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Modeling of radiation losses in ultrahigh power laser-matter interaction
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Radiation losses of electrons in ultraintense laser fields constitute a process that can be important for electron
and ion acceleration and creation of secondary emissions. The importance of this effect for ion acceleration to
high energies is studied as a function of the laser intensity and the target thickness and density. For instance, in
the piston regime, radiation losses lead to a reduction of the piston velocity and to less-efficient ion acceleration.
Radiation losses have been implemented in the relativistic particle-in-cell code by using a renormalized Lorentz-
Abraham-Dirac model.
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I. INTRODUCTION

A new generation of laser systems such as planned in the
Extreme Light Infrastructure project [1] will produce laser
intensities as high as 1024 W/cm2. New physical processes
are expected under these conditions such as emission of
high-energy photons, the force of radiation reaction acting on
electrons, electron-positron pair production, and acceleration
of ions to relativistic energies [2]. One of the important
applications of ultraintense laser pulses is acceleration of
charged particles to extremely high energies. Ion acceleration
in the field by an ultrashort and ultraintense laser pulse is one
of the most important applications of the presently available
compact laser systems with multiterawatt and petawatt power.
The process of ion acceleration has been studied in detail
in experiments [3] and with multidimensional particle-in-cell
(PIC) simulations [4]. In Ref. [5] a plasma produced by an
ultrashort and ultraintense laser pulse was proposed as a
source of high-energy ions for hadrontherapy in oncology.
Recent numerical simulations and theoretical analysis show
that at laser intensities exceeding 1022 W/cm2 the ions can be
accelerated to relativistic energies under the laser radiation
pressure. The importance of taking into account radiation
losses under these conditions was demonstrated in Refs. [6,7].
Still, more work needs to be done on the theoretical description
of the radiation losses at ultrahigh laser intensity and on their
effect on the various laser ion acceleration mechanisms in this
regime.

The characteristic spatial scale where the radiation effects
become important for relativistic electrons is defined by the
Compton length, λC = h̄/mec. If the electric field E acting on
the electron is such that it gains a relativistic energy on this
length, the radiation processes dominate the interaction. This
condition defines the Schwinger field:

ES = m2
ec

3/eh̄,

and the dimensionless parameter χe = E/ES . It should be
small, χe � 1, in the electron proper reference frame in
the domain where the classical electrodynamics applies. For
lasers, the Schwinger field corresponds to the intensity IS =
1
2ε0cE

2
S of about 1029 W/cm2. It will be difficult to attain

such intensities in the near future. However, radiation effects
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may become important at lower intensities for relativistic
electrons moving towards the laser, as the electric field seen
by an electron is enhanced by the factor γe(1 − βe‖), where
γe = (1 − β2

e )−1/2 is the electron relativistic factor and βe‖ is
the component of the dimensionless electron velocity parallel
to the laser propagation axis. For an electron propagating
towards the laser βe‖ ≈ −1 and the laser electric field is
enhanced by a factor of ∼2 γe.

The laser field can be conveniently characterized by the
dimensionless parameter aL = eEL/meωLc, which is the ratio
of the momentum that an electron gains in the laser field of the
frequency ωL to mec. Consequently, the Schwinger parameter
for the laser reads

χe = γe(1 − βe‖)aLh̄ωL/mec
2.

As the electron gains the energy γe ∼ aL in the laser field,
the domain of applicability of the classical electrodynamics
is limited by the condition aL � (mec

2/h̄ωL)1/2 � 440 corre-
sponding to laser intensities of about 4 × 1023 W/cm2.

The classical electron dynamics is described by the Lorentz-
Abraham-Dirac (LAD) equation [8]. It accounts for the friction
force (also called self-force) acting on an electron due to its
own radiation losses. However, the LAD equation contains
a third-order time derivative, and it presents nonphysical
runaway solutions. It is difficult to apply it even for the
description of the dynamics of a single electron [9,10].

A perturbation approach to the solution of the LAD
equation was proposed by Landau and Lifshitz (LL) [11]
and further detailed by Rohrlich [12]. The LL equation is
of the second order in time and it does not contain unphysical
solutions, but the radiation reaction may have a noticeable
effect on the electron dynamics only in ultrastrong fields.
Although for an ultrarelativistic case the radiation reaction
force may be comparable to the Lorentz force in the laboratory
frame, it remains much smaller than the Lorentz force in the
instantaneous frame of the particle as long as the dimensionless
Schwinger parameter verifies the condition, χe � 1 [11,15].

