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Electron-ion and ion-ion potentials for modeling warm dense matter:
Applications to laser-heated or shock-compressed Al and Si
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The pair interactions Uij (r) determine the thermodynamics and linear transport properties of matter via the
pair-distribution functions (PDFs), i.e., gij (r). Great simplicity is achieved if Uij (r) could be directly used to
predict material properties via classical simulations, avoiding many-body wave functions. Warm dense matter
(WDM) is encountered in quasiequilibria where the electron temperature Te differs from the ion temperature Ti ,
as in laser-heated or in shock-compressed matter. The electron PDFs gee(r) as perturbed by the ions are used
to evaluate fully nonlocal exchange-correlation corrections to the free energy, using hydrogen as an example.
Electron-ion potentials for ions with a bound core are discussed with Al and Si as examples, for WDM with Te �=
Ti , and valid for times shorter than the electron-ion relaxation time. In some cases the potentials develop attractive
regions and then become repulsive and “Yukawa-like” for higher Te. These results clarify the origin of initial
phonon hardening and rapid release. Pair potentials for shock-heated WDM show that phonon hardening would
not occur in most such systems. Defining meaningful quasiequilibrium static transport coefficients consistent
with the dynamic values is addressed. There seems to be no meaningful “static conductivity” obtainable by
extrapolating experimental or theoretical σ (ω,Ti,Te) to ω → 0, unless Ti → Te as well. Illustrative calculations
of quasistatic resistivities R(Ti,Te) of laser-heated as well as shock-heated aluminum and silicon are presented
using our pseudopotentials, pair potentials, and classical integral equations. The quasistatic resistivities display
clear differences in their temperature evolutions, but are not the strict ω → 0 limits of the dynamic values.
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I. INTRODUCTION

Novel techniques of high-energy deposition on matter
using high-energy short-pulse lasers as well as shock waves
enable one to produce matter in a variety of novel states.
They demand theoretical techniques adapted to many physical
regimes. Such warm-correlated matter (WCM), and warm
dense mater (WDM), include hot-nucleating nanocrystals
as well as hot-dense radiative (HDR) plasmas [1]. They
have applications ranging from laser micro-machining, laser
ablation [2], Coulomb explosions [3], inertial-confinement
fusion (ICF), astrophysics [4], and aerospace reentry appli-
cations [5]. The material may be electrons and ions in a
complex mixture of ionization states of low-Z and high-Z
ions, e.g., H to U. The temperatures could be very high, and
yet high compressions could make the electrons degenerate
or partially degenerate. Predictions of the thermodynamics,
transport, radiative, and thermonuclear processes [1] pose
major challenges. Furthermore, ion temperatures Ti may differ
from the electron temperature Te, and the quasiequilibrium
properties, relaxation, and transport have to be updated within
the time scales and energy scales of such two-temperature
equilibria [6].

Modern electronic-structure methods provide in situ
density-functional potentials incorporated into molecular dy-
namics (MD) simulations [7]. The all-electron, all-ion quan-
tum calculations for simple systems provide “benchmarks,”
usually at low temperatures and normal densities. Such
methods become untenable at higher T where large numbers
of partially occupied eigenstates have to be included. HDR
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plasmas, relevant to ICF, provide a perspective of the problem.
The complexity of WDM, compressions and temperatures
involved call for simplifications without sacrificing accuracy.
Thus molecular dynamics (MD), i.e., classical simulations,
using various effective potentials have been a focus of some
recent studies [8,9]. Such methods were used in earlier work
[10], often with phenomenological or “chemical” models
for pair interactions, and in recent studies as well [11].
Other authors have studied statistical potentials inclusive of
quantum diffraction effects [12] arising from integrating out
the electrons. A reexamination of potentials useful in the
nonequilibrium context is needed.

We study two types of nonequilibrium (two-temperature)
systems, viz., (1) generated by short-pulse lasers (the ion
subsystem remains virtually unchanged while Te increases
during the pulse period) and (2) mechanical shocks. Here
the electrons remain at Te while Ti and the compressions
change. Our approach has been to construct the charge
distribution n(r) around a nucleus immersed in the medium
via the neutral-pseudoatom (NPA) density-functional theory
(DFT) models, e.g., Ref. [13]. The n(r) is used to construct
a local weak pseudopotential dependent on the density and
temperature of the ambient environment. The pseudopotentials
Uei(r) provide pair potentials Uij and pair-distribution func-
tions (PDFs) gij (r). These provide the thermodynamics and
transport properties of the system in a self-consistent manner.
The dependence of the Uei on the system parameters arises
because the effective core charge Z̄, the ionic-core radii rc,
etc., of the ion configuration all depend on the medium. A
type of transferable pseudopotentials is available with popular
simulation software. However, they assume frozen-core radii
rc and an ionization Z̄ consistent with normal densities
and T = 0. They are not transferable to highly compressed
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WDM states, or low electron degeneracies, as is well known
and noted even recently by Mazevet et al. [14]. A more
detailed approach that does not require defining a “core”
would be to use all-electron regularized pseudopotentials
based on norm-conserving (NC) or projector-augmented-wave
(PAW) approaches. Such methods would be strongly computer
intensive and not useful for most WDM problems. They could
serve to provide a new set of benchmarks that are beyond
quantum Monte Carlo calculations, rather than serve actual
WDM calculations.

Using such NC, PAW, or “standard” pseudopotentials
requires solving the many-center Schrödinger equation, as
implemented in major codes [15]. The numerical simplicity
needed for studying complicated WCM systems with many
ionization states and components in different temperature
states is lost. Hence we focus on simple linear-response po-
tentials as in, e.g., Ref. [13]. The ion subsystem can be treated
using MD or via integral equations like the hyper-netted-chain
(HNC), or the modified-HNC (MHNC [16]) method to exploit
spherical symmetry. This works even for quantum electrons
at T = 0 via a classical map [17]. Hence the present study
is an extension to nonequilibrium (two-temperature) systems
generated by short-pulse lasers or mechanical shock. The
physics expressed in terms of pair potentials and PDFs
can be directly generalized to deal with Te �= Ti , i.e., two-
temperature quasiequilibria, using gsu(r,Ts,Tu), where s,u are
electron or ion subsystem labels. Such generalizations can be
formally justified in terms of the Bogolubov-Zubarev type of
nonequilibrium theory [18]. Within the time scales τei where
subsystem Hamiltonians He and Hi remain invariant, we can
also justify the use of DFT for each subsystem.

