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Head-on collisions of electrostatic solitons in nonthermal plasmas
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In contrast to overtaking interactions, head-on collisions between two electrostatic solitons can be dealt with
only by use of an approximate method, which limits the range of validity but offers valuable insights. Treatments
in the plasma physics literature all use assumptions in the stretching of space and time and in the expansion
of the dependent variables that are seldom, if ever, discussed. All models force a separability to lowest order,
corresponding to two linear waves with opposite but equally large velocities. A systematic exposition of the
underlying hypotheses is illustrated by considering a plasma composed of cold ions and nonthermal electrons.
This is general enough to yield critical compositions that lead to modified rather than standard Korteweg-de Vries
equations, an aspect not discussed so far. The nonlinear evolution equations for both solitons and their phase
shifts due to the collision are established. A Korteweg-de Vries description is the generic conclusion, except when
the plasma composition is critical, rendering the nonlinearity in the evolution equations cubic, with concomitant
repercussions on the phase shifts. In the latter case, the solitons can have either polarity, so combinations of
negative and positive solitons can occur, contrary to the generic case, where both solitons necessarily have the
same polarity.
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I. INTRODUCTION

Standard nonlinear evolution equations, like the Korteweg-
de Vries (KdV) equation, are derived in a frame which travels
at the linear acoustic speed with respect to an inertial frame
and can have N -soliton solutions (for arbitrary N , due to
their integrability properties). Hence, in an inertial frame,
they are all seen as propagating in the direction underlying
the derivation of the original evolution equation, so only
overtaking interactions are covered in this way. A more general
description, on a par with the N -soliton methods for treating
overtaking solitons, does not at present appear to be available
for the interaction between solitons traveling in opposite
directions.

Thus, to describe head-on collisions (in an inertial frame)
between two solitons, an approximate method is necessary.
This limits the range of validity of the description but
offers some valuable insights. The framework is based on an
extension of the Poincaré-Lighthill-Kuo formalism of strained
coordinates [1], which was used 3 decades ago to study the
head-on collision of nonlinear waves on the surface of an
inviscid homogeneous fluid [2]. To lowest nonlinear order, the
problem of colliding solitons leads to KdV equations and also
yields the phase shifts that occur in the interaction.

In recent years there has been much interest in the problem
of head-on collisions of acoustic solitary waves in various
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multispecies plasmas, for parallel [3–15] or oblique [16–19]
propagation with respect to a static magnetic field. The papers
quoted represent a typical selection of recent papers, without
any claim at being exhaustive. Although the models vary quite
a bit between them, all the papers in the literature follow a
similar methodology, apparently inspired by the seminal paper
by Su and Mirie [2], and lead to KdV solitons with their phase
shifts. We will focus more specifically, in what follows, on
the problem of parallel propagation, thus avoiding extraneous
analytical complications due to oblique propagation, where
the method runs along broadly similar lines as in the parallel
case.

The treatments in the plasma physics literature all use
assumptions that are seldom, if ever, discussed. For instance,
choices made in imposing the stretching of the space and time
coordinates, and the expansion of the dependent variables, hide
assumptions that are not spelled out. Among the restrictions
which are assumed by almost all cited authors, but not
explicitly motivated, is that while the stretching for the
comoving coordinates starts in a smallness parameter ε, the
perturbations in the dependent variables start at quadratic
order [3,5–8,10–13,15], except when an equivalent ordering
in ε1/2 and ε is chosen [4]. The only exceptions are where the
expansions in the dependent variables are also assumed to start
at order ε [9,14]. Unfortunately, however, these exceptions
contain serious errors which invalidate the resulting algebra
[20].

Before going on, let us briefly recall that the traditional
stretching for the KdV class of equations starts from

ξ = ε(x − t), τ = ε3t. (1)
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Here we have taken ε and ε3 rather than the traditional
ε1/2 and ε3/2, in accordance with present usage in almost
all papers dealing with head-on collisions of electrostatic
solitons in plasmas. Next, expansions are chosen of the form
ϕ = ε2ϕ2 + ε3ϕ3 + ε4ϕ4 + · · · [our choice for the subscripts]
for the electrostatic potential in normalized form. The stan-
dard reductive perturbation treatment thus leads to the KdV
equation [21,22],

∂ϕ2

∂τ
+ Aϕ2

∂ϕ2

∂ξ
+ B

∂3ϕ2

∂ξ 3
= 0. (2)

Given the vast literature on single solitons and their KdV
description, we have purposely omitted all references of this
kind, barring Refs. [21,22].

This is all fine as long as A only has one definite sign, as is
the case for the original description of shallow water waves [2]
or of ion-acoustic solitons in simple electron-ion plasmas [4].
In both of these physical situations, A > 0 and the nonlinear
modes are compressive, showing density and/or electrostatic
potential humps.