While the radiation reaction force has been applied to the
motion of a single particle for a long time, it has only recently
been considered in plasma physics. First kinetic simulations
of laser-plasma interaction with PIC codes accounting for
the radiation force were reported in Refs. [7,13,14]. They
demonstrated the role that the radiation reaction plays in the
radiation pressure acceleration of ions by high-intensity laser
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pulses. During the last five years several models that take
into account the effect of radiation losses on the motion of
charged particles have been used. One can cite the models
by Bell [15], Ford [16], and Sokolov [17]. However, only
Sokolov’s equations are different from the Landau-Lifshitz
model. In their implementation of the radiation reaction force
the authors [7] used a new renormalized version of the LAD
equation proposed recently in Refs. [17,18] that accounts for
the modification of the electron orbit under the action of the
self-force. Although still limited by the classical approach
condition, χe < 1 [19,20], this approach is considered to be
more accurate than the LL equation and it is also better suited
for numerical implementation in PIC codes. In the present
paper, we implemented electron radiation effects in the one-
dimensional (1D) relativistic PIC code PICLS [21] and applied
it to the study of various regimes of laser ion acceleration
at ultrahigh laser intensities. The theoretical approach is
developed in Sec. II. The physics of laser plasma interaction is
described by the kinetic equations for the electrons, ions, and
photons coupled with the large-scale electromagnetic fields
described by Maxwell’s equations. In particular, the problem
of separation of the photons described kinetically and the
laser fields described classically is discussed. The numerical
implementation of the radiation losses and the self-force
in the code PICLS is presented in Sec. III. The numerical
scheme is explained, discussed, and compared with several
representative results recently published. Finally, the role of
electron radiation losses in ion acceleration by strong laser
pulses is studied in Sec. IV. Depending on the target density
and thickness the radiation reaction may enhance or decrease
the energy of ions. The results of the paper are summarized in
Sec. V.

II. RADIATION REACTION FORCE

A. Single-electron dynamics

Charged particles in the presence of a strong electromag-
netic field emit high-frequency radiation. Its power, Pr =
2
3

q2

c3 w2, is given by the Larmor formula, where q is the
particle charge, w = (mγ )−1[FLe − (FLe · β) β] is the particle
acceleration by the Lorentz force

FLe = q (E + β × B) , (1)

and β = v/c is the dimensionless particle velocity. The radia-
tion friction force is inversely proportional to the particle mass.
We can therefore assume that only electrons are responsible
for the radiation because of their low mass compared to ions.
In that case the radiated power reads Pre = τrmew

2
e , where

τr = 2 e2/3mec
3 � 6.2 × 10−24 s is the characteristic time

and we is the electron acceleration. In the relativistic case,
it is concentrated around a cone with an angle ∼1/γ . The
radiation spectrum is discussed in Sec. II B.

This radiation takes away from the electron and from
the laser field momentum and energy. These effects need
to be accounted for in the electron equation of motion. In
the covariant relativistic approach developed by Dirac, it is
represented by the self-force four-vector F

μ

sf that is added
to the Lorentz four-force F

μ

Le. Then the electron equation of

motion takes the form:

mec u̇μ = F
μ

Le + F
μ

sf , (2)

where uμ = (γe,γeβe) is the electron four-velocity, F
μ

Le =
−(e/c)Fμνuν is the Lorentz force (1) related to the elec-
tromagnetic stress tensor Fμν = ∂Aμ/∂xν − ∂Aν/∂xμ, −e

is the electron charge, and F
μ

sf = meτr (üμ − uμuνüν) is the
self-force.

It was thus suggested in [11] to neglect it in the zeroth
order, express then the acceleration with the Lorentz force,
and inject this expression in the self-force tensor. It then takes
the following form:

F
μ

sf = −eτr

∂Fμν

∂xσ
uνu

σ − e2τr

m2
ec

2
FμνFνσ uσ

+ e2τr

m2
ec

2
Fνσ uσF ν�u�u

μ. (3)

This term is supposed to be small compared to the Lorentz
force in the electron proper reference frame. The radiation
reaction may have a significant effect on the electron dynamics
only in the relativistic limit, γe � 1. In that case, the third
term in the right-hand side of Eq. (3) is of the order of
γ 2

e � 1. It is therefore the dominant term. Moreover, the
first term containing the field derivatives is smaller than
the two other terms and may be comparable to the electron
spin corrections. This fact has been discussed in Ref. [13].
Returning to the three-vector formulation and neglecting the
first term in Eq. (3), such a simplified version of the equations
of electron motion writes

dpe

dt
= FLe + Fsf ,

dxe

c dt
= βe,

(4)
where Fsf = − eτr

mec
[FLe × B − eE (βe · E)]

− τr

c
γ 3

e βe(we · FLe).

Compared to the LAD model, this system of equations does not
contain the self-accelerating solutions and can be conveniently
applied for numerical simulations of multiparticle systems
[13].