Since laser-pulsed heating or shock-compression experi-
ments begin at some reference density near room temperature,
the pseudopotentials can be checked against experimental
liquid-metal properties. We use such liquid-metal-adapted
pseudopotentials, with pair potentials constructed from finite-
T response functions incorporating finite-T local fields consis-
tent with the sum rules and finite-T exchange-correlation ef-
fects [19]. Equilibrium and quasiequilibrium WDM aluminum
and Si are studied in detail. Experimentally useful quantities
accessible via these calculations are (a) pair-distribution
functions and structure factors, (b) thermodynamics, e.g.,
Hugoniots, subsystem free energies, etc., (c) static and dy-
namic liner transport coefficients, (d) energy-relaxation rates,
(e) x-ray Thompson scattering, and other dynamical results.
In this paper we address various aspects of (a)–(d) and leave
(e) for a future study.

We also ask if the electron-ion pseudopotentials Uei(r) or
the pair potentials Uii(r) could be approximated by a Yukawa
form Wss ′ and compare them with more detailed potentials.

Here we note that DFT or Car-Parinello methods cannot
calculate the electron-electron PDFs gee′ (r), where e,e′ are
electrons (with spin indices included as needed). However,
these electron-electron PDFs may be calculated using a
well-tested classical-map technique (CHNC) [17,20], inspired
by finite-temperature DFT itself. This is used in Sec. II to
obtain the fully nonlocal exchange-correlation free energy of
electrons interacting directly with ions, rather than jellium. In
Sec. II we use the electron-electron pair-distribution functions

gee(λ,r,T ), where λ is a coupling constant, to evaluate the
difference between the exchange-correlation free energy of
electrons in jellium and in hot hydrogen via a fully nonlocal
evaluation using a coupling constant integration of gee(r,T ) in
hydrogen.

Section III presents the details of the pseudopotential
and PDF calculations for ions with a core specified by the
charge Z̄(Ti) and the radius rc. Results for equilibrium and
quasiequilibrium Al and Si WDMs are given. Section IV
on transport properties addresses the meaning of a “static”
conductivity as the frequency independent limit of the two-
temperature dynamic conductivity σ (ω,Ti,Te). It is argued
that there may be no physical meaning in the “static con-
ductivity” obtained by extrapolating σ (ω,Ti,Te) to ω → 0,
unless Ti → Te as well. Calculations are presented for a
possible candidate to a “quasistatic” resistivity of laser- and
shock-heated aluminum, showing how they differ from each
other and from the T -dependent equilibrium resistivity. Such
results can be used to test if the physical models presented here
provide a reasonably accurate picture of laser-pulse-heated or
shock-heated materials in the WDM regime.

II. NONLOCAL EXCHANGE-CORRELATION
CALCULATIONS

An important application of finite-T DFT is to evaluate
the exchange-correlation contribution fxc(T ) per electron to
the Helmholtz free energy f of a given electron distribution
n(r) at the temperature T . This is usually done in the local-
density approximation (LDA) using the fxc(T ) per unit volume
of the uniform electron gas (UGE) as the input functional.
Some authors have even approximated this with the T = 0
UGE parametrization, even though good approximations to
fxc from evaluations of finite-T bubble diagrams [21,22], the
Iyetomi-Ichimaru (IYI) parametrization [23], as well as the
fxc(T ) from CHNC have been available for some time [19].
The IYI scheme and the CHNC fxc agree well in typical WDM
regimes of density and T .

In this section we present a fully nonlocal calculation of
fxc at finite T for a system of electrons interacting with
a subsystem of protons, using classical potentials and pair-
distribution functions as the ingredients of our calculation.
The protons are in thermal equilibrium with the electrons
and have kinetic energy. However, no Born-Oppenheimer
approximation is invoked. The ions are a system of clas-
sical particles, and no classical map is needed. The proton
free energy has a correlation contribution F

(p)
c , which gets

automatically evaluated through the HNC procedure. It is
a highly nonlocal quantity that cannot be evaluated in the
LDA even as a first approximation, but we do not dwell on
it here. In fact, the total free energy given by CHNC was
used to calculate a deuterium Hugoniot in Ref. [24], but the
nature of the purely electronic part fxc(rs,T ) = Fxc/N , where
N is the total number of electrons, was not examined there
in detail. Here we highlight that aspect and concentrate on
the electronic part of the exchange-correlation free energy
Fxc.

The Hamiltonian of the system and its free energy calcu-
lation are similar to that of the electron gas, except that the
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unresponsive “jellium” background is replaced by the proton
subsystem. Thus

H = H 0
e + H 0

p + Hep + Hee + Hpp, (1)

F = Fmf
e + Fmf

p + Fep + Fxc + F (p)
c . (2)

Here the superfix mf stands for “mean-field,” and all the
terms have an obvious meaning. Since the electron and proton
densities are identical, the electron Wigner-Seitz radius rs is
also the proton rs . The classical map is needed only for the
electrons. We have used the HNC version of the classical
map [17], i.e., CHNC, for this calculation. In CHNC the
quantum electrons (even at T = 0) are treated as a Coulomb
gas at a finite temperature dependent on rs and T . The electrons
interact via the diffraction-corrected Coulomb potential plus
a Pauli exclusion potential. The latter accurately reproduces
the exchange hole in the parallel-spin gee(r) [25]. The density
(∼0.8 g/cc) in this illustrative calculation is chosen so that
we have a fully ionized e-p gas at a high compression and
rs = 1.5 au. The treatment of ions with bound states may
follow the methods for Si and Al given below.