For more complex plasma compositions, this simple picture
no longer holds, and one can encounter plasma parameter
values which allow A to vanish. For those critical values
the quadratic nonlinearity will disappear from (2), and the
expansion must be changed to ϕ = εϕ1 + ε2ϕ2 + ε3ϕ3 + · · · .

This leads to a modified KdV (mKdV) equation,

∂ϕ1

∂τ
+ C ϕ2

1
∂ϕ1

∂ξ
+ D

∂3ϕ1

∂ξ 3
= 0, (3)

having a cubic nonlinearity.
One could, of course, have started in both cases directly with

ϕ = εϕ1 + ε2ϕ2 + ε3ϕ3 + · · · , but then a careful analysis is
needed, leading to a bifurcation in the treatment, where either
A = 0 or ϕ1 = 0 [23]. We will encounter a similar bifurcation
in the present paper.

As will also be seen, a natural consequence of the method
is that one necessarily has to work with linear phase velocities
which are opposite but of equal magnitude. This is sometimes
assumed ab initio [3,4,6,8,10–15] or explicitly proven at lowest
order [5]. As to the type of acoustic waves studied, one finds
dust-acoustic [3,10,12], dust-ion-acoustic [11], ion-acoustic
[4–9,13], and electron-acoustic modes [14,15].

The inertial species are usually cold [3–5,7–15] or poly-
tropic [6], sometimes in the presence of a neutralizing back-
ground [11,14,15], while the hot species can have Boltzmann
[3–6,9,10,12], Cairns nonthermal [10], κ superthermal [7],
Tsallis nonextensive [9,13,14], or quantum distributions [8,11,
15]. Even dust charge fluctuations are sometimes included [3].
Despite being based on such a rich variety of models, all
papers arrive at KdV equations as the governing evolution
equations [3–7,9–15], even when the derivation cannot be
trusted [9,14], except when viscosity is added and the resulting
equation is of the KdV-Burgers type [8].

Surveying the relevant literature, there is a need to go
more deeply into the details of the analytical derivation to
see in a reasoned way where the restrictions come in and
what they imply. To do this in an easily tractable way, we will
start from a fairly general stretching and expansion scheme
for a plasma composed of cold positive ions and nonthermal

electrons obeying a Cairns distribution [24]. This is sufficiently
general to permit critical parameters leading to mKdV rather
than KdV equations. We also include a discussion of why
the model forces a separability to lowest order, with opposite
velocities of equal magnitudes in the stretching, and clarify
the various assumptions.

One can investigate more sophisticated plasma composi-
tions. In the end, however, one always arrives at KdV equations
in the generic case or at mKdV equations when some of the
compositional parameters are sufficiently special. As far as we
have been able to ascertain, the latter aspect is not addressed
at all in the plasma literature on head-on collisions.

Having mentioned a fair selection of the theoretical papers,
we would like to draw attention to a recent paper [25]
with experimental observations of the interaction of two
counterpropagating solitons of equal amplitude in a monolayer
strongly coupled dusty plasma. This will be discussed later,
when our theoretical results can be properly compared with
the observations.

The paper is structured as follows. In Sec. II, the basic
formalism is introduced. The exposition is given in the
generic case with due attention being paid to the various
assumptions needed to make the method work and to the
physical and mathematical restrictions that these assumptions
imply. This leads to two KdV equations, for the right
and the left traveling soliton, respectively, plus equations
giving the phase changes due to the head-on collision between
the two solitons. Section III is devoted to the special case when
the compositional parameters take on values such that the
coefficient of the quadratic nonlinearity in the KdV equations
vanishes. In this case, one has to adapt the treatment and derive
instead an mKdV equation with corresponding changes in the
determination of the phases during interaction. Section IV then
briefly summarizes our conclusions.

II. BASIC FORMALISM AND GENERIC COMPOSITION

The basic fluid equations for the positive ions are the
continuity and momentum equations,

∂n

∂t
+ ∂

∂x
(nu) = 0, (4)

∂u

∂t
+ u

∂u

∂x
+ ∂ϕ

∂x
= 0. (5)

The dimensionless variables n and u are the density and fluid
velocity of the ion species, respectively, with charge e and
mass mi , normalized in terms of the equilibrium density n0

and of an ion-acoustic velocity Via = √
Te/mi . We note that

this is not the true sound speed for the model plasma, as the
effect of the Cairns nonthermal parameter has been ignored
(see below). Nonetheless, it is a useful normalizing speed,
and the nonthermal effects will then appear explicitly in the
calculations. The electrostatic potential ϕ is given in units of
Te/e, where Te is the kinetic temperature the hot electrons
would have in the absence of nonthermal effects.

