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We use a stochastic approach to show how Taylor dispersion is affected by kinetic processes of adsorption
and desorption onto surfaces. A general theory is developed, from which we derive explicitly the dispersion
coefficients of canonical examples such as Poiseuille flows in planar and cylindrical geometries, in both constant
and sinusoidal velocity fields. These results open the way for the measurement of adsorption and desorption
rate constants using stationary flows and molecular sorting using the stochastic resonance of the adsorption and
desorption processes with the oscillatory velocity field.
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I. INTRODUCTION

In the presence of a uniaxial stationary laminar fluid flow,
the diffusion of Brownian particles along the direction of the
flow is enhanced by an amount proportional to the inverse of
the molecular diffusion coefficient Db. This effect, known as
Taylor dispersion [1,2], originates from the combination of
the inhomogeneous velocity field experienced by the particles
and the diffusive transverse motion, which leads to a random
sampling of these fast and slow streamlines. Taylor dispersion
has implications in many fields, especially those involving
chemical reactions and determination of reaction rates such
as microfluidics and chromatography, and has thus been the
subject of a number of works at both the theoretical and
experimental levels [3–8]. In numerous practical situations,
Taylor dispersion in the bulk flow is coupled to the adsorption
and desorption processes taking place at the walls confining
the fluid. So far, the theoretical analysis of the resulting process
has mainly been done explicitly in two limiting situations.

In the first class of models, the transverse motion is not
explicitly considered, which physically corresponds to the
infinitely well stirred limit of the high diffusion coefficient
Db. A representative example is the famous two-state model
of chromatography introduced by Giddings and Eyring in
1955, in which a particle can be either in the mobile phase
(in the flow) or in the immobile phase (adsorbed on the
confining walls), the rates of change between phases being
constant [9]. An important extension concerns the case when
the velocity of the mobile phase oscillates with time according
to v cos(ωt) [10,11]. In particular, stochastic resonance has
been shown to occur if the rates of change between phases are
both equal to ω/2, leading to a maximum of the dispersion
coefficient [12,13]. This effect has recently proved to have
applications in molecular sorting [14,15].

The second class of models has investigated explicitly the
transverse motion, but for specific kinetics of adsorption and
desorption: In Ref. [16] the dispersion coefficient is calculated
when the exchanges with the surface are infinitely fast (local
chemical equilibrium), while Biswas and Sen have considered
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the situation of irreversible adsorption on the surface [17].
Besides, these studies focus on stationary velocity fields and
the important case of oscillating velocity fields mentioned
above is not considered.

In this article we develop a theoretical analysis of Taylor
dispersion in the presence of general adsorption and des-
orption processes. Relying on a stochastic approach (i) we
derive explicit expressions of the dispersion coefficient for
the canonical examples of Poiseuille flows in planar and
cylindrical geometries, for both stationary and oscillating
velocity fields, thus opening the way to the determination
of heterogeneous rate constants from the mean velocity and
dispersion coefficient; (ii) we recover the fact that, in the
case of a stationary velocity field, the sources of dispersion
associated with bulk transport and adsorption and desorption
processes combine additively [18,19]; and (iii) in the case
of an oscillatory velocity field, we show that the dispersion
coefficient can be optimized and discuss possible implications
in the context of molecular sorting.

II. MODEL

We consider a Brownian particle in a flow of velocity field
v in direction x. The position of the particle in the transverse
direction is denoted by y and the full position by r ≡ (x,y).
The longitudinal dynamics of the particle is assumed to be
given by the Langevin equation

ẋ(t) = v(y(t),t) + 1b(y(t))ηb(t) + 1s(y(t))ηs(t), (1)

where 1b(y(t)) stands for the indicator function of the bulk
b (equal to 1 if the particle’s position is in the bulk and 0
otherwise), which accounts for bulk diffusion (with diffusion
coefficient Db) and 1s(y(t)) for the indicator function of the
surface s associated with surface diffusion (with diffusion
coefficient Ds). The independent Gaussian white noises ηb

and ηs are defined by their correlation functions

〈ηb(t)〉 = 〈ηb(t)〉 = 0,

〈ηb(t)ηb(t ′)〉 = 2Dbδ(t − t ′), (2)

