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Viscosity calculation of a nanoparticle suspension confined in nanochannels
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The kinetic properties of the pressure-driven Poiseuille flow in nanochannels with and without nanoparticles
were studied with a nonequilibrium molecular dynamics simulation. To allow the fluid to dissipate heat, the
boundary was kept at a constant temperature. Pure fluid simulations were taken as references and also used to
study the fluid-wall interfacial interaction effects. The viscosity profiles of the fluid were calculated on the basis
of velocity profiles and known applied shear stress. We present the relationship between the viscosity increase and
particle loading. The role of channel wall–fluid wetting properties on the flow and viscosity was also investigated.
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I. INTRODUCTION

Nanoparticle suspension (nanofluid) has been an area
of ongoing interest since it was proposed by Choi [1] in
the 1990’s for thermal management applications. Usually,
the nanoparticles are made of metal or nonmetal materials,
while water, alcohols, and oils are typically applied as the
base fluid. Most of the work on nanofluids has focused on
the thermal properties due to the promise of heat transfer
enhancement [2–4]. Keblinski [5] proposed a number of
potential factors responsible for the anomalous increase in
nanoparticle suspension heat conduction. A larger body of
subsequent research established that particle clustering is the
only reasonable mechanism behind large thermal conductivity
increases, while with well dispersed particles, conductivity
increases are moderate and require large particle loading to
achieve a significant effect. However, clustering and large
particle loadings are expected to lead to significant viscosity
increases, thus questioning the usefulness of nanofluids.

Studies of the kinetic properties of nanofluids are less
prominent than those of thermal conductivity. However, they
are critical in determining the heat transfer coefficient. The
experiments of Wang [6] and Das [7] showed that the particle
volume fraction played a critical role in the effective viscosity
of the nanoparticle suspension. The rheological properties of
alumina nanoparticles dispersed into a base water fluid were
measured by Annop to study the effect of an electrical double
layer [8].

Atomic-level modeling work on the kinetic properties of
pure fluid has a substantial history. Koplik [9] established
a nonslip boundary model to observe the velocity of a
Lennard-Jones (LJ) fluid and presented the classic parabolic
distribution of the velocity field at a small Reynolds number.
“Method of planes” (MOP, a formulation of the Irving-
Kirkwood procedure [10,11] in reciprocal space that greatly
simplifies the calculation of momentum and energy fluxes)
technology was applied to the Poiseuille flow simulations by
Daivis. To remove viscous flow-generated heat, Fried [12]
kept the temperature of the walls constant. He also compared
the molecular dynamics (MD) simulation results with those
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calculated by computational fluid dynamics (CFD) software,
and demonstrated that the fluid density, velocity, and pressure
distributions obtained via MD fit the continuum-equations-
based CFD results very well. The Poiseuille flow simulations
received the attention of numerous researchers [13–20], who
studied the macroscopic viscosity of pure fluids under a
constant shear rate.

By contrast, MD simulations of the shear flow of fluid-
particle suspensions are lacking. The theoretical framework for
understanding suspension viscosity is provided by the Einstein
[21] model and the Batchelor [22] model. They are widely
applied to calculate the global effective viscosity of a dilute
suspension. In this paper, the viscous flow properties of the
nanoparticle suspension obtained with the molecular dynamics
method are reported and compared against those characterizing
pure fluid. We make efforts to study the local viscosity and
effects of the channel wall–fluid interfacial interaction on the
flow characteristics.

The structure of this paper is as follows. In the next
section, we will describe our model structures and simulation
methodology. Section III presents simulation results on the
kinetics of fluid flow in a nanosized channel both for pure
fluid and nanoparticle suspension. Finally, Sec. IV includes a
summary and conclusion.