Recently, the authors of Refs. [17,18] proposed an improved
model for the radiation reaction force that has better properties
of energy and momentum conservation and can be extended
to higher values of the parameter χe < 1. The corresponding
equations of electron motion read

dpe

dt
= FLe − e δβe × B − γ 2

e (FLe · δβe)βe, (5)

dxe

c dt
= βe + δβe, (6)

where the radiation losses are described by the correction term
to the electron velocity

δβe = (τr/c) γewe

1 − (e τr/mec) (βe · E)
. (7)

Here, the second term in the denominator accounts for the
saturation of the radiation losses in intense fields. However,
as discussed in Ref. [19], its contribution is negligible even
at the upper limit of classical electrodynamics. Its relative
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value, ωLτraL, is of the order of 10−5. The second term
in the right-hand side of Eq. (5) induces a deviation of the
electron momentum and can be thought as a modification of the
curvature of the electron orbit. The last term in the right-hand
side of this equation can be identified as a friction force as it
is directed in the direction opposite to the particle velocity. In
the first order on the radiation parameter τr this term reduces
to the second term in the self-force of the LL model (4).
The numerical implementation of the radiation force model
is described in the next section.

B. Spectrum of radiation emission

The radiation force is related to the incoherent emission of
high-frequency radiation by electrons. The radiation spectrum
consists of the harmonics of the laser frequency shifted by the
Doppler effect. There could also be harmonics of the Doppler-
shifted electron cyclotron frequency if a magnetic field is
present. We assume that each electron radiates independently
and contributions of all electrons are added incoherently. This
assumption works if the distance between each electron (de �
n

−1/3
e ) is larger than the characteristic radiation wavelength, for

each electron (λcr � 2πc
ωcr

), which is the case in our simulations.
Moreover this assumption is used in the part describing the
kinetic equations. It ensures the nondivergence in the source
term of the kinetic equation of photons (see part C of Sec. II).

The exact expression of the radiation spectrum can be
significantly simplified in the ultrarelativistic limit. The in-
stantaneous electron motion can be represented as a sum of the
rectilinear motion characterized by the relativistic factor γe and
a circular motion characterized by the rotation frequency ωr =
|pe × FLe|/p2

e . In the limit γe � 1 the radiation spectrum can
be approximated by a continuous function S(ω/ωcr ), where
ωcr = 3

2ωrγ
3
e is the critical frequency defining the maximum

of the spectrum, S(r) = 35/2(8π )−1r
∫ ∞
r

K5/3(r ′) dr ′ defines
the spectral shape, and K5/3 is a modified second-order Bessel
function. The function S(r) is normalized as

∫ ∞
0 S(r) dr = 1.

The radiation is emitted in a cone with the angle ∼1/γe with
respect to the electron propagation direction. Because in the
ultrarelativistic limit this angle is rather small and the number
of emitting electrons is large, it is sufficient for numerical
modeling to assume that photons are emitted in the direction
of electron propagation. Then the intensity of emitted radiation
by a single electron can be presented as follows [7,19]:

d2Ir

dωd�
= γ 3

e τr

ωcr

(FLe · we) δ

(
� − pe

pe

)
S

(
ω

ωcr

)
. (8)

By integrating this formula over the spectrum and the emission
directions represented by the unitary vector �, one finds the
total radiated power determined by the Larmor formula. It is
supposed in the present model that the radiation escapes freely
from the plasma, not interacting with the plasma particles.
Numerically, the radiation of all electrons is collected at each
time step and then integrated over the observation time.

C. Kinetic equations for the particles

The single-particle dynamics described above can be in-
corporated in the kinetic model describing a collective motion
of the plasma in the radiation field. The plasma dynamics is

described by a set of kinetic equations for the distribution
functions of electrons, fe(pe), ions fi(pi), and photons fγ (pγ )
[22]. In the domain of classical electrodynamics, χe < 1, these
equations read

∂fe

∂t
+ cβe · ∇fe + FLe · ∂fe

∂pe

= τr

c

∂

∂pe

· [γ 3
e βe(we · FLe)fe

]
,

∂fi

∂t
+ c β i · ∇fi + FLi · ∂fi

∂pi

= 0,

(9)
∂fγ

∂t
+ c � · ∇fγ

= τrc
3

h̄4ω3

∫
dpe fe(pe)

γ 3
e

ωcr

(we · FLe)δ

(
� − pe

pe

)
S

(
ω

ωcr

)
.