〈ηs(t)ηs(t
′)〉 = 2Dsδ(t − t ′).
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LEVESQUE, BÉNICHOU, VOITURIEZ, AND ROTENBERG PHYSICAL REVIEW E 86, 036316 (2012)

The transverse diffusion equation is driven by the evolution
equation

∂tP (y,t |y′,0) = Db∇2P (y,t |y′,0) ∀y ∈ b,

∂t�(y,t |y′,0) = −kd�(y,t |y′,0) + kaP (y,t |y′,0)

= Db∂nP (y,t |y′,0) ∀y ∈ s, (3)

where ka (kd ) is the adsorption (desorption) rate in (length) ×
(time−1) (time−1),1 P (�) is the propagator corresponding to
a final state in the bulk (on the surface), and ∂n stands for
the normal derivative. Initially, the particle is assumed to start
from x = 0 and the process y(t) is assumed to be stationary,
characterized by the stationary distribution Pstat(y) (uniform
within each phase and depending only on the ratio ka/kdL)
and the transition probability P (y,t |y′,t ′) ≡ P (y,t − t ′|y′,0).

The first two moments of x(t) are then respectively found
from Eqs. (1) and (2) to be given by

〈x(t)〉 =
∫ t

0
dt ′

∫
b

dyPstat(y)v(y,t ′), (4)

where the integration domain of the spatial integral is the
transverse cross section in the bulk b, and

〈x2(t)〉 =
∫ t

0
dt ′

∫ t

0
dt ′′〈v(y(t ′),t ′)v(y(t ′′),t ′′)〉

+ 2Db〈Tb(t)〉 + 2Ds〈Ts(t)〉, (5)

where Tb(t) [Ts(t)] is the cumulative time spent in the bulk (on
the surface) up to time t . Finally, one has

〈x2(t)〉 − 〈x(t)〉2 − 2Db〈Tb(t)〉 − 2Ds〈Ts(t)〉
= 2

∫ t

0
dτ

∫ t

τ

dt ′
∫

b

dy1

∫
b

dy2v(y1,t
′)v(y2,t

′ − τ )

× Pstat(y2)[P (y1,τ |y2,0) − Pstat(y1)] ≡ f (t). (6)

We now specialize this general formula to the two experi-
mentally relevant cases of either a stationary or a sinusoidal
velocity field.

III. STATIONARY VELOCITY FIELD

In the case of a stationary velocity field v(y,t) ≡ v(y), the
large time limit of the variance of the displacement is easily
shown from Eq. (6) to be given by

〈x2(t)〉 − 〈x(t)〉2 ∼
t→∞ 2Kt, (7)

where the dispersion coefficient is K = Pstat(b)Db +
Pstat(s)Ds + Kv , where Pstat(b) [Pstat(s)] is the stationary
probability to be in the bulk (to be adsorbed on the surface)
and the velocity-dependent part reads

Kv =
∫

b

dy1

∫
b

dy2v(y1)v(y2)Pstat(y2)h(y1|y2), (8)

with

h(y1|y2) ≡
∫ ∞

0
[P (y1,t |y2,0) − Pstat(y1)]dt. (9)

1Note that we implicitly disregard here nonexponential waiting time
distributions of the type studied in Ref. [25].

Note that h(y1|y2) is the pseudo-Green’s function [20] of the
transverse problem, which satisfies −Db∇2h(y1,y2) = δ(y1 −
y2) − Pstat(y1). As soon as this pseudo-Green’s function can
be determined, Eq. (8) provides a general expression of the
Taylor dispersion coefficient in the presence of adsorption and
desorption processes.