All species are coupled through Poisson’s equation,

∂2ϕ

∂x2
+ n − (1 − βϕ + βϕ2) exp(ϕ) = 0, (6)

where (1 − βϕ + βϕ2) exp(ϕ) represents the hot Cairns elec-
tron contribution in terms of a nonthermality parameter β.
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More details can be found in the original paper introducing
the Cairns nonthermal distribution [24].

To model head-on collisions of two electrostatic solitons,
and inspired by methods in the literature [1,2], the stretching
is introduced as

ξ = ε(x − ct) + ε2P (ξ,η,τ ) + · · · ,
(7)

η = ε(x + ct) + ε2Q(ξ,η,τ ) + · · · , τ = ε3t,

referring in ξ and η to a right- and left-propagating soliton,
sξ and sη, respectively. For the derivation of a single standard
KdV equation to work, the velocity used in the coordinate
stretching has to be the appropriate phase speed for the linear
acoustic wave type in the plasma considered. In the present
problem, the stretching, to the lowest order, treats the colliding
waves as separate entities, and both ξ and η involve the
unique linear acoustic phase velocity (in absolute value). This
argument could have been made in the papers which assume
equal velocities without further justification. However, it was
not [3,4,8,12] or only in an indirect way [10,11,13,14].

In our model, the linear acoustic phase velocity is c =
1/

√
1 − β. Although, by definition [24], 0 � β < 4/3, we will

limit ourselves in this paper to 0 � β < 4/7, so certainly β <

1 holds. The reason for this reduced limit is that for β > 4/7,
the phase space Cairns distribution [24] may develop bump-
on-tail or beam instabilities, so this range is best avoided. The
contribution of the nonthermal effects to c, expressed in β, is
made explicit.

The functions P and Q will be seen later to represent
phase shifts that arise through the interaction between the two
solitons. For now, we prefer to leave them as functions of all
three stretched variables, to be determined later, rather than to
impose some restrictions at this early stage of the calculations.
We shall need

∂

∂x
= ∂ξ

∂x

∂

∂ξ
+ ∂η

∂x

∂

∂η
,

(8)
∂

∂t
= ∂ξ

∂t

∂

∂ξ
+ ∂η

∂t

∂

∂η
+ ∂τ

∂t

∂

∂τ
,

which, in turn, requires

∂ξ

∂x
= ε + ε2

(
∂P

∂ξ

∂ξ

∂x
+ ∂P

∂η

∂η

∂x

)
+ · · · ,

∂η

∂x
= ε + ε2

(
∂Q

∂ξ

∂ξ

∂x
+ ∂Q

∂η

∂η

∂x

)
+ · · · ,

(9)
∂ξ

∂t
= − εc + ε2

(
∂P

∂ξ

∂ξ

∂t
+ ∂P

∂η

∂η

∂t
+ ∂P

∂τ

∂τ

∂t

)
+ · · · ,

∂η

∂t
= εc + ε2

(
∂Q

∂ξ

∂ξ

∂t
+ ∂Q

∂η

∂η

∂t
+ ∂Q

∂τ

∂τ

∂t

)
+ · · · .

Up to third order, the solution of this intricate set of equations
yields

∂ξ

∂x
= ε + ε3

(
∂P

∂ξ
+ ∂P

∂η

)
+ · · · ,

∂η

∂x
= ε + ε3

(
∂Q

∂ξ
+ ∂Q

∂η

)
+ · · · ,

∂ξ

∂t
= −εc + ε3c

(
∂P

∂η
− ∂P

∂ξ

)
+ · · · ,

∂η

∂t
= εc + ε3c

(
∂Q

∂η
− ∂Q

∂ξ

)
+ · · · . (10)

We next introduce the operators

X̂ = ∂

∂ξ
+ ∂

∂η
, T̂ = c

(
∂

∂η
− ∂

∂ξ

)
,

X̂′ =
(

∂P

∂ξ
+ ∂P

∂η

)
∂

∂ξ
+

(
∂Q

∂ξ
+ ∂Q

∂η

)
∂

∂η
, (11)

T̂ ′ = c

(
∂P

∂η
− ∂P

∂ξ

)
∂

∂ξ
+ c

(
∂Q

∂η
− ∂Q

∂ξ

)
∂

∂η
,

to write the operators in (8) in a compact way, viz.,

∂

∂x
= εX̂ + ε3X̂′ + · · · ,

∂

∂t
= εT̂ + ε3T̂ ′ + ε3 ∂

∂τ
+ · · · .

(12)

The series expansions of the dependent variables are

n = 1 + εn1 + ε2n2 + ε3n3 + ε4n4 + · · · ,

u = εu1 + ε2u2 + ε3u3 + ε4u4 + · · · , (13)

ϕ = εϕ1 + ε2ϕ2 + ε3ϕ3 + ε4ϕ4 + · · · .