In Figs. 1(a) and 1(b), we display the electron pair-
distribution functions gee(λ,r,T ) for values of the coupling
constant λ = 1 and 0.3. The Coulomb interaction 1/r is
replaced by λ/r with λ varied from 0 to 1. The fully nonlocal
exchange-correlation free energy per electron, fxc = Fxc/N ,
is given by an integration of hij (r) = gij (r) − 1 over λ:

fxc = n

2

∫ 1

0

dλ

2λ

∫
λd�r
r

[h11(r,λ) + h12(r,λ)]. (3)

It is noteworthy that the parallel-spin PDF, i.e., g11(r) is
hardly affected by the value of the coupling constant. It is
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FIG. 1. (Color online) (a) The parallel and antiparallel electron
pair-distribution functions gee(r) at the full value of the Coulomb
interaction, i.e., λ = 1 in a system containing interacting protons
and electrons at rs = 1.5 a.u. and T = 1 eV. (b) The same PDFs
evaluated at λ = 0.3 and for the same rs,T as before. (c) The nonlocal
exchange-correlation free energy fxc (solid line) in the hydrogen
fluid, evaluated from the coupling-constant integration over the PDFs,
compared with a similar calculation [19] for jellium (dash-dot line)
at rs = 1.5 and T = eV. The exchange energy fx is evaluated from
the PDFs at λ = 0. Contributions to correlations from gep(r) are not
included here.

dominated entirely by the Pauli exclusion effect. Hence the
correlations are mostly mediated by the antiparallel g(r),
which changes drastically with λ. The success of the use of
an “exact exchange” in “optimized-effective potentials” and
related methods [26] is related to this property of g11(r).
Spurious “self-interaction” errors are absent in CHNC im-
plementations or any methods that directly use a g(r). In panel
(c) we present our values of fxc(H ), i.e., the xc-free energy
per electron in the presence of protons, and the corresponding
quantity, labeled fxc(J ) in the absence of protons, appropriate
for the finite-T jellium model. The exchange free energy fx

is simply the exchange energy at λ = 0 and is the same for
the system with protons (hydrogen) or without protons (i.e.,
jellium). Thus the correlation contribution is the many-body
correction beyond the jellium fx at finite T . The reference
density matrix is diagonal in a set of plane waves. The Hartree
energy is zero. This definition of correlation energy is different
to a treatment where the electron-proton fluid is treated as
a system of hot atoms together with correlation corrections.
There the correlation energy is usually defined with reference
to a density matrix diagonal in an atomic Hartree-Fock basis.
The corrections to the energy beyond the Hartree-Fock value
are deemed the correlation energy. Such a basis already has
electron-ion correlations in the wave functions which are not
plane waves. They are not included in the fxc used here,
which is purely the electronic part. In effect, the correlation
corrections in gei(r) are differently partitioned in these
different definitions, and hence care must be taken in making
comparisons between atomic-like Hartree-Fock approaches to
WDM [27] and associated discussions of finite-T correlation
energies.

III. THE PSEUDOPOTENTIALS

Accurate pseudopotentials are available with standard
computational packages [15], designed for condensed-matter
applications where finite-T effects, multiple ionizations,
nonequilibrium effects, etc., are uncommon. WCM applica-
tions require accurate but simpler potentials where classical
simulations, linear response methods, etc., could be used
instead of basis-set diagonalizations of a Hamiltonian. Here
we consider (1) the simplest Yukawa-type potentials, and
(2) more accurate pseudopotentials from DFT for a single
nucleus immersed in a WDM medium. Thus a quantum cal-
culation is necessary only for a single nucleus in a spherically
symmetric environment modeled as a “neutral pseudo atom”
(NPA) [13]. The ion density is at the ion temperature Ti . A
DFT calculation at Te gives the electron density n(r) around
the nucleus, the effective ionic charge Z̄, Kohn-Sham wave
functions, and phase shifts.

A. The concept of Z̄

The core charge Z̄ and the core radius rc are important
parameters in the pseudopotentials discussed here. Some
authors have expressed concern that Z̄ is “not a well-defined
physical quantity,” or that there is no quantum mechanical
operator whose mean value is Z̄. One may also note that there
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is no quantum mechanical operator whose mean value is the
temperature T . Both Z̄ and T are Lagrange multipliers used to
define relational properties. Pseudopotentials and many other
calculational quantities have the advantage of being definable
with respect to a convenient reference H0, but this does not
mean any “arbitrariness” in the theory. The H0 selected in
pseudopotential theory enables us to reduce a many-electron
atomic problem to a few electron problem involving only Z̄

electrons.
A properly constructed Z̄ should satisfy (1) the neutrality

condition ne = Z̄ni , where ni is the ion density; that is, Z̄

is the Lagrange multiplier whose value is chosen to ensures
this neutrality condition. This is readily generalized to a
mixture of ions with different charges zj (2) the physical
potential seen by a test charge in the plasma should tend
to Z̄/r for large r , (3) and the Z̄ should be consistent with
the Friedel sum rule based on the phase shifts from the
ion with a charge Z̄ and a core radius rc. Finally, it has
to be consistent with the set of bound states attached to
the nucleus. These issues are discussed in Refs. [28] and
[18] and provide a stringent set of constraints in choosing
Z̄. We have found that these constraints could generally
be well satisfied within finite-T DFT calculations that use
a sufficiently large correlation sphere as the calculational
volume. It has to be recognized that a material system, e.g., an
aluminum WDM, could be a mixture of many ionization states,
e.g., Alzj +,zj = · · · − 1,0,1,2,3, . . ., etc., where all ionization
states are integers and correspond to different descriptions of
the core, with different values of rc. The concentrations of each
species would be such as to minimize the total free energy if
it is an equilibrium system [18].