Here, the photon momentum is defined as pγ = �h̄ω/c and the
photon energy density is Eγ = ∫

dpγ h̄ω fγ . The terms in the
left-hand side of these equations are describing the transport of
particles in the phase space. The radiation terms are presented
as sources in the right-hand side of the kinetic equations for
electrons and photons. As we did not find any significant
difference between the models (4) and (5) in the domain of
applicability of the classical electrodynamics (see also the next
section), the simplified LL model containing only the friction
term in the self-force is incorporated in the electron kinetic
equation. The radiation reaction term conserves the number
of electrons, and it accounts for the energy and momentum
losses. It has the form of a friction force in a standard
Fokker-Planck equation, but the divergence of the friction
force in the momentum space is nonzero, ∂Fsf /∂pe < 0. This
leads to the contraction of the electron distribution function
in the phase space as discussed in Ref. [23]. The self-force
is related to a spontaneous radiation; thus it does not depend
on the number of photons. In the photon kinetic equation, the
right-hand side describes the local contribution of all electrons
in the photon generation in the direction � with the energy h̄ω

according to Eq. (8).
The system of equations (9) describes the exchange of

momentum and energy between electrons and photons. This
radiation emission process is complementary to the electron
motion in the electromagnetic field described by the Lorentz
force in the left-hand side of the electron kinetic equation.
Such a scheme opens the possibility of accounting for short-
wavelength radiation that cannot be described classically
by Maxwell’s equations. Indeed, the computational grid in
PIC codes limits the spectrum of electromagnetic radiation
to ω < c/�, where � is the grid size. In practical terms
the code usually does not resolve photon energies larger
than ∼100 times the laser photon energy. The corpuscular
model described by the third equation of system (9) accounts
for photons with larger energies and its contribution in
the domain described by Maxwell’s equations should be
negligible. According to the spectrum (8), the corresponding
condition reads ωcr � cn

−1/3
e . It limits the applicability of our

model to relativistic electrons only and to energetic part of the
electromagnetic spectrum of a few kilo-electron-volts or more.
Moreover, the system of kinetic equations (9) is valid within
the limits of the classical electrodynamics χe � 1 and for
plasmas of a relatively small size transparent to the radiation.
It can be extended further to account for secondary effects
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such as Compton scattering, pair production, and stimulated
photon emission and absorption.

III. NUMERICAL APPROACH

A. Implementation of the self-force

The radiation effects are implemented in the one-
dimensional (1D) version of the code PICLS [21] according
to Eqs. (5). An important particularity of the PICLS code is that
modeling of plasma density gradients is done with particles
of variable weights. In the present version binary collisions
between particles are neglected. Moreover, we use fourth-order
interpolation for the numerical solver proposed in the paper to
apply fields and deposit currents.

The radiation losses are implemented at the first substep
of the time loop while solving the equations of motion for
electrons. For that the original numerical scheme of PICLS was
modified as follows. The electron momentum at time step
n + 1 is updated by adding the radiation reaction term
calculated explicitly knowing the corresponding values at the
previous time step:

pn+1
e = p̃e

n+1 − δ pn
e ,

δ pn
e = 1

mec
γ̃e

n+1
(

˜δβ
n+1
e · Fn+1

Le

)
p̃e

n+1�t

+ ˜δβe

n+1 × Bn+1�t,

where p̃n+1
e is the electron momentum calculated implicitly

while taking into account only the Lorentz force. δ pn
e is the

electron momentum correction due to radiation losses and is
calculated after the application of the Lorentz force. This term
implies a reduction of the volume of the electron phase space.
This point has been discussed in the kinetic equation part.
A similar procedure was applied for the calculation of the
coordinates:

xn+1
e = x̃n+1

e + pn+1
e

γ nme

�t,

xn+1
e = x̃n+1

e − γ n
e

me

βn
e

(
δβn

e · Fn
Le

)
(�t)2.

It is clear that the contribution of the third term defining
electron momentum is negligible in the calculation of the
coordinates. Our approach for the numerical implementation
of radiation losses is similar to the one described in [13]. The
main difference is that momentum variations due to radiation
losses is calculated explicitly knowing the particle momentum
at the previous time step. The numerical scheme used to
move the particles is similar to the Boris pusher [24]. This
method for the calculation of the particle momentum allows
us to minimize numerical errors in the dynamics of charged
particle determined by electromagnetic fields. The radiation
force is calculated with the same pusher that calculates the
Lorentz force. This additional calculation does not affect the
stability of the numerical scheme, if the condition ωpe�t < 2
is fulfilled, where ωpe is the characteristic plasma frequency.
For numerical simulations in underdense plasmas and at high
laser intensities fast electron radiation cooling may also limit
the time step.

B. Importance of radiation losses at ultrahigh laser intensities

In order to show the performance of this numerical
scheme, we compared the difference in computation time
for one-dimensional runs with and without radiation losses.
We considered a laser pulse with a circular polarization,
an amplitude aL = 192, and a wavelength λL = 0.8 μm
normally incident on a plasma layer with the electron density
ne = 100 nc, where nc = meω

2
L/4πe2 is the critical density.

Both thick, l = 100 λL, and thin, l = λL/8, plasmas were
considered. For the case of a thin target the relative difference
in computing ∼20 000 time steps is 2.8%, while for a
thick target it increases to 8.4% including input and output.
Therefore, implementation of radiation losses in the code does
not penalize its performances. More complicated runs require
more computations, but the relative difference remains in the
range of 20–30%, which is an acceptable value.