Importantly, this expression can be made fully explicit in
the canonical examples of planar and cylindrical Poiseuille
flows, corresponding respectively to velocity fields v(y) =
6v̄

y

L
(1 − y

L
) (the transverse cross section being a segment of

length L and y ∈ [0,L]) and v(r,θ ) ≡ v(r) = 2v̄(1 − r2/R2)
(the transverse cross section being a disk of radius R and
y = (r,θ ) ∈ [0,R] × [0,2π ]), where v̄ stands for the velocity
averaged over a cross section. The explicit determination
of the pseudo-Green’s function h(y1|y2) is conveniently
performed by first Laplace transforming Eq. (3), calculating
the Laplace transform of the propagator, and then going
to the small Laplace variable limit. Note in particular that
the boundary conditions (3) associated with adsorption and
desorption become simple radiative boundary conditions in
the Laplace domain (see, for example, Ref. [21]). Lengthy
but straightforward calculations finally lead to symmetrical
functions of their arguments, which read

hplan(y1|y2) =
1
2y2

1 + ka

kd
y1 + 1

2y2
2 − y2

(
L + ka

kd

)
Db

(
L + 2ka

kd

)

+
1
3L3 + 2Dbka

k2
d

+ kaL
2

kd
+ Lk2

a

k2
d

Db

(
L + 2ka

kd

)2 (10)

if y1 < y2 and

1

2π

∫ 2π

0
dθ2h

cyl(r1,θ1|r2,θ2)

= 1

2πDb

ln
R

r2
+

(
2R + 4 ka

kd

)
(r2

1 + r2
2 ) − 3R3 + 16Dbka

k2
d

8πRDb

(
R + 2 ka

kd

)2

(11)

if r1 < r2. The velocity-dependent part of the dispersion
coefficients is then found to have the same form in both
geometries:

KPois
v = α

l2v̄2

Db

βl
(

ka

kd

)2 + γ l2 ka

kd
+ l3

(
l + 2 ka

kd

)3 + v̄2

kd

2l2 ka

kd(
l + 2 ka

kd

)3 , (12)

where the length l and constants α, β, and γ are to be
substituted by L and constants 1

210 , 102, and 18 in the planar
case and R and constants 1

48 , 44, and 12 in the cylindrical one.
A few comments are in order. (i) The specific case of

infinitely fast exchange with the surface (local chemical
equilibrium), considered in the cylindrical case in Ref. [16]
as one of the generalizations of Taylor dispersion, is recovered
in the joint limit ka → ∞, kd → ∞ with ka/kdL fixed and
is given by the first term on the right-hand side (rhs) of the
general expression (12). (ii) In the infinitely well stirred limit
Db → ∞, KPois

v is reduced to the second term on the rhs
of Eq. (12). This second source of dispersion, associated
with adsorption and desorption kinetics only, corresponds
to the zero-dimensional dispersion coefficient used in the
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usual two-state model of chromatography [12], with a rate
2ka/ l (l = L,R) for the transition from mobile to immobile
states. (iii) Note that these two contributions to dispersion
turn out to combine themselves additively. (iv) Knowledge of
the mean displacement 〈x(t)〉 ∼ Pstat(b)v̄t [see Eq. (4)] and
the dispersion coefficient Eq. (12) enables the experimental
determination of ka and kd from the measurement of the
average velocity and dispersion coefficient for a given species
interacting with a given surface. (v) It also allows one to
design a chromatographic column for the separation of a
mixture with known adsorption and desorption rates. However,
in the important case where the components of the mixture
have different kinetic rates ka and kd but similar partitioning
coefficients ka/kdL, such a separation is impossible with a
stationary flow since the Pstat(b), and hence 〈x(t)〉, of all
species are similar. As we now proceed to show, efficient
sorting can nevertheless be achieved in this case by resorting
to an oscillatory flow and exploiting the stochastic resonance
between the exchange kinetics and the flow, thereby extending
the idea put forth by Alcor et al. in another context [14,15].

IV. SINUSOIDAL VELOCITY FIELD

We now consider the case where the velocity field is a
sinusoidal function of time v(y,t) ≡ v(y) cos(ωt). In this case,
the average position 〈x(t)〉 tends to zero at long times, while
the function f (t) in Eq. (6) becomes

f (t) =
∫ t

0
dτ

∫ t

τ

dt ′
∫

b

dy1

∫
b

dy2v(y1)v(y2)Pstat(y2)

× [P (y1,τ |y2,0) − Pstat(y1)][cos ω(2t ′−τ )+ cos ωτ ].