B. Yukawa potentials

The commonly used finite-T Thomas-Fermi potentials, also
called Yukawa potentials, are simple two-parameter forms.
The core charge of the ions is Z̄ and rc is set to zero (i.e., point
ions). The field electrons are characterized by a screening wave
vector KY :

W (r)ei = −ZY /r, (4)

W (r)ii = (
Z2

Y /r
)

exp(−KY r). (5)

We use atomic units with |e| = h̄ = me = 1, and the tempera-
tures are in energy units. If the electron temperature is Te, the
Thomas-Fermi electron-ion screening constant KY is given
by

K2
y = 4

πTe

∫ ∞

0
k2 dkn(k){1 − n(k)}, (6)

n(k) = 1/[1 + exp{(k2/2 − μ)/Te}]. (7)

Here μ is the electron chemical potential at Te for the electron
density ne consistent with the ionization ¯Z(Ti,T e). In the
simplest theory Z̄ is determined via finite-T Thomas-Fermi
theory. The structure factor consistent with this type of theory
is

Sy(k) = k2
/(

k2 + K2
Y

)
. (8)

C. DFT-based linear-response pseudopotentials

The one-electron density is the essential functional that
determines the equilibrium properties of a quantum system.
Hence the electron density n(r) around a nucleus of charge Z

placed in a uniform electron fluid at the bulk density ne and
temperature Te is computed. The computational codes for such
calculations have been available at least since Lieberman’s
INFERNO code [29] and extended recently as in PURGATORIO

[30]. Most such codes use a single ion in a Wigner-Seitz cell of
radius rws = {3/(4πρ)}1/3 as the computational volume when
the ion density is ρ. In contrast, we use a large correlation
sphere typical of the ion correlations in the WDM. The single
ion is surrounded by its self-consistent ion distribution ρ(r)
and the corresponding electron distribution n(r), calculated
self-consistently [28]. A correlation sphere of radius Rc of
5 to 10 times rws is used where gii(Rc) → 1. In most cases
one may use the simplified form due to Perrot, where the
ions are replaced by a uniform neutralizing background except
for a cavity around the nucleus [31] to mimic the ion-ion
PDF. Further justification of this “neutral-pseudoatom” (NPA)
model is given in Ref. [13].

A weak local (i.e., s-wave) pseudopotential Uei(q), where q

is the wave vector is calculated from the free-electron density
“pile-up” nf (r) obtained via the finite-T Kohn-Sham equation.
This nf (q) is the density pile-up corrected in NPA [13] for the
cavity placed around the nucleus to simulate the “cavity” of
the gii(r). Thus

�Uei(q) = nf (q)/χee(rs,Te,q). (9)

Here χ (rs,Te,q) is the electron linear-response function at the
electron Wigner-Seitz radius rs and temperature Te. A finite-T
local-field correction (LFC) Gq is also needed to go beyond
the simple random-phase approximation; that is,

χee(q) = χ0(q)/{1 − Vq(1 − Gq)χ0(q)}, (10)

Gq = {1 − γ0/γ }(q/kT F )2, (11)

Vq = 4π/q2, kT F = (6πn/EF )1/2. (12)

Here χ0(q) is the noninteracting finite-T Lindhard function.
An electron effective mass m∗ (a “band mass”) is used
in evaluating the Lindhard function. Thus, for liquid Al
near its melting point (0.081 eV), m∗ = 0.998 gives good
agreement of the calculated S(k) with experiment [32]. At
higher temperatures m∗ = 1. The LFC Gq(Te) is taken in
the LDA (i.e., the q → 0 form is used for all q), and
evaluated from the ratio of the noninteracting and interacting
finite-T compressibilities γ0 and γ , respectively. Alterna-
tively, Gq with full q-dispersion consistent with the S(k)
obtained from the PDF gee(r) may be used, as discussed in
Ref. [17]. However, the formulation in terms of the q → 0
given in Eq. (11) is quite accurate for the systems studied
here.

Instead of numerical tables obtained from Eq. (9), a simple
fit to the Uei(q) may be used. The fits used here are the
Heine-Abarankov (HA) forms [33] or a slight generalization
by Dharma-wardana and Perrot [18]. The two elements
Al and Si chosen for this study only need a well-depth

036407-4



ELECTRON-ION AND ION-ION POTENTIALS FOR . . . PHYSICAL REVIEW E 86, 036407 (2012)

parameter D and rc, which is the core radius. The electron
effective mass (i.e., band mass) m∗ enters into the response
function:

Uei(r) = −Z̄D/rc, r � rc (13)

= −Z̄/r, r > rc, (14)

Uei(q) = −Z̄VqM(q), (15)

M(q) = D sin(qrc)/qrc + (1 − D) cos(qrc). (16)

Furthermore, it is found from test calculations that the
scaled quantities D/(Z̄/rws), rc/rws could be treated as con-
stants for changes in rws if Z̄ remains unchanged. This enables
us to explore the behavior of these WDMs for compressions
deviating significantly from unity, without having to do full
DFT calculations in each case. The use of a suitable electron-
effective mass m∗ bypasses the complications of “nonlocal”
pseudopotentials and provide excellent results with just s-wave
potentials. Usually m∗ can be set to unity. It also may be used
as a parameter fine tuned to get agreement with experimental
S(k) data, or in fitting a pseudopotential to nf (q) obtained
from a DFT calculation, as in Eq. (9).

The NPA approach to simple local pseudopotentials is
reliable if the resulting Uei(q) is such that

Uei(q)/(−Z̄Vq) � 1. (17)

D. Equilibrium pair potentials

We present illustrative numerical results for Al and Si
potentials with Te = Ti = T . The screened pair potential
Uii(q) is calculated from the pseudopotential via

Uii(q) = Z̄2(T )Vq + |Uei(q)|2χee(q,rs,T ). (18)

Further improvement of these formulas to incorporate core-
polarization effects, etc., via DFT are discussed in the appendix
of Ref. [13].