Although it might be anticipated that the first-order con-
tributions will vanish in the generic case, it is prudent not to
assume this from the outset but to let the algebra decide this,
should that be the case. Hence, to lowest nonzero order, (4),
(5), and (6) give

T̂ n1 + X̂u1 = 0, T̂ u1 + X̂ϕ1 = 0, n1 − (1 − β)ϕ1 = 0.

(14)

By operating on the first equation in (14) by −T̂ , on the
second by X̂, and on the third by T̂ 2 and adding the results,
we eliminate n1 and u1 to find that

4
∂2ϕ1

∂ξ∂η
= 0. (15)

Hence, the first-order variables will consist of a term depending
on ξ and τ , but not η, and another term depending on η and τ ,
but not ξ . This leads to

n1 = (1 − β)(ϕ1ξ + ϕ1η), u1 =
√

1 − β(ϕ1ξ − ϕ1η),
(16)

ϕ1 = ϕ1ξ + ϕ1η,

with obvious compact notations to denote the dependence on
the space arguments ξ or η.

To the next higher order, (4), (5), and (6) give

T̂ n2 + X̂u2 + X̂(n1u1) = 0, T̂ u2 + u1X̂u1 + X̂ϕ2 = 0,
(17)

n2 − (1 − β)ϕ2 − 1
2 ϕ2

1 = 0.

For those terms that depend on τ , and on either ξ or η, but not
both, we find that

n2ξ = (1 − β)ϕ2ξ + 3
2 (1 − β)2ϕ2

1ξ ,

n2η = (1 − β)ϕ2η + 3
2 (1 − β)2ϕ2

1η,
(18)

u2ξ =
√

1 − β ϕ2ξ + 1
2 (1 − β)3/2ϕ2

1ξ ,

u2η = −
√

1 − β ϕ2η − 1
2 (1 − β)3/2ϕ2

1η,
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coupled to

(2 − 6β + 3β2)ϕ2
1ξ = 0, (2 − 6β + 3β2)ϕ2

1η = 0. (19)

These results include an integration with respect to ξ or η,
with zero boundary conditions at infinity, in the undisturbed
medium.

The remainder of the information to this order comes from
the elimination of u2 between the first two equations in (17)
and using the third equation to replace n2 but only for the terms
which depend on ξ and η together, which leads to

∂2ϕ̃2

∂ξ∂η
+ β(2 − β)

2(1 − β)

∂ϕ1ξ

∂ξ

∂ϕ1η

∂η

− 2 − 2β + β2

4(1 − β)

(
ϕ1η

∂2ϕ1ξ

∂ξ 2
+ ϕ1ξ

∂2ϕ1η

∂η2

)
= 0. (20)

Here ϕ̃2 = ϕ2 − ϕ2ξ − ϕ2η has been defined as the part of ϕ2

which depends on ξ and η together in a way which cannot
be disentangled, with analogous definitions for other variables
and higher orders.

The structure of (19) points to two possibilities: either
the nonthermality parameter is very special, in that βc =
(3 − √

3)/3 � 0.423, or else ϕ1ξ = ϕ1η = 0. Not surprisingly,
there is a close correspondence to standard KdV theory,
where critical parameters annul the coefficient of the quadratic
nonlinearity and one has to go to cubic nonlinearities in an
mKdV equation. This will be investigated in detail in Sec. III.
There is also a correlation with the large amplitude analysis of
nonlinear modes by pseudopotential theory, where the same
value of βc is found for the reversal of polarities of the KdV-like
and nonKdV-like modes in a number of physically different
plasma systems [26–28].

Apart from the papers by Demiray [4] and Chatterjee
et al. [7], whose plasma models do not give rise to critical pa-
rameters, the other models [3,5,6,8,10–13,15] are sufficiently
sophisticated to yield critical compositions. However, none
of the authors discusses the possibility of having such special
cases, because they have immediately started the expansions of
the dependent variables, outside equilibrium, at order ε2. Since
in the generic case all first-order quantities vanish, it has been
implicitly assumed in the papers quoted [3,5,6,8,10–13,15] that
this is the only case worth considering. Eslami et al. [9,14] start
the expansions at order ε but then proceed as though this were
the generic case, and thus introduce serious errors, as we have
shown [20].

Assuming now that we are in the generic case, for which we
have to take ϕ1ξ = ϕ1η = 0, one is, from (18) and (20), once
again, led to separability

n2 = (1 − β)(ϕ2ξ + ϕ2η), u2 =
√

1 − β(ϕ2ξ − ϕ2η),
(21)

ϕ2 = ϕ2ξ + ϕ2η.

Continuing up the ladder, we find for the third-order
variables that

T̂ n3 + X̂u3 = 0, T̂ u3 + X̂ϕ3 = 0, n3 − (1 − β)ϕ3 = 0.