II. MODEL STRUCTURES AND SIMULATION
METHODOLOGY

The initial structure is set up as shown in Fig. 1. The
nanoparticle suspension is confined between two parallel
planes formed by “solid” atoms arranged as an fcc lattice.
The simulation cell sizes are Lx = Ly = 15σ × 15σ (in x

and y in-layer directions) and Lz = 50σ , where 8586 fluid
atoms with a density of 0.85/σ 3 are confined between 1600
boundary atoms, each of which has the same size as the fluid
atom. Here, σ is the length scale parameter of the interatomic
potential. In addition, spherical particles composed of solid
atoms are dispersed randomly in the fluid. Here, the particle is
made via a spherical cut of atoms arranged on an fcc lattice.
Each nanoparticle has a radius of 2σ and contains 44 atoms
that have the same size as that of the solid wall and fluid
atoms. Periodic boundaries are applied in both the x and y

dimensions. Since the upper and lower walls are not moving
relative to each other, we used just one solid region for both
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FIG. 1. (Color online) The geometry of the simulation structure.

walls. This allowed us to use periodic boundary conditions
in the direction that is also normal to the wall. Such a choice
makes the pressure equilibration easy and does not require any
constraints to be placed on the wall atoms.

The truncated Lennard-Jones potential governs all atomic
interactions:

VLJ(r) = 4ε

[(σ

r

)12
−

(σ

r

)6
]
, (1)

where r is the interatomic spacing, while σ and ε are the length
and energy scale parameters, respectively. The cutoff distance
is 3.0σ . The strengths of the interactions between the solid
wall atoms and between atoms within each particle εss ,εpp are
nine times larger than those between the liquid atoms εll . εll

is taken as the reference energy and is equal to unity. Here,
the subscripts l, s, and p are used to indicate liquid, solid, and
particle, respectively. The strengths of the interactions between
liquid and solid wall or liquid and particle εsl and εpl are equal
to 3εll , obeying to the Lorentz-Berthelot combining rule [23],

σ1−2 = (σ1 + σ2)/2,
(2)

ε1−2 = (ε1 · ε2)1/2.

The strength of the interactions between the solid wall and par-
ticle atoms εsp is 3εll . This choice of interaction corresponds to
a hydrophilic interface. In addition, we performed simulations
using 0.2εll as the strengths of the interaction between the wall
and fluid atoms to model a hydrophobic interface.

Throughout the simulations, the solid atoms were allowed
to exhibit full dynamics with no constraints (or springs
attaching the atoms to a fixed position). The fcc solid structure
was maintained naturally due to a strong solid-solid attractive
LJ potential.

The nonequilibrium molecular dynamics method is used
to carry out the simulations. The system is equilibrated at a

FIG. 2. (Color online) The virial stress distribution of pure fluid
with wetting and nonwetting walls. The solid line is calculated from
the total body force divided by the area as described in the text.

constant pressure and reduced temperature T ∗ = kT /εll =
0.8, i.e., above the melting point of the LJ fluid. We verify that
the velocity distribution obeys the Maxwell distribution after
500000 MD time-step runs, indicating that the equilibrium
is well established. The equation of motions, governed by
Newton’s law, is integrated by a Verlet algorithm with a time
step of 0.002τ , where τ = (mσ 2/ε)1/2 is the LJ time unit [24].

To induce flow, we apply force uniformly to all atoms in the
liquid to mimic the Poiseuille flow driven by a pressure drop.
Considering that the atomic density of the liquid is uniform, we
know precisely how much force is applied to a slab of a liquid
of an arbitrary thickness centered at the channel center. This
force is equal to the volume of the slab times the atomic density
times the force added to each atom. This applied body force
in a steady-state flow has to be balanced by a shear (surface)
force. This allows us to calculate the shear stress directly by
dividing the total body force on the slab by the area of the
surface delimiting the slab.

We verified that such a calculated stress is within the same
statistical error as that calculated via molecular virial stress
definitions. As seen in Fig. 2, the shear stress component
is within the statistical fluctuation, the same for wetting and

FIG. 3. (Color online) The density distribution of fluid along the
z dimension with wetting and nonwetting walls.
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FIG. 4. (Color online) The velocity distribution of pure fluid with
wetting and nonwetting walls.

nonwetting walls, and can be well represented as a linear
function of the z coordinate with a zero value at the center
of the channel. This follows directly from the fact that the total
body force is proportional to the slab volume, i.e., its thickness,
and, as discussed above, from the force balance consideration,
it has to be equal to the shear force.