(13)

In the long time limit, the term in cos ω(2t ′ − τ ) becomes
negligible and the velocity-dependent part of the dispersion
coefficient is given by

Kv = 1

2

∫
b

dy1

∫
b

dy2v(y1)v(y2)Pstat(y2)Re[P̂ (y1, − iω|y2)],

(14)

where Re[P̂ (y1, − iω|y2)] stands for the real part of the
Laplace transform of the propagator, with the Laplace variable
s ≡ −iω. We focus here on the canonical case of the planar
Poiseuille flow described above. The final result for the
velocity-dependent part of the dispersion coefficient reads

KPois
v = L2v̄2

Db

3Z

2X6(2Y + Z)

× χ+
c cosh X + χ−

c cos X + χ+
s sinh X + χ−

s sin X

ρ+
c cosh X + ρ−

c cos X + ρ+
s sinh X + ρ−

s sin X
,

(15)

where we have introduced the polynomials

χ±
c = 2X4Y 2 − 6X2Y ± (X2Z2 + X2 − 12Y ),

χ±
s = 2X3YZ + 12XY

± (2X3Y − 12XY 2 − 3XZ2 − 12XYZ − 3X),

ρ±
c = 2X2Y 2 ± (Z2 + 1),

ρ±
s = 2XYZ ± 2XY (16)

and the reduced variables X ≡ L
√

ω/2Db, Y ≡ ka/ωL, and
Z ≡ kd/ω. This expression constitutes one of the main results
of the present work. It extends in particular the results known
in the absence of adsorption and desorption at the wall [12]
(recovered in the limit Y → 0 or Z → ∞) and in the case
of an infinitely well stirred limit in the transverse direction
(corresponding to X → 0) [10,12,14,15], with an adsorption
rate 2ka/L.

Besides being an important theoretical result in itself,
expression (15) also allows one to discuss the possibility
of sorting components of a mixture in an oscillatory flow,
in the presence of adsorption and desorption processes.
Alcor et al. [14,15] have demonstrated both theoretically and
experimentally that an oscillatory driving (by an electric field)
can be exploited to separate components of a mixture that
switch between two bulk states with different rates. Using
the zero-dimensional two-state model generally considered in
chromatography, they showed that the dispersion coefficient
displays in this case a maximum when the two rates are close
to ω/2, i.e., when the average time spent in each state is equal
and comparable to a half period of the driving, resulting in an
effective rectification of the flow experienced by the particles.
We now discuss the possibility of extending this idea to the
case of Taylor dispersion with adsorption and desorption.

Importantly, we find that Taylor dispersion with adsorption
and desorption at the walls of the confining surfaces also
exhibits a stochastic resonance. However, the picture is more
complex due to the coupling between motion in the direction
transverse to the flow and the exchange processes. Indeed,
KPois

v (ω) displays a global maximum for a set of finite reaction
rates (ka,kd ), provided that X < X∗ ≈ 3.5, as can be seen
in Fig. 1, which reports Kv normalized by the value at the
optimum K

opt
v . The optimal rates satisfy

kopt
a = ωLY opt(X), k

opt
d = ωZopt(X), (17)

where Y opt and Zopt, reported in Fig. 2(a), are well approxi-
mated by their small X expansions for an appreciable range
(see Fig. 2),

Y opt = 1

4
+ 11

336
X2 + 163

50 400
X4 + 331

1 241 856
X6 + O(X8)

(18)

and

Zopt = 1

2
+ 71

840
X2 + 17

1800
X4 + 25427

25 872 000
X6 + O(X8),

(19)

and correspond to the following expansion of the optimal
dispersion coefficient:

Kopt
v (X) = L2v̄2

Db

(
1

32X2
+ 11

3360
− 79X2

564480
+ O(X4)

)
.