In order to demonstrate the role of radiation losses in
laser plasma interaction, we calculated the radiated energy
for similar interaction conditions while changing the laser
amplitude from aL = 10 to 450. The plasma layer with the
electron density ne = 10 nc and a thickness of l = 100 λL was
surrounded by 10-λL-long vacuum regions from both sides of
the simulations box. The laser pulse has a trapezoidal profile
with a linear ramp of one laser period TL = λL/c and a constant
section of 16 TL. Each plasma cell has the size of 1/100 λL and
it contains 30 macroparticles, electrons and ions, with the mass
ratio mi/me = 3600.

In Fig. 1, for relatively low laser intensities below
1022 W/cm2 the radiated energy 0.1 J/cm2 is negligible
compared to the incident laser energy of 5 × 108 J/cm2, and
the radiation force has no influence on the plasma dynamics.
However, the difference becomes significant for higher laser
intensities. In the extreme case of 3.3 × 1023 W/cm2 the
radiated power is comparable to the incident laser power.
Moreover, the radiation losses continue even after the end of
the laser pulse due to the remaining electrostatic field, although
the radiation power strongly decreases.

We also evaluated the difference between models (4) and
(5) by performing the same simulations as above with model
(5). Figure 2 shows the ion phase space obtained at the
time t = 50 TL in these runs. For the two considered laser
intensities of 8 × 1022 W/cm2 and 3.3 × 1023 W/cm2 there
are practically no differences in the ion distribution and in
the electron trajectories. We conclude that for laser intensities
within the classical limit χe < 1 it is not necessary to take
into account the modification of the electron trajectory in the
second equation of system (5) and both models give essentially
the same results.

C. Test cases

Our implementation of the radiation effects was also
verified by a comparison of our simulations with two cases
published in Refs. [7,14]. Here, only comparisons with [7] are
presented. In this first case, hole boring in a thick plasma layer
by a laser pulse is considered. The following set of parameters
was taken from Ref. [7]. The laser parameters are λL =
0.8 μm, IL = 4 × 1022 W/cm2, linear polarization, and a con-
stant intensity with 2 TL rising edge. The plasma parameters
are the following: ion-to-electron mass ratio mi/me = 3600,
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FIG. 1. (Color online) Radiation losses from a laser plasma interaction with (a) and without (b) accounting for the self-force for the
laser intensities (from bottom to top) 1021 W/cm2 (red), 1022 W/cm2 (green), 8 × 1022 W/cm2 (violet), and 3.3 × 1023 W/cm2 (blue). Other
parameters are given in the text.

ion charge Z = 1, electron density ne = 10 nc, and initial
electron temperature Te/mec

2 = 10−2. The target with a
thickness l = 100 λL was surrounded by 10-λL-long vacuum
regions on both sides of the simulations box. t = 0 is chosen
as the time when the laser pulse penetrates the plasma layer.

Figure 3 shows the phase space of electrons with and
without radiation losses at t = 100 TL. General features of
the electron and ion phase space are very similar to the results
presented in Ref. [7]. The radiation losses lead to electron
cooling and to a decrease of the phase space volume. The
maximum electron momentum is reduced from 1500 mec to

less than 800 mec, and the maximum ion backward momentum
is decreased from −0.9 mic to −0.1 mic.

Additional information can be obtained from this test case.
The radiation effects can also be seen in the charge separation
electric field presented in Fig. 4. Indeed, in the case with
radiation losses the number of escaping electrons in the zone
x < 0 is much smaller and the electrostatic field Ex is almost
zero. This explains the massive reduction in backward electron
acceleration when radiation losses are taken into account.

By preventing strong electron heating, the radiation losses
reduce the electron thermal pressure and consequently the

FIG. 2. (Color online) Ion phase space showing the difference between the models accounting for the radiation effects for the laser intensity
8 × 1022 W/cm2 (a) and 3.3 × 1023 W/cm2 (b). Red (gray) squares denote simulation with the radiation force model described by Eqs. (5).
Black circles denote simulation with the radiation force model described by Eqs. (4). The laser and plasma parameters are the same as in Fig. 1.
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FIG. 3. (Color online) Distribution of electrons (a, b) and ions (c, d) in the phase space with (a, c) and without (b, d) radiation losses at
t = 100 TL. The parameters of simulation taken from Ref. [7] are given in the text.

thickness of the electron layer. This makes ion acceleration
more effective in this setup using a long overdense target with
a density close to the critical density. Indeed, as can be seen
in Fig. 3(d), the ion momentum in the backward direction
is reduced and it is increased in the forward direction. Ion
acceleration through the radiation pressure is even stronger for
the circularly polarized laser where the oscillating component
of the Lorentz force vanishes and generation of fast electrons
is suppressed. Typically, with radiation losses in the linear
polarization case, we find the maximum ion momentum
max pi � 0.7 mic, whereas max pi � 1.5 mic in the circular
polarization case.