(22)

Since these variables will not appear at the next order, we
simply put n3 = u3 = ϕ3 = 0 and, thus, find that the series

expansions (13) go in even orders of ε, much as is the case for
the usual derivation of the KdV equation.

Finally, we arrive at the order where interesting new
contributions appear,

T̂ n4 + T̂ ′n2 + ∂n2

∂τ
+ X̂u4 + X̂(n2u2) + X̂′u2 = 0,

T̂ u4 + T̂ ′u2 + ∂u2

∂τ
+ u2X̂u2 + X̂ϕ4 + X̂′ϕ2 = 0, (23)

X̂2ϕ2 + n4 − (1 − β)ϕ4 − 1
2 ϕ2

2 = 0.

Combining again the parts of these equations which contain
terms that depend only on ξ or η (besides τ ) yields the typical
KdV equations

∂ϕ2ξ

∂τ
+ Aϕ2ξ

∂ϕ2ξ

∂ξ
+ B

∂3ϕ2ξ

∂ξ 3
= 0,

(24)
∂ϕ2η

∂τ
− Aϕ2η

∂ϕ2η

∂η
− B

∂3ϕ2η

∂η3
= 0,

for the right- and left-going solitary waves, respectively, with

A = 2 − 6β + 3β2

2(1 − β)3/2
, B = 1

2(1 − β)3/2
. (25)

The coefficient of the quadratic nonlinearity, A, has already
been encountered in a similar role in (19), except for factors
(1 − β) which have been omitted there. It will be recalled that
this factor is related to the normalized linear phase speeds,
which are given by c = 1/

√
1 − β. As seen already in the

discussion about (19), A can change sign at βc. For good
measure, we include in Fig. 1 a graph of how A and B vary as
β is increased from 0 to 0.6.

There is more information still in the terms which contain
both ξ and η, besides τ , giving

∂2

∂ξ∂η

[
ϕ̃4 + β(2 − β)

2(1 − β)
ϕ2ξ ϕ2η

]
+ ∂

∂ξ

{[
∂P

∂η
− S ϕ2η

]
∂ϕ2ξ

∂ξ

}
+ ∂

∂η

{[
∂Q

∂ξ
− S ϕ2ξ

]
∂ϕ2η

∂η

}
= 0, (26)

0.1 0.2 0.3 0.4 0.5 0.6
Β

1.0

0.5

0.5

1.0

1.5

2.0

A,B

FIG. 1. (Color online) Changes of A and B (solid and dashed
curves, respectively), as β is increased, showing how A goes from
positive to negative values at βc and how B remains positive and
increases monotonically from 1/2.
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with

S = 2 − 2β + β2

4(1 − β)
� 1

2
. (27)

The second and third terms in (26) will generate secular
contributions at the next higher order, so these are to be
annulled, leading to

∂P

∂η
= S ϕ2η,

∂Q

∂ξ
= S ϕ2ξ . (28)

Thus, the phase shifts can be determined also. The structure
of these equations is such that ∂P/∂η cannot depend on ξ ,
since the right-hand side does not contain ξ , and, thus, P

itself might contain an additive part which would depend on
ξ and τ but not on η. Such a part plays no role here and is
not interesting, because it would refer to changes in the phase
of the right-traveling soliton due to its own propagation. It
therefore can be omitted altogether, as was assumed at the
outset, without discussion, in all the papers mentioned [3–15].
Analogous arguments hold for the absence of η in Q.

Finally, the other remaining term in (26) will give rise to a
contribution

ϕ̃4 = − β(2 − β)

2(1 − β)
ϕ2ξ ϕ2η (29)

to ϕ4, besides the parts ϕ4ξ and ϕ4η, which will have to be
determined from higher-order contributions.

Turning now to the one-soliton solutions of (24), these are
the well-known “sech-squared” solitons of KdV theory, here

ϕ2ξ = 3vξ

A
sech2[κξ (ξ − vξ τ )],

(30)

ϕ2η = 3vη

A
sech2[κη(η + vητ )],

with the amplitudes and inverse width (related to κξ or κη)
expressed in terms of the velocities vξ and vη, respectively, for
the right- and left-propagating solitons. Here

κξ = (1 − β)3/4

√
vξ

2
, κη = (1 − β)3/4

√
vη

2
. (31)

This requires that vξ > 0 and vη > 0 and also indicates that
the two interacting solitons must have the same polarity,
given by the sign of A. Thus, for 0 � β < βc, hence A > 0,
both solitons must have positive polarity, and for βc < β < 1
(where A < 0), negative polarity. These ranges for the soliton
polarities agree with those found in recent pseudopotential
studies for KdV-like solitons in plasmas with a Cairns
nonthermal component [27,28].