Potentials for calculations with C, Si, and Ge in the
equilibrium WDM regime have been discussed by Dharma-
wardana and Perrot in Ref. [34] and for Al for T > 5 eV in
Ref. [18]. The normal-density liquid-metal Al pseudopotential
used here is the potential discussed in Ref. [35]. This Uei(q)
generates the DFT n(q) under linear response and recovers
experimental S(k) data quite well.

Pair potentials of other elements and at most compressions
can be evaluated as in Ref. [31]. Numerical results for βUii(r),
β = 1/T are displayed in Fig. 2. They are are particularly
interesting in view of the subsidiary 2kF peak in S(k). Solid
silicon has a rather open structure (diamond-like), which
collapses under melting into a high-density metallic fluid.
Car-Parinello simulations, many-atom Stillinger-Weber type
potentials (requiring many empirical parameters), etc., need
to be highly elaborate to capture the subsidiary structure
associated with the electron mass m∗ and the 2kF scattering
processes. In fact, attempts were made in some of these early
MD studies to explain this “hump” in the Si-S(k) in terms
of covalent bonds between Si atoms. In reality, molten Si
is an excellent metal and the “hump” is a metallic property
associated with m∗(k). In our view, two-center bonding effects
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FIG. 2. (Color online) (Top) The Si-Si pair potentials βUii(r),
β = 1/T , at the melting point (Ti = Te = T = 0.15 eV) at unit
compression (rws = 3.07 a.u.), using an empty-core pseudopotential
with core radius rc/rws = 0.3084 are displayed for electron effective
masses m∗ = 1 and 1.1. The Yukawa potential (5) is also displayed.
(Bottom) The corresponding ion-ion structure factors Sii(k), as well
as the experimental data of Waseda [32] are shown. The additional
structure near the Kohn anomaly(2kF ) beyond the main peak is very
sensitive to the local band mass m∗.

do not arise unless electron densities fall to low values
(e.g., 1/64 of the normal electron density for Al), and the
temperatures become sufficiently low.

WDM systems generated from laser pulsing or shock
compression usually starts from a solid density. Thus the pseu-
dopotentials and pair potentials should successfully recover the
strongly correlated low-temperature regime near the melting
point, as well as the higher-T and κ regimes. Our Al-Al pair
potential at the m.pt is shown in the inset to Fig. 3, together
with the DRT potential (based on a nonlocal pseudopotential)
which is known to recover the properties of solid and liquid
Al at low temperatures [36].

It is seen that the Yukawa potentials approximately re-
produces the envelope of the pair potentials, while failing
to reproduce the Friedel oscillations and energy minima.
Similarly, the Yukawa structure factor Sy(k) does not have
oscillatory features.
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FIG. 3. (Color online) (Inset) The Al-Al pair potential, βiUii(r),
βi = 1/Ti , at room temperature (Te = Ti = T = 0.03 eV) and
normal density, labeled A is derived from a two-parameter local
pseudopotential and a band mass m∗ = 1.02. It is compared with a
well-established nonlocal potential [36] that accurately reproduces
structural and phonon data of aluminum. The Yukawa potential,
Eq. (5), at T = 0.03 eV is also displayed. The main panel displays
the evolution of the potential while Ti is held fixed at 0.03 eV, and
Te is increased. The potential becomes repulsive from Te =0.03 to
0.08 eV. For Te > 0.08 eV it deepens and becomes attractive, e.g.,
at Te = 0.5 eV, before it finally becomes repulsive. The Yukawa
potential at Te = 10 eV is also shown.

1. Pair potentials for mixtures

Many WDM systems involve mixtures of ions. Thus plastic
converts to a compressed WDM containing mostly a mixture
of H, C, and O ions. Even an aluminum plasma could contain
several stages of ionization, and they have to be treated
as a mixture. The detailed treatment of such systems as
mixtures of average atoms, their chemical species-dependent
potentials, embedding energies, etc., as well as pair potentials
are discussed in Ref. [13]. The pair potential involving two
types of ions carrying mean charges Z̄a,Z̄b could be written
as

Ua,b(q) = VqZ̄aZ̄b + |Uea(q)Ueb(q)|χee(q). (19)

Such cross-potentials would be inputs to the MHNC equations,
or to MD simulations, for generating the corresponding PDFs.

E. Nonequilibrium pair interactions

In the following we examine two-temperature quasiequi-
librium systems rather than full nonequilibria. Such systems
occur during times t such that τee < τii < t < τei , after the
energy is dumped in either the ion subsystem (mechanical
shock) or in the electron subsystem (by a laser pulse).

1. Laser-pulse-generated quasiequilibria

When a metal foil at the bath-temperature Tb is subject to
a short-pulse laser, the electron temperature rises rapidly to
some Te within femtosecond times scales τee, by equilibration
via electron-electron interactions. The transfer of energy to
the ion subsystem, arising from electron-ion interactions is
slow, and hence the ion temperature Ti remains essentially
locked to Tb, while the electrons reach Te. Hence, processes
occurring within the electron-ion temperature relaxation time
scale τei > t > τii may be probed to provide information
about quasiequilibrium systems. The probes are optical pulses
sampling a volume related to a space-time average over the
pulse time and the optical depth of the material. Hence
the “experimental results” reported should be regarded as
already implicitly containing some sort of interpretational
model.

A proper description of such systems needs pair potentials
Uii(r,Te,Ti) where Te �= Ti . The procedure described for the
equilibrium system can be simply generalized for quasiequi-
libria. In laser-heated systems, the pseudopotential is that of
the initial state T = Ti = Te, and this remains unchanged
under changes of Te as long as Z̄ remains unchanged. Unlike
in the equilibrium case, the bare ion-ion pair potential in a
laser-heated metal is screened by the (hot) electrons at Te.
Hence,

Uii(q,Ti,Te) = {Z̄(Ti)}2Vq + |Uei(q,Ti)|2χee(q,rs,Te). (20)

The ion-ion structure factors S(k) is that of the initial state at
T = Ti = Te for time scales shorter than τei .