The manifestations of radiation losses depend strongly on
the laser polarization. In the circular polarization case, the
radiation losses are relatively small. They slightly increase
the laser absorption coefficient and thus decrease the piston
velocity. This is demonstrated in more detail in the next section.
In the linear polarization case, the oscillating component in the
Lorentz force increases the parallel momentum of electrons in

-100 -75 -50 -25 0 25 50 75 100
x/λL

-20

0

20

40

60

eE
x/m

ecω
L

FIG. 4. (Color online) Charge separation field with (red [gray]
lines) and without (black dashed lines) radiation losses at t = 100 TL.
The simulation parameters are given in the text. The part of the electric
field outside the plasma is shown in the dash-dotted frame.

the piston. Some electrons can escape the laser piston, emit
radiation, and cool down. The electrons remaining in the piston
are better compressed and improve ion acceleration due to a
stronger longitudinal field.

Knowing the electron acceleration we (7) one may evaluate
the rate of radiation losses along the trajectory. For electrons
propagating opposite to the laser, radiation losses are maximal.
They can be estimated as ∼ω2

Lτeγ
2
e a2

Lmec
2. The rate of

radiation losses of electrons moving in the perpendicular
direction is smaller by a factor of γ 2

e . This dominance of
the radiation losses for backward-propagating electrons is
demonstrated in Fig. 5, where the radiation efficiency is
maximal for electrons with a small perpendicular momentum.

Our results are also in good agreement with the simulation
results published in [14], even if the implementation of
radiation losses is not exactly the same. Moreover, we confirm

FIG. 5. (Color online) Influence of radiation losses on the electron
distribution function in the perpendicular, py , and parallel, px ,
momenta phase space in a thick target with a density of 10 nc at
t = 100 TL for a circular (a) and linear (b) polarization of the laser
light with aL = 192. Red (gray) circles and black squares represent
the electron distribution in the run with and without radiation losses,
respectively.
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that our code conserves total energy when taking into account
radiation losses. Numerical solutions for a counterpropagating
electron in a plane wave and also in a uniform and constant
magnetic field are in a good agreement with the analytical
solutions [17].

IV. ION ACCELERATION AT ULTRAHIGH LASER
INTENSITIES

Starting from the interaction parameters presented in the
previous section, we investigated the effect of radiation losses
in more detail on laser ion acceleration under the conditions
where radiation pressure acceleration (RPA) is a dominant
process. The following laser parameters were considered:
λL = 0.8 μm, IL = 8 × 1022 W/cm2, circular polarization,
and a trapezoidal temporal profile with a linear front during
one laser period and a constant section of 16 TL. The ion-
to-electron mass ratio is mi/me = 3600, the ion charge is
Z = 1, and the initial electron temperature is Te/mec

2 =
10−2. Plasma layers of three thicknesses were considered,
l = 1/8 λL, 0.5 λL, and 100 λL. Plasma density varied between
10 and 100 nc.

Figure 6 shows how the efficiency of radiation losses
depends on the interaction regime. For a thin target, the effect
of radiation losses on ion acceleration is relatively weak. There

is practically no difference for a dense target with ne = 100 nc

and l = 0.5 λL [panel (c)], while ions lose more energy in
the case of a thinner target, l = 1/8 λL [panel (a)]. This latter
regime corresponds to the case of relativistic transparency,
where the target areal density ξ

ξ = π
ne

nc

l

λL

(10)

is smaller than the laser amplitude. This parameter has been
discussed in Refs. [25,26] in the context of radiation pressure
acceleration and Coulomb explosion. The lower ion energy
observed in the case of a dense and thin target shown in
Fig. 6(a) can be explained by the fact that when radiation losses
are included, electron heating is weaker and the electrons are
better compressed by the laser ponderomotive force, forming
a thin and dense charge sheet. The charge separation electric
field shown in Fig. 7 has a more regular structure and its
maximal amplitude increases by around 40% when radiation
losses are taken into account for the case aL = 136. This
regime of acceleration can be associated with a directed
Coulomb explosion, because almost all electrons in such a
thin target are pushed forward and separated from ions. The
accelerating electric field is spread over the whole target,
leading to a broad ion energy spectrum.
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FIG. 6. (Color online) Effects of radiation reaction on the ion phase space at time t = 100 TL: for a target density of 100 nc with the
thickness 1/8 λL (a) and 0.5 λL (c); and for a target thickness of 100 λL with the density 10 nc (b) and 50 nc (d). Different regimes of ion
acceleration are presented: a directed Coulomb explosion (a), the induced transparency regime (b), the light sail regime (c), and the piston
regime (d). Red (gray) lines and red (gray) circles (black dashed lines and black squares) represent the cases with (without) radiation losses.
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R. CAPDESSUS, E. D’HUMIÈRES, AND V. T. TIKHONCHUK PHYSICAL REVIEW E 86, 036401 (2012)