It is, thus, clear that the present approximate way of
dealing with head-on collisions is unable to handle interactions
between two modes of opposite polarities in the same physical
system. Furthermore, even though at the level of the stretching
(7) we have opposing velocities c of equal magnitude, this does
not hold for the one-soliton solutions, which are superacoustic
in their direction of propagation but can have quite different
amplitudes.

To obtain the phase shifts after the head-on collision
between the two solitons, we assume that the right- and
left-propagating solitons sξ and sη are, asymptotically, far
from each other at the initial time (t = −∞), i.e., sξ is at

ξ = 0, η = −∞ and sη is at η = 0, ξ = +∞, respectively.
After the collision (t = +∞), sξ is far to the right of sη, i.e.,
sξ is at ξ = 0, η = +∞, and sη is at η = 0, ξ = −∞. These
or similar boundary conditions have been used in almost all
papers [3–7,9–15]. Hence, the phase shifts expressed by P

and Q are found from the substitution of (30) into (28) and
integration, yielding

P = 3S
√

2vη

A(1 − β)3/4
{tanh[κη(η + vητ )] + 1},

(32)

Q = 3S
√

2vξ

A(1 − β)3/4
{tanh[κξ (ξ − vξ τ )] − 1}.

As in all proper KdV problems, there is an intimate link in
the comoving frame between the soliton amplitude, width, and
excess velocity, and two of the characteristics can be expressed
in terms of a third. Here the choice has been made to start from
the excess velocities and use that to give the amplitudes and
widths. Increases in vξ entail increases in the amplitudes of
ϕ2ξ as well as in the phase shift of ϕ2η. Thus, the larger of
the two solitons travels faster than the smaller one but is less
affected by the phase shift when emerging from the collision
region.

The special case of a plasma with Boltzmann electrons, as
treated in the literature [4], is obtained at β = 0, so A = 1,
B = 1/2, and S = 1/2. Thus (30) and (32) are simplified to

ϕ2ξ = 3vξ sech2

[√
vξ

2
(ξ − vξ τ )

]
,

(33)

ϕ2η = 3vη sech2

[√
vη

2
(η + vητ )

]
,

and

P = 3

√
vη

2

{
tanh

[√
vη

2
(η + vητ )

]
+ 1

}
,

(34)

Q = 3

√
vξ

2

{
tanh

[√
vξ

2
(ξ − vξ τ )

]
− 1

}
.

Moreover, the contribution to ϕ̃4 of the form ϕ2ξϕ2η now
disappears, so ϕ4 is separable, as were the lower orders, as
is u4 but not n4. Indeed, one can show that ϕ̃4 = 0 induces
ũ4 = 0 but ñ4 = ϕ2ξϕ2η, provided the simplified versions of
(24) and (28) hold.

We can now illustrate the above discussion with some
graphs, starting with the Boltzmann case (β = 0) in Fig. 2.
Both head-on colliding modes have positive polarities and,
therefore, are compressive in the electron and ion densities.
Plots with β intermediate between 0 and βc will show a
qualitatively similar behavior, as the nonthermal effects are
not strong enough to reverse the polarity.

In order to show the phase shift more clearly, we plot in
Fig. 3 for β = 0.25 a smaller (slower) right-going soliton (with
a larger phase shift) as viewed from above. We have omitted
the larger left-going soliton (with a smaller phase shift) as it
would obscure the right-going soliton.

If one looks at (7), P and Q are corrections to both
the space and time coordinates, in a way which is not
immediately obvious. However, Fig. 3 clearly shows that it
is not so much the soliton velocity which is affected, if one
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FIG. 2. (Color online) Head-on collision for plasma composition
with Maxwellian electrons (β = 0) for vξ = 0.01 and vη = 0.02. The
solitons have positive polarity and are compressive in the densities.

compares the propagation characteristics long before and after
the interaction region, but the important change is in a kind of
phase shift. One should also keep in mind that the results are
restricted to order ε3, as befits the expansion scheme leading
to the KdV equations.

Once β > βc, the polarities become negative and the
solitons are rarefactive in the densities. This is shown in Fig. 4
for β = 0.5, a typical value used in literature on nonthermal

FIG. 3. (Color online) Slower soliton in the interaction zone,
viewed from above, for the head-on collision for plasma composition
with β = 0.25 for vξ = 0.1 and vη = 0.2. The soliton is compressive
and has a positive polarity. The soliton speeds have been chosen as
rather large, for graphical clarity, but one cannot normally take the
amplitudes too large, when using reductive perturbation theory.

FIG. 4. (Color online) Head-on collision for plasma composition
with β = 0.5, beyond βc = 0.423, for vξ = 0.01 and vη = 0.02. Here
the solitons have negative polarity and are rarefactive in the densities.

plasmas [24,27,28]. Plots for other values of β > βc will yield
graphs which are qualitatively similar to that in Fig. 4.