The main part of Fig. 3 shows the evolution of the potentials
under laser-pulsed heating where Te increases while the ion
subsystem remains intact for time scales shorter than τei . The
first minimum near r/rws ∼ 1.85 (marked A) weakens at first
and then deepens for Te >∼ 0.08 eV (with Ti fixed at 0.03 eV).
This is clearly evident for the case Te = 0.5 eV in the figure.
This may be considered a microscopic signature of “phonon
hardening” observed in some experiments [37].

The highest phonon frequency ωph supported by the Al
lattice at 90 K is ∼6 × 1013 s−1, while this decreases rapidly
at higher temperatures and becomes purely imaginary if the
lattice melts. The concept of a “phonon” may not become
meaningful if 1/ωph begins to exceed τei . In fact, the two-
temperature pair-potential itself requires updating at each time
step.

When the electron temperature rises above ∼1 eV, the
potentials (see Fig. 3) become repulsive and the resulting
compression in the electron subsystem increases rapidly,
leading to a “Coulomb explosion.” We have assumed that Te

is not sufficiently high to open up an ionization channel that
would add to the energy relaxation between cold ions and hot
electrons. Such processes may be addressed as in Ref. [38].
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2. Shock-generated quasiequilibria

The time evolutions of T and κ in shock-compressed
systems are quite different to those of laser-heated samples.
The Hugoniot is the locus of states that can be reached by a
single shock wave, providing a relation connecting the volume,
internal energy, and the compression. Well-developed mathe-
matical and numerical techniques exist for shock studies, if the
equation of state (EOS) is available [39]. The Hugoniot pre-
vails only after many time steps greater than τei . We are inter-
ested in shorter quasiequilibrium time scales. Experimentally,
the temperature evolution of the ion subsystem is very difficult
to measure, and the temperature deduced from the thermal
emissivity of the shocked state is for the state following hydro-
dynamic interactions between the sample and the observation
window.

Thus material properties of the shocked state is determined
from optical measurements combined with velocities of shock
fronts and particles. The “sample region” (seen by the optical
probe) is the layer of material within approximately one optical
depth behind the shock front (assuming that we are observing a
shock wave in-flight inside the sample with no release wave).
For a typical optical depth of ∼5 nm, and shock speeds of
∼104 m/s, the transit time τsh of the shock front through this
layer is ∼0.5 ps. Since τee 	 τsh, there is a meaningful Te in
the sample region. In any case no energy has been dumped
into the electron subsystem for t 	 τei . Since the phonon
frequency of typical solids is of the order of several THz
(i.e., τii < τsh), one may assume that the ion subsystem can be
characterized by a temperature Ti . This would lead to a single
two-T quasiequilibrium in the sample volume, or possibly
a gradient of such quasiequilibria in Te and Ti along the path
behind the shock front. In either case, we need two-temperature
pair potentials along a nonequilibrium “Hugoniot.”

We model this system as follows (see Table I). Here the
usual EOS is a good approximation to the quasi-EOS mainly
because the energy in the electron system is small compared
to that of the ions. Electrons remain more or less degenerate
even at Ti = 10 eV, when the compression reaches ∼3. If κ

remains within a region where Z̄ is unchanged, the bound
electrons remain intact. However, in general the value of Z̄

appropriate to the compression must be used, and energy
relaxation by ionization needs to be considered [38]. The
compressions are calculated from Al and Si Hugoniots where
we may neglect the small differences in the contribution to the
internal energy from the electron subsystem at equilibrium
or at quasiequilibrium. The Al Hugoniot is based on our
neutral-pseudoatom calculations [40]. The Si Hugoniot is the
L140 data based on the Quotidian-EOS model [41].

TABLE I. The temperature Ti (eV) and compression κ , for
shock-compressed aluminum and Si, for an initial normal density and
temperatures Te = Ti = 0.03 eV. The ionization Z̄ remains essentially
at 3 for Al and 4 for Si. The electron temperature Te remains at the
initial temperature for time scales less than ∼τei .

Ti (eV) 0.14 0.25 0.50 1.00 2.50 5.00

κ-Al 1.4 1.57 1.70 1.89 2.26 2.59
κ-Si 1.57 1.70 1.87 2.14 2.65 3.07
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FIG. 4. (Color online) (a) The pair potentials βiUii(r),βi = 1/Ti ,
for a shock-heated aluminum WDM with an initial temperature
of Te = 0.03 eV, with the ion-subsystem temperature increasing
to 2.5 eV. (b) The corresponding ion-ion PDFs gii(r) where Te

remains fixed at 0.03 eV, while Ti increases to 2.5 eV as displayed.
Calculations with bridge (MHNC) and without bridge corrections
(HNC) are given for Ti = 0.14 eV, showing that bridge corrections
are negligible. The other PDFs are HNC solutions. The Yukawa PDF
is the Boltzmann form.

The onset of compression makes the potential take a
Yukawa form except at very low-energy deposition. This pair
potential does not support phonons or “phonon hardening” at
the accessible short times scales or at longer time scales. In
this problem the ion-electron time scales τei are lengthened
due to the formation of ion-acoustic coupled modes involving
both electrons and ions (hence the life times of the two-T
quasiequilibria become longer).

Figure 4 shows the pair potentials (upper panel) and
the corresponding two-temperature pair-distribution functions
obtained by this procedure for Al. No bridge corrections
have been included in the g(r) shown in Fig. 4 except for
Ti = 0.14 eV, Te = 0.03 eV, where it is shown that their effect
is negligible. The Yukawa PDF is taken as the Boltzmann form
exp{−WY (r)/Ti}.

One may wonder whether potentials beyond binary-
interactions would be necessary in a classical representation
of a many-particle system. Attempts to simulate classical
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fluids with model potentials (e.g., Lennard-Jones) show that
binary interactions are often inadequate. However, since
the potentials were made out of Coulomb interactions in
a systematic manner using DFT densities, we believe that
such effects are not significant and probably get included
in the problem of modeling the bridge functions. However,
this needs further study, as it could be important in low-
density, low-temperature systems, and near the critical point
[42,43].