(20)

While for small values of X the resonance is obtained
for kd ∼ 2ka/L ∼ ω/2 and has similarities to the case of
Alcor et al. [14,15], the optimal rates can in fact differ by
orders of magnitude from ω as X → X∗. Moreover, while the
resonance process is rather selective in the small X regime, as
Kv decreases rapidly around the optimum, Fig. 1 indicates
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FIG. 1. (Color online) Velocity-dependent part Kv of the disper-
sion coefficient, normalized by the value at the optimum Kopt

v as a
function of the reduced rates Y = ka/ωL and Z = kd/ω, for three
values of X = L

√
ω/2Db: 0, 1, and 3.5.

that the selectivity deteriorates when X increases. Finally,
the optimal dispersion coefficient, enhanced by orders of
magnitude by adsorption and desorption at the walls, also
decreases with increasing flow frequency [see Fig. 2(b)].
All these observations reflect the transition from the well
stirred regime X → 0 where chemical and Taylor dispersions
combine additively [the first two terms in Eq. (20) are
proportional to v̄2/k

opt
d and v̄2L2/Db, respectively], as in

the stationary case, to one where exchange at the walls can
be limited by the diffusive influx of mobile species. In the
latter case, only a fraction of mobile species can benefit from
the rectification mechanism allowed by the adsorption and
desorption processes. Its effect on dispersion is then maximal
when the particles spend the same time at the surface and in
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FIG. 2. (Color online) (a) Optimal reduced rates Y opt = kopt
a /ωL

and Zopt = k
opt
d /ω as functions of X = L

√
ω/2Db maximizing the

velocity-dependent part of the dispersion coefficient Kv . (b) Corre-
sponding values of the optimum Kopt

v , in units of L2v̄2/Db. Numerical
results (solid lines) are compared to the analytical expressions
(18)–(20) for small X (dashed lines). In (b), Kv in the absence of
adsorption and desorption is also indicated (dotted line).

this boundary layer accessible by diffusion within a flow period
(now regardless of reaction rates provided the exchange is fast
compared to the flow frequency).

V. DISCUSSION

This optimization of the dispersion coefficient can be used
in the context of molecular sorting, where the problem is to
isolate a species of given (ka,kd ) from a mixture. In fact, the
ratio Zopt/Y opt = k

opt
d L/k

opt
a ≡ g(X) is an increasing function

of X, such that 2 ≡ γ− < g(X) < γ+ � 5 for X < X∗, so that
the parameter L can be chosen close to 2ka/kd . This ensures
that X = g−1(Lkd/ka) is arbitrarily small and determines the
corresponding value of ω = 2DbX

2/L2 to tune. Finally, this
shows that, in principle, one can always determine parameters
L and ω such that KPois

v is maximal for (ka,kd ), while
maintaining a small value of X to ensure efficient sorting,
and thus define an optimal setup to be used. Furthermore, our
approach quantifies the theoretical efficiency of such sorting.

In practice, experimental constraints limit the accessible
range of system sizes (Lmin,Lmax) and flow frequencies
(ωmin,ωmax). As an example, for a typical microfluidic setup,
these ranges are of the order of 10 μm to 1 mm and 0–10 s−1,
respectively. Several cases then have to be considered. (i) For
species such that Lminkd/ka < γ− < Lmaxkd/ka , the optimal
setup for efficient sorting defined above is indeed realizable
and the constraint on ω is irrelevant for all values of Db.
(ii) For species such that γ− < Lmaxkd/ka < γ+, the maximum
sorting efficiency can be reached for L = Lmin. This implies a
corresponding value of ω = 2DbX

2/L2
min, which constrains

the range of applicable diffusion coefficients Db to Db <

ωmaxL
2
min/2X2. (iii) For species such that Lminkd/ka > γ+ or

Lmaxkd/ka < γ−, the method is in practice not applicable.
Microfluidic technology offers a particularly versatile set

of tools to tailor the geometry, flows, and surface properties
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to design experimental setups for the measurement of ad-
sorption and desorption rates (stationary case) or separative
applications (stationary and oscillatory cases) according to
the predictions of the present work. In practice, for a
typical microfluidic channel one has a transverse length
L ∼ 10−4–10−3 m and velocities up to v̄ ∼ 10−4–10−3 m s−1,
while colloids, macromolecules, and molecular solutes have
diffusion coefficients in the range Db ∼ 10−12–10−9 m2 s−1.
Oscillatory flows can be considered of the form v(y) cos ωt