As is clear from the literature surveyed [3–15], the inclusion
of other superthermal electron effects, such as κ distributions,
or more cold ion species, can easily be done by modifying the
derivation at the appropriate places. This will result in changes
of the coefficients in various expressions but not in the intrinsic
structure of the nonlinear evolution equations or in the phase
shifts.

None of the papers in the literature [3–7,9–14] present
graphs of this kind, except for the very recent paper by
El-Labany et al. [15], which shows interactions of two
rarefactive or two compressive solitons, respectively. This is
a clear indication that in their model A = 0 is possible, but
no discussion has been given of what is needed at critical
composition. The figures in the paper by Han et al. [8]
cannot be directly compared with our graphs, because they
studied the interaction between two colliding shocks obeying
KdV-Burgers equations.

The recent paper by Harvey et al. [25] includes experimen-
tal observations that are qualitatively similar to our results in
Figs. 2 and 4. It was found that the solitons are delayed after
the collision, with solitons of higher amplitude experiencing
longer delays. The amplitude of the overlapping solitons
during the collision was less than the sum of the initial soliton
amplitudes. We do not claim that our model is the only
one which produces graphs which are qualitatively similar
to those obtained by Harvey et al. [25], only that none of
the papers in the literature dealing with head-on collisions
even refer to the experimental results of Harvey et al. and
that El-Labany et al. [15] might have reached an analogous
conclusion had they chosen to discuss the experimental
results.

Harvey et al. [25] discuss a comparison with the theoretical
analysis of Su and Mirie [2], which, however, like all
papers using the same methodology, predicts a superposition
of the amplitudes during the interaction. Presumably, this
discrepancy between the theory and the observations of Harvey
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et al. [25] highlights a weak point of the present approximate
approach, which works well for the description of the solitons
outside the interaction region and gives the right phase shifts
after the collision. However, the decomposition ϕ2 = ϕ2ξ +
ϕ2η amounts to a linear superposition of two KdV solitons,
which, particularly during the collision, differs markedly from
a two-soliton solution, of a single KdV equation, to describe
overtaking collisions.

III. SOLITONS AND PHASE SHIFTS AT CRITICAL
COMPOSITIONS

We now suppose that the electron nonthermality is critical,
in that βc annuls 2 − 6β + 3β2. Note that the other root of this
quadratic, β = (3 + √

3)/3, is outside the definition range 0 �
β < 4/3. Ignoring this root and taking β = βc, the quadratic
nonlinearity in the KdV equations (24) disappears and in (18)
we must keep the contributions in ϕ1. Moreover, (20) simplifies
to

∂2ϕ̃2

∂ξ∂η
+

√
3

3

(
∂2

∂ξ∂η
− ∂2

∂ξ 2
− ∂2

∂η2

)
ϕ1ξϕ1η = 0. (35)

While it is clear that ϕ̃2 �= 0, we can cancel the solutions of the
linear operator without loss of generality, hence, ϕ2ξ = ϕ2η =
0, leaving us with

n2ξ = 1

2
ϕ2

1ξ , n2η = 1

2
ϕ2

1η,

(36)

u2ξ =
4
√

3

6
ϕ2

1ξ , u2η = −
4
√

3

6
ϕ2

1η,

besides contributions ñ2 and ũ2, involving ϕ̃2 and combinations
of ϕ1ξϕ1η.

At critical composition, the interesting new contributions
appear in the equations for the third-order variables,

T̂ n3 + T̂ ′n1 + ∂n1

∂τ
+ X̂u3 + X̂(n1u2 + n2u1) + X̂′u1 = 0,

T̂ u3 + T̂ ′u1 + ∂u1

∂τ
+ X̂ (u1u2) + X̂ϕ3 + X̂′ϕ1 = 0, (37)

X̂2ϕ1 + n3 −
√

3

3
ϕ3 − ϕ1ϕ2 − 4 − √

3

6
ϕ3

1 = 0.

Combining again the parts of these equations which contain
terms that only depend on ξ or on η (besides τ ) yields the
typical mKdV equations

∂ϕ1ξ

∂τ
+ (2 −

√
3) 4

√
3 ϕ2

1ξ

∂ϕ1ξ

∂ξ
+ 33/4

2

∂3ϕ1ξ

∂ξ 3
= 0,

(38)
∂ϕ1η

∂τ
− (2 −

√
3) 4

√
3 ϕ2

1η

∂ϕ1η

∂η
− 33/4

2

∂3ϕ1η

∂η3
= 0,

for the right- and left-propagating solitary waves, respectively.
Now the nonlinearity is cubic.