While a uniform force is added to the liquid atoms, an
opposite force that has the same value as the one added to the
liquid is subtracted from the boundary’s atoms. Consequently,
the total net momentum of the whole system is zero. Such
a procedure does not require placing constraints on the wall
atoms. The only difference in this method with respect to the
traditional view of the Poiseuille flow is a different frame
of reference, which will not impact any viscosity results.
Throughout the simulations, the solid walls are kept at a
constant temperature via simple velocity rescaling. However,
the center-of-mass motion of the wall was subtracted before
the rescaling procedure and added back after the rescaling, so
that the flow-generated heat due to the shear can be dissipated
into the ambient atmosphere via heat transfer with the solid
walls, thus avoiding a significant temperature increase.

The “production runs” continue for around 1 000 000 time
steps for the flow to reach the steady state, where the velocity
profiles are fully developed. Based on the velocity profiles we
can calculate the viscosity via the definition

ηz = −〈Pxz〉
∂vx

∂z

, (3)

FIG. 5. (Color online) The local viscosity of pure fluid with
wetting and nonwetting walls.

FIG. 6. (Color online) The temperature profile with different
driving forces (f denotes the reduced driving force).

where, indicating the viscosity, Pxz is the shear component of
the pressure tensor, and v is the velocity. In our simulations,
shear stress is added along the x dimension, and the gradient
(including temperature, velocity, and viscosity gradients)
occurs only in the z direction. To reduce the noise level in
the determination of the viscosity, we first fit the velocity
profile with sixth-order polynomials that are symmetric about
the center of the channel and take an analytical derivative to
obtain the velocity gradient. The shear stress component is
represented as a linear function of the z coordinate with the
zero value at the center of the channel (see Fig. 2).

III. SIMULATION RESULTS AND ANALYSIS

The simulations of pure fluid flow in a nanosized channel
are carried out to establish a reference and to investigate the
effects of the wall-fluid interactions. Both hydrophilic and
hydrophobic walls are applied, and the average driving force
on every fluid atom is 0.01 in reduced units.

The fluid density distribution along the z dimension is
showed in Fig. 3. The fluid density near the wetting wall shows
an oscillation phenomenon that extends to a distance of three
to four times of the atom’s diameter, resulting from the strong
interaction between the fluid atoms and solid wall atoms. This
is in accord with previous research findings [25,26]. For a
nonwetting (hydrophobic) interface, the layering is not as well
developed and does not extend significantly into the liquid.

FIG. 7. (Color online) The local viscosity of pure fluid with
various driving forces (f denotes the reduced driving force).
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FIG. 8. (Color online) The density distribution of nanoparticles
along the z dimension.

Fluid velocity distribution profiles are show in Fig. 4. The
velocity profiles for both wetting and nonwetting walls are
parabolic, which is consistent with the result of macroscopic
theory. The higher overall velocity range in the case of the
nonwetting wall can be explained by a lower local viscosity
near the wall, as we discuss below.

The local viscosity calculated from formula (3) and sixth-
order polynomial fitting to the velocity profile is presented in
Fig. 5. The data show almost the same viscosity in the center of
the channel for both wetting conditions, but near the walls the
viscosity increases, with a particularly large increase for the
wetting wall. This phenomenon demonstrates that fluid atoms
of the layer nearest to the walls are locked to the boundaries
by adhesive interactions, and thus impede the fluid’s flow. This
effect is naturally more pronounced in the case of a wetting
interface.

We investigate the effect of the driving force on the
fluid velocity and temperature. It is expected that, due to
an increased rate of heat generation, the larger the driving
force, the higher is the temperature. This can be observed
in the temperature profiles in Fig. 6. Here, the nonwