amplitude-modulated CDA pulse. For
a collisionless magnetoplasma, i.e., α = 0, our CGL equation
reduces to the NLS equation with real group dispersion and
nonlinear coefficients. A modulational instability analysis of
the NLS equation has been carried out. It has been shown
that, within the modulational unstable envelope pulse region,
a random set of nonlinearly interacting amplitude-modulated
CDA perturbations would form CDA rogue waves. The
dependence of the rogue wave profile on the plasma β is
investigated. Our results reveal that the stronger magnetic
fields increase the nonlinearity of the system, and therefore
the rogue wave amplitude becomes greater. In conclusion, we
stress that the results presented here can have applications
in many branches of space and laboratory magnetoplasmas.
Specifically, the nonlinear CDA waves could be associated
with the localized short-scale (of width the order of several
electron skin depths) Alfvénic wave packets that are observed
[42,43] in the magnetized plasma of the Earth’s magnetosphere
and the solar wind. The results should also be helpful in
understanding the nonlinear propagation of dispersive Alfvén
waves in laboratory collisional magnetoplasmas that have been
used for the fundamental study of nonlinear Alfvénic activities
in the Earth’s ionospheric plasmas.
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APPENDIX: COEFFICIENTS OF EQS. (11)–(16)

The coefficients used in Eqs. (11)–(16) are as follows:

c
(22)
1 = −

k2

(
ω5 + 6k6β[iα(1 + 3β) + ω + 6βω] + 2k2ω3(2 − 3β + iαω + 2ω2)

+k4ω[−2 + 9β2 − 6iα(−1 + 2β)ω + 2(7 − 12β)ω2]

)
2(−3k2β + ω2)2[−ω3 + 6k4β(iα + 2ω) + k2ω(1 + 3β − 2iαω − 4ω2)]

,
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c
(22)
2 = −

kω

(
ω5 + 6k6β[3iα(1 + β) + (5 + 6β)ω] + 2k2ω3(1 − 3β + iαω + 2ω2)

+k4ω[3β(2 + 3β) − 2iα(−1 + 6β)ω + 6(1 − 4β)ω2]

)
2(−3k2β + ω2)2[−ω3 + 6k4β(iα + 2ω) + k2ω(1 + 3β − 2iαω − 4ω2)]

,

c
(22)
3 = −k2{ 3ω5 + 18k6β2(iα + 3ω) + 3k4βω(4 + 9β − 4iαω − 12ω2) + 2k2ω3[−9β + ω(iα + 3ω)]}

2(−3k2β + ω2)2[−ω3 + 6k4β(iα + 2ω) + k2ω(1 + 3β − 2iαω − 4ω2)]
,

c
(20)
1 = {2k3[1 + 3(1 + k2)β]ω − 2k(1 + k2)ω3 − [3k4β(2 + 3β) + 2k2(1 − 3β)ω2 + ω4]vg}

(−3k2β + ω2)2vg

(
1 + 3β − v2

g

) ,

c
(20)
2 =

{
6k5βω − 2k(1 + k2)ω3 − [3k4β(2 + 3β) + 2k2(1 − 3β)ω2 + ω4]vg + 2k3ωv2

g

}
(−3k2β + ω2)2

(
1 + 3β − v2

g

) ,

and

c
(20)
3 = −

(
6k3β[1 + 3(1 + k2)β]ω − 6(k + k3)βω3

+vg(3k4β(2 + 3β) + 2k2(1 − 3β)ω2 + ω4 + 2kω{ω2 + k2[−1 − 3(1 + k2)β + ω2]}vg)

)
(−3k2β + ω2)2vg

(
1 + 3β − v2

g

) .
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