IV. TWO-TEMPERATURE TRANSPORT COEFFICIENTS

The transport coefficients that are of common interest are
associated with weak applied gradients in the electric potential,
temperature, etc., so that linear transport coefficients like the
electrical conductivity σe and heat conductivity σh could be
defined. However, if the nonequilibrium system is such that
the subsystem Hamiltonians He, Hi are invariant only for
time scales τee, τii , then the ω → 0 limit of the transport
coefficients; i.e., their static values are not defined in any strict
sense. Thus extrapolations of experimental data to the ω → 0
have to be carefully examined to understand their physical
content. We refer to any processes with a time scale τ such
that τii < τ < τei as quasistatic.

Thus these experiments need to be planned, keeping in
mind the available lifetimes for experimentation. Evaluating
energy-relaxation lifetimes τei from the e-i pseudopotentials
and dynamic response functions is itself an extremely
demanding task [18,38] but needed in WDM studies. We
note that if the Al pseudopotential discussed here is used
at unit compression, Ti = 0.1 eV, Te = 1.0 eV, then τei

is ∼6.02 × 106 electron-plasma oscillations long, while at
Ti = 0.1, Te = 5 eV, this reduces to ∼0.72 of the value at
Te = 1 eV. These numbers are based on our formula for the
energy-relaxation rate evaluated via the f -sum rule [38],
without including coupled-mode effects.

Here we examine the theory of the dynamic two-
temperature conductivity as a typical example. The objective
is to extract a frequency-independent (i.e., quasistatic) com-
ponent and present numerical calculations for the quasistatic
part of the resistivity using the pseudopotentials and PDFs
developed in the previous sections. This analysis puts a
different perspective on the physical content of the two-
temperature Ziman formulae that have been used in the past
for these systems. The extent of its physical validity has to be
established by experiment.

The response time of the system to the probe has to be
smaller than the system relaxation time τei , and long enough
for the particle distributions to become stationary under the
probe field. If a quasistatic electric field �E is applied to an
electron distribution n(k), where k is a wave vector, then it is the
displaced stationary distribution n(k,E) = n(k) + δ(k, �E)
that determines the electrical conductivity of the system.
The probe speed has to be consistent with the formation of
a steady-state displaced-electron distribution n(k, �E) in the
electron system. The probe frequency cannot be slower than
1/τei . Hence quantities obtained by extrapolating ω → 0 may
not have a physical meaning.

The measured conductivity can be associated with a
scattering time τ (ω) by writing

σ (ω) = ne2τ (ω)

me{1 − iωτ (ω)} . (21)

Here we have restored the electron charge and mass although
we use atomic units. The conductivity σ (ω) can be expressed
in terms of the Fourier component at the frequency ω of
the current-current correlation function 	 J (t),J (t ′) 
. A
standard evaluation, assuming that the effect of the total system
is a superposition of the effect of individual scatterers can
be carried out, as in the equilibrium case [44], but using the
Keldysh contour for the nonequilibrium case. Here we keep
in mind that the subsystem temperatures are Te and Ti , giving
the result

1

τ (ω)
= − 1(

ωe
pme

)2
ω

∫ ∞

0

q2dq

(2π )3
|Uei(q,rs,Te)|2q2

z

×
∫ ∞

0

dν

2π
Im{χii(q,ν,rws,Ti)}�N (ν,ω)

× Im{1 + Vqχee(q,ω + ν,rs,Te)}, (22)

�N (ν,ω) = [N ((ν + ω)/Te) − N (ν/Ti)]. (23)

The last line contains Bose occupation factors N{(ν + ω)/Te}
and N (ν/Ti). Here Uei(q,rs,Te) is the pseudopotential
presented in Eqs. (9)–(13). The frequency-dependent ion
response function and the electron response function also
appear. The latter was discussed in Eq. (10). The ion-response
function can be constructed in a similar manner, or obtained
from an MD simulation [45].

This expression for the dynamic conductivity or τ (ω)
differs significantly from the Green-Kubo (GK) form used
by a number of authors [46] since both electron-electron and
ion-ion many-body effects are treated dynamically in Eq. (22).
In particular, in the currently available GK implementations,
the Green-Kubo formula is averaged within an ensemble of
static configurations generated by ion molecular dynamics;
the electrons are quenched to a Born-Oppenheimer surface to
evaluate one-electron Kohn-Sham eigenvalues, which are used
in the GK formula. The latter actually calls for eigenvalues
of the Dyson equation. The “quenching process” destroys
dynamical information; the ions and electrons “do not know”
each other’s temperatures.

We extract a meaningful “static” component of the
quasiequilibrium dynamic resistivity as this has been the
object of recent experiments, e.g., in Ref. [47]. The physically
meaningful lowest value ωL of the probe frequency ω is
∼1/τei . Hence, when Te is not strongly different from Ti we
may use ω = ωL in a Taylor expansion to write

�N (ν,ω) = N (ν/Te) − N (ν/Ti) + ω
∂N (ν/Te)

∂ν
+ · · · .

(24)

The leading term in Eq. (24) is zero in the equilibrium case
Te = Ti . It is seen that the first-derivative term gives the Ziman
resistivity in the equilibrium case, where an ω → 0 limit exists.
When Te �= Ti , the first term in �N is nonzero and leads to
a divergence unless ω remains finite. Thus the concept of a
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FIG. 5. (Color online) Triangles: The equilibrium static resistivity
of aluminum at normal compression when T = Te = Ti increases
from the melting point. Circles: The evolution of the quasistatic
component of the dynamic resistivity [Eq. (25)] of WDM aluminum at
the melting density, with the ion temperature Ti held at 0.03 eV while
the electron temperature Te is increased, as in laser-heated WDMs.
Squares: The corresponding quasistatic resistivity for a shock-heated
Al-WDM where Te remains fixed at 0.03 eV, while Ti increases to
5 eV with compression, where κ increases from 1.0 to ∼2.6.

static conductivity is nonphysical unless this “zeroth-order”
correction could be deemed negligible.