-50 0 50 100
x/λL

-2

0

2

4

6

8

-50 0 50 100
x/λL

-2

0

2

4

6

8
with radiation losses without radiation losses

(a) (b)

-100 -50 0 50 100
x/λL

-5

0

5

10

15

-50 0 50 100
x/λL

-5

0

5

10

15
with radiation losses without radiation losses

(c) (d)

FIG. 7. (Color online) Distribution of the electron (black dashed lines) and ion (red [gray] lines) densities and the electrostatic field (green
lines with blue triangles up) in the case of a thin target l = 1/8 λL and ne = 100 nc at time t = 100 TL for the laser amplitude aL = 136 (a, b)
and aL = 263 (c, d). The cases with (a, c) and without (b, d) radiation losses are shown. The densities are normalized by the initial density
divided by 500; the electric field is normalized by the factor meωLc/e.

The corresponding electron energy distribution is shown
in Fig. 8(c). Electrons with energies of several hundred
million electron volts are those which have escaped the

target and interacted strongly with the laser field. These
electrons are radiating their energy very efficiently. For this
reason the maximum electron energy is limited to 125 MeV
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FIG. 8. (Color online) Effect of radiation losses on the ion and electron energy distribution at time t = 100 TL: ion (a) and electron
(b) energy distribution for the target with l = 100 λL and ne = 10 nc; (c) electron energy distribution for the target with l = 1/8 λL and
ne = 100 nc; (d) ion energy distribution for the target with l = 100 λL and ne = 50 nc. Red (black dashed) lines represent the cases with
(without) radiation losses.
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FIG. 9. (Color online) Time dependence of the effect of radiation losses for thin l = 0.125 λL (a) and thick l = 100 λL (b) targets of different
densities. The laser amplitude is aL = 136. The plasma densities are given in the legend.

in the simulation with radiation losses. Without radiation
losses, two peaks in the electron energy distribution shown in
Fig. 8(c) very likely correspond to two spatially distinct groups.
The low-energy electrons are sitting at the front of the laser
pulse and moving with ions, while the more energetic ones are
those lagging behind and oscillating in a strong laser field. In
the case with radiation losses, these two groups of electrons are
less separated. The most energetic electrons are cooling down
due to radiation losses, so the energy and the number of hot
electrons decrease. Consequently, the number of low-energy
electrons increases, as can be seen in Fig. 8.

The laser pulse reflectivity from a thin foil depends on
the ratio between its dimensionless areal density called ξ

(10) and the dimensionless laser amplitude aL [27,28]. In the
high-density case, Fig. 6(a), the parameter ξ � 39 is much
smaller than the laser amplitude aL � 136. The foil is therefore
effectively transparent for the laser radiation. The electrons are
pushed forward by the laser light and ions are trailing behind.
The case of an even higher laser amplitude aL = 263 shown
in Fig. 7(b) is more beneficial for efficient acceleration of
ions. The radiation losses allow for the electrons to stay in
front of the laser pulse. Otherwise they would be heated up,
demonstrating a chaotic motion, and left behind the laser pulse,
creating a wake.

The areal density of a high-density target, ξ � 160, shown
in Fig. 6(c) is larger than the laser amplitude aL � 136.
Correspondingly, the electrons and ions are moving together
as a light sail [23,29]. The radiation losses are relatively small
in that case as the laser field and particles are spatially well
separated.

The regime of a thick target at a relatively low density, l =
100 λL and ne = 10 nc, is marginal between hole boring and
relativistic transparency. As the relative electron density ne/nc

is smaller than the laser dimensionless amplitude, aL � 136,
the laser light penetrates partially in the plasma. Nevertheless,
the piston is formed behind the front of the laser pulse. The
ion energy distribution in this case, shown in Fig. 8(a), is not
too sensitive to electron radiation losses. The ions escaping
from the target towards the laser see a smaller electrostatic
field because of electron cooling and consequently attain much
smaller energies [Fig. 6(b)]. This electron cooling is clearly

visible in the electron energy distribution, as it is shown in
Fig. 8(b). The electron distribution is close to a Maxwellian
function, and the radiation cooling reduces the hot electron
temperature from 60 to 20 MeV, more than three times.