Additional information can be found in the terms which
contain both ξ and η (in addition to τ ), yielding

∂2ϕ̃3

∂ξ∂η
+ ∂

∂ξ

{[
∂P

∂η
− 6

√
3 − 5

12
ϕ2

1η

]
∂ϕ1ξ

∂ξ

}

+ ∂

∂η

{[
∂Q

∂ξ
− 6

√
3 − 5

12
ϕ2

1ξ

]
∂ϕ1η

∂η

}
+ R = 0. (39)

Here R represents all the terms in which the variables ξ and
η are fully mixed, in a way which cannot contribute to the
determination of P and Q. Most of these rather complicated
terms depend on finding expressions for ñ2, ũ2, and ϕ̃2. This
can be done only once (35) has been solved for ϕ̃2, and this in
turn relies on the solutions to (38).

The second and third terms in (39) will generate secular
contributions at the next higher order. These are to be annulled,
leading to

∂P

∂η
= 6

√
3 − 5

12
ϕ2

1η,
∂Q

∂ξ
= 6

√
3 − 5

12
ϕ2

1ξ . (40)

Thus, with (40), the phase shifts can also be determined.
Because mKdV equations like (38) are invariant for a sign

inversion of ϕ1ξ or ϕ1η, the one-soliton solutions of (38) are

ϕ1ξ = ±
√

2 × 33/4

2 − √
3

√
vξ sech[κξ (ξ − vξ τ )],

(41)

ϕ1η = ±
√

2 × 33/4

2 − √
3

√
vη sech[κη(η + vητ )],

where the amplitudes are now 4.125
√

vξ and 4.125
√

vη,
respectively, and

κξ =
√

2 vξ

33/4
� 0.937

√
vξ , κη =

√
2 vη

33/4
� 0.937

√
vη. (42)

Note that in (41) the respective ± signs are not coupled.
The phase shifts expressed by P and Q are found from the

substitution of (41) into (40) and integration, yielding

P = 31/8(8 + 7
√

3)

2
√

2

√
vη {tanh[κη(η + vητ )] + 1}

� 8.162
√

vη {tanh[κη(η + vητ )] + 1},
(43)

Q = 31/8(8 + 7
√

3)

2
√

2

√
vξ {tanh[κξ (ξ − vξ τ )] − 1}

� 8.162
√

vξ {tanh[κξ (ξ − vξ τ )] − 1}.

FIG. 5. (Color online) Head-on collision for critical plasma
composition, at β = βc, so mKdV equations are needed here, for
vξ = 0.001 and vη = 0.002 and positive potential solitons.
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FIG. 6. (Color online) Head-on collision between solitons of
opposite polarities, for critical plasma composition, at β = βc,
vξ = 0.001 (negative polarity), and vη = 0.002 (positive polarity).

Because P and Q are defined in terms of ϕ2
1η and ϕ2

1ξ ,
respectively, the polarity of the modes does not play a role
in this aspect of the problem.

As shown in Fig. 5 for two modes of positive polarity, the
behavior is qualitatively reminiscent of what happens for other
β < βc, namely there are compressive solitons. Compared
to Fig. 2, the characteristics are less steep and the widths
larger, as one is now plotting “sech” rather than “sech-squared”
solutions. One could also have chosen two modes with negative
polarities, and then the rarefactive solitons would qualitatively
look like those in Fig. 4.

The most interesting difference between the generic and the
critical case is that, in the critical case, the two mKdV equations
(38) admit a combination of positive and negative modes. This
is shown in Fig. 6 for a weaker right-propagating negative
soliton and a stronger left-propagating positive soliton.

IV. CONCLUSIONS

In this paper we have treated the head-on collision between
two solitons in a nonthermal plasma, taking great care to
analyze in a systematic way the different assumptions needed
to derive the corresponding nonlinear evolution equations and
phase shifts. It is shown that the typical reductive perturbation
expansion restricts one to the case of equal linear phase speeds
used in the coordinate stretching.

For the generic case, the solitons are of KdV type, as is
the case for simple electron-ion plasmas or plasmas having
a more complicated multispecies composition but without
critical parameter values. Both left- and right-propagating
solitons must have the same electrostatic polarity, namely that
given by the sign of the coefficient, A, of the nonlinear term
in the KdV equation.

If the plasma parameters take on critical values, the
quadratic nonlinearity in the KdV equation disappears and the
scaling works out in a different way. This leads to an mKdV
equation with cubic nonlinearity. This part of the problem has
not been treated before in the plasma literature, as far as could
be ascertained.

Moreover, since the mKdV equation is invariant for inver-
sion of the electrostatic polarity, it follows that combinations
of solitons of different polarities now become possible, e.g.,
a negative right- and a positive left-propagating soliton. We
stress that this result arises specifically in a plasma physics
context. The criticality leading to an mKdV structure cannot
occur for surface solitons on shallow water [2], which are
always compressive.
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