Replacing ω by its least allowed value ωL ∼ 1/τei in the
above equation and in the pre-factor in Eq. (22), we obtain
a frequency-independent first-order contribution. This can be
further reduced to a two-temperature Ziman resistivity of the
form

R(Te,Ti) = ρ(Ti)

3πn(Te)

∫ ∞

0
dε

df (ε)

dε

∫ 2
√

ε

0
Sii(q,rws,Ti)

×
∣∣∣∣Uei(q,rs,Te)

ε(q,rs,Te)

∣∣∣∣
2

q3 dq, (25)

ε(q,rs,Te) = 1 + Vqχee(q,rs,Te). (26)

The ion-ion structure factor Sii(q) is obtained from the ion-ion
PDF via the Fourier transform of gii(r) − 1. We emphasize
that this quasistatic component of the dynamic resistivity is
not the ω → 0 limit of the dynamic resistivity.

The numerically inconvenient integration over the deriva-
tive of the Fermi function in Eq. (25) can be sidestepped by
using the form of the Ziman formula given by Perrot and
Dharma-wardana, viz., as Eq. (31) in Ref. [13].

Whether the static part of the dynamic conductivity ex-
tracted in the above manner would be the quantity obtained
by extrapolation of the experimental results is unknown. In
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FIG. 6. (Color online) Triangles: the equilibrium static resistivity
of Si at normal compression when T = Te = Ti increases from near
the melting point. Circles: The evolution of the quasistatic component
of the dynamic resistivity [Eq. (25)] of WDM-Si at the melting
density, with the ion temperature Ti held at 0.15 eV while the electron
temperature Te is increased, as in laser-heated WDMs. Squares: The
corresponding quasistatic resistivity for a shock-heated Si-WDM
where Te remains fixed at 0.15 eV, while Ti increases to 5 eV with
compression, where κ increases from 1.0 to ∼3.

Figs. 5 and 6 we display the variation of R(Ti,Te) for normal
density aluminum and silicon at the melting point under laser
heating, contrasted with shock heating where the variable is
Ti . The compression remains at unity in the laser heating
and “equilibrium” curves, while the compression rises in the
shock-heating experiment. Similar results for Si are given in
Fig. 6.

It should be noted that all resistivity calculations, even
for equilibrium systems, may differ significantly from one
another depending on the specific (Boltzmann conductivity or
the Ziman resistivity) formula that is used. They themselves
may differ significantly, depending whether a T matrix or
a pseudopotential is used [48]. If a T matrix is used,
corresponding modified densities of states should be used (here
we have used the simple pseudopotential only). However, the
trends shown in Figs. 5 and 6 clearly distinguish between
equilibrium and laser- and shock-heated plasmas.

V. DISCUSSION

We have examined the construction of effective potentials
for electron-ion and ion-ion interactions that take account of
the ambient material conditions in warm-correlated matter,
since standard pseudopotentials are ill-adapted to finite-T
problems.
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The effective potentials can be used in classical MD
simulations or modified hyper-netted-chain equations to obtain
pair-distribution functions. The PDFs or calculated structure
factors have been used, together with the pseudopotentials
to obtain free energies, Hugoniots, energy relaxation, and
transport coefficients, even in quasiequilibrium situations, with
minimal computational effort. The accuracy of the methods
could be tested against liquid-metal WDM data. The Te �= Ti

results presented here have shed light on issues like phonon
hardening, and quasistatic resistivities.

An alternative approach is to use statistical potentials
generated via Slater sums [1,49]. However, as far as we
know, those methods have not been tested against experimental
liquid-metal S(k) and transport data. The present approach
based on the neutral-pseudo-atom DFT density is conceptually
and computationally simple. The nonlinear response of the
electron system to a nucleus is treated by DFT, and these
nonlinear features are included in Eq. (9) where finally a
linear-response pseudopotential is constructed. The weak
pseudopotentials presented here enable us to write down the
pair potential directly, whereas the pseudopotentials provided
with standard codes need a further solution of the Schrödinger
two-ion problem to extract a pair potential. That approach is
indeed necessary when the condition given in Eq. (17) is not
satisfied. However, in the cases considered in this paper, the full
Schrödinger two-ion problem, as well as the multi-ion problem
(e.g., as realized in Car-Parinello DFT-MD calculations on C,
Si, Ge molten fluids [34], and on Al-WDM [50]), yield results
in good agreement with those obtained from our single-center
methods.

The ranges of validity of the methods discussed here are
those of (1) the underlying DFT code used to construct the
self-consistent charge density n(r) around a single nucleus.
This is not valid if chemical bond-formation is possible,

e.g., at low free-electron densities and low temperatures,
(2) the assumption that a linear-response pseudopotential
exists, (3) and that the relevant time scales are satisfied. High-Z
materials like Au, W, pose special difficulties by these (or
other) methods. The theory of equilibrium-Au WDM by these
methods is given in Ref. [51]. The main improvement needed
is a relativistic-DFT calculation [52]. Once the relativistic
charge distribution n(r) is obtained, a weak pseudopotential
may not exist. Then a two-center calculation may be needed,
or a T matrix has to be constructed using the phase shifts
obtained from the DFT code and pair interactions may need
multiple scattering corrections. However, one can learn from
the corresponding T = 0 problem where much of the theory
is available from, e.g., Korringa, Kohn, and Rostoker [53].

In laser heating or shock compression, the theory assumes
that the external field has set up the Ti and Te quasiequilibrium.
In particular, the laser field is assumed to be switched off.
Hence the method is independent of the laser intensity,
polarization, etc. However, if a strong laser field is present, then
the DFT calculation for the charge densities and transport prop-
erties have to be carried out while including the self-consistent
modification of the occupation numbers of electronic states
by the laser field, as well as the associated dynamic screening
of the electromagnetic field, by extending the theory given in
Refs. [51,54,55] for strong electromagnetic fields. Such calcu-
lations for WDM have not been attempted so far by anyone.
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