Ion acceleration in a thick and dense target, ne = 50 nc

[Fig. 6(d)], proceeds in the so-called hole-boring regime.
The ions are accelerated to the velocity vi max = 2 vb in the
piston, where vb ≈ 1

2aLc
√

menc/mini is the piston velocity.
In this case the electron density profile is very steep; very
few electrons are escaping the piston. The electromagnetic
fields and the particles are spatially separated, and the radiation
losses are very low. The ion energy distribution in the high-
density case, Fig. 8(d) agrees well with the standard picture of
the laser piston. There are two ion groups: one consists of cold
ions upstream of the piston that are not yet accelerated. Another
group consist of fast ions with velocities approximately twice
the piston velocity.

The effect of electron radiation losses on ion acceleration
can be characterized by the dimensionless parameter �max,
which is the relative gain of the maximum ion momentum:

�max ≡ max pi,rad − max pi,no rad

max pi,no rad
. (11)

The dependence of this parameter with time is presented in
Fig. 9. For the case of a thin target [same parameters as
described in Fig. 6(a)], the laser pulse crosses the target and
strips out a relatively small part of electrons from its rear side.
This can be clearly seen in Fig. 7. The radiation losses of these
accelerated electrons enable their better confinement in the
front of the laser pulse and improve ion acceleration from the
rear side of the target. For these reasons the parameter �max is
positive initially, but its sign changes with time.

This is due to two effects. First, the number of electrons
trapped in the front of the laser pulse decreases with time
as they return to the target. The radiation losses are due to
the electrons propagating versus the laser. So, they are losing
their momentum and decrease the charge separation electric
field. Second, the electrons that remain in the target are heated
by the laser and their radiation losses increase with time.
Correspondingly, the intensity of the transmitted laser pulse
decreases with time as well as the efficiency of ion acceleration.
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Obviously, as the target density is higher, the radiation losses
become stronger and ion acceleration is less efficient. Thus
�max is negative and its absolute value increases with the target
density. This explanation is confirmed by the electron energy
spectrum shown in Fig. 8(c). In the case with radiation losses,
electrons are less energetic and the number of hot electrons is
smaller.

For the case of a thick target, l = 100 λL [Fig. 9(b)],
the parameter �max is essentially negative and it attains a
quasistationary value after a few tens of laser periods. The
radiation effect attains the value of ∼30% in the regime
of a partial target transparency, where the laser penetrates
sufficiently deep in the target. This effect decreases with the
target density. For densities exceeding 50 nc, the interaction
takes place in the piston regime, where the laser radiation
is well separated from electrons. The radiation losses are thus
small and they decrease with the plasma density, having almost
no effect on ion acceleration.

This explanation is supported by the electron and ion energy
spectra shown in Fig. 8. In the case of a low-density target, both
the hot electron temperature and ion energy decrease due to the
radiation losses. As a whole there is essentially no difference
in the high-density case.

V. CONCLUSIONS

The effect of radiation losses on the process of ion
acceleration by ultraintense laser pulse is studied. It becomes
important for laser intensities exceeding 1022 W/cm2, where
the radiation friction force slows down electrons and affects
the ion dynamics through the self-consistent electrostatic field.

The effect of radiation losses depends strongly on the
target density, thickness, and the laser polarization. It is less
important in the case of strongly overdense targets and for
a circular polarization, where the relative density ne/nc is
larger than the laser amplitude, aL. This is explained by
clear spatial separation of the particles and fields. On the
contrary, the radiation losses are important in the induced
transparency regime where ne/nc < aL. Although radiation
losses are always leading to cooling of electrons, their effect

on the ion distribution depends on the target thickness. In the
case of thin targets, where the areal density is small, ξ < aL,
radiation losses may improve ion acceleration. In contrast, in
the piston regime, ξ > aL, radiation losses lead to a reduction
of the piston velocity and less efficient ion acceleration.

Radiation losses of charged particles are incorporated in
the electron dynamic equations by using the LAD models in
Refs. [11,12,17,20]. The system of kinetic equations describ-
ing the radiation processes in the relativistic laser plasma
interaction is presented and discussed. Both radiation models
were implemented in the code PICLS and compared with
previous publications. The radiation reaction force does not
affect the numerical stability of the code and does not much
penalize its performance.

The simulation results presented in this paper are limited
to one spatial dimension. However, the particle momentum
has three components, and arbitrary angles of electron prop-
agation with respect to the laser wave are accounted for.
We therefore do not expect any qualitative changes in two-
or three-dimensional simulations. Recents results published
in Ref. [30] confirm that statement. They demonstrated
that results obtained for lower dimensionality remain valid
qualitatively, although the maximum energy of ions in three
dimensions is found to be higher than in corresponding
simulations in one and two dimensions. We expect also that
the magnetic fields generated in two- and three-dimensional
simulations can be responsible for stronger radiation emission.
Finally, extension of our model to regimes where χe � 1 can
be done following the paper by Elkina et al. [22] where
the electron-photon interaction and electron-positron pair
production is described with the quantum cross sections.
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