if momentum diffusion in the direction transverse to the flow
is fast compared to the period of the flow, i.e., ω � L2/ν,
with ν the kinematic viscosity of the fluid. Such a condition is
always satisfied for water in a microfluidic channel, given that
νH2O ∼ 10−6 m2 s−1 and that only frequencies smaller than
ω/2π � 1 s−1 can be achieved. This last point also indicates
that the present approach will allow one to measure sorption
and reaction rates slower than 1 s−1. As an example, the
dissociation rate of DNA double strands, which depends on the
number of base pairs (BPs), can be in the range 10−5–10−3 s−1

for a few tens of BPs [22–24]. If one considers a surface grafted
with single-strand DNA, one could selectively separate from
a solution a strand containing the complementary sequence by
adjusting the flow period and the grafting density in order to
tune the adsorption rate ka (in the low surface coverage limit,
it will be proportional to the latter).

VI. CONCLUSION

In conclusion, the present study introduces general ana-
lytical results that extend previous works on Taylor diffusion
without adsorption and desorption or on a zero-dimensional
two-state model valid only in the perfectly stirred limit. This
approach is not limited to the Poiseuille flows considered here
as an illustration. In particular, it can be straightforwardly
extended to the case of electro-osmotic flows, in which
an additional length scale, the Debye screening length, can
be tuned by changing the ionic strength of the solution.
The now-well-established microfluidic and rising nanofluidic
technologies offer a particularly versatile set of tools to
tailor the geometry, flows, and surface properties to design
experimental setups for the measurement of adsorption and
desorption rates (stationary case) or separative applications
(stationary and oscillatory cases) according to the predictions
of the present work.
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Acids Res. 37, e99 (2009).

[24] W. D. Volkmuth, T. Duke, M. C. Wu, R. H. Austin, and A. Szabo,
Phys. Rev. Lett. 72, 2117 (1994).

[25] A. Compte, R. Metzler, and J. Camacho, Phys. Rev. E 56, 1445
(1997).

036316-5

http://dx.doi.org/10.1098/rspa.1953.0139
http://dx.doi.org/10.1098/rspa.1953.0139
http://dx.doi.org/10.1098/rspa.1956.0065
http://dx.doi.org/10.1103/PhysRevLett.51.1309
http://dx.doi.org/10.1103/PhysRevLett.51.1309
http://dx.doi.org/10.1016/0378-4371(90)90023-L
http://dx.doi.org/10.1137/090754935
http://dx.doi.org/10.1137/090754935
http://dx.doi.org/10.1002/aic.690470602
http://dx.doi.org/10.1146/annurev.fluid.36.050802.122124
http://dx.doi.org/10.1146/annurev.fluid.36.050802.122124
http://dx.doi.org/10.1021/ac050042b
http://dx.doi.org/10.1021/j150527a009
http://dx.doi.org/10.1021/j150527a009
http://dx.doi.org/10.1063/1.1742480
http://dx.doi.org/10.1016/0378-4371(82)90224-2
http://dx.doi.org/10.1103/PhysRevA.44.4970
http://dx.doi.org/10.1103/PhysRevA.44.4970
http://dx.doi.org/10.1063/1.481434
http://dx.doi.org/10.1063/1.481434
http://dx.doi.org/10.1073/pnas.0400663101
http://dx.doi.org/10.1021/jp0468307
http://dx.doi.org/10.1021/jp0468307
http://dx.doi.org/10.1016/0009-2509(94)00505-L
http://dx.doi.org/10.1016/0009-2509(94)00505-L
http://dx.doi.org/10.1103/PhysRevLett.98.164501
http://dx.doi.org/10.1080/01496398708057179
http://dx.doi.org/10.1080/01496398708057179
http://dx.doi.org/10.1063/1.3160546
http://dx.doi.org/10.1021/nl072401j
http://dx.doi.org/10.1093/nar/gkp487
http://dx.doi.org/10.1093/nar/gkp487
http://dx.doi.org/10.1103/PhysRevLett.72.2117
http://dx.doi.org/10.1103/PhysRevE.56.1445
http://dx.doi.org/10.1103/PhysRevE.56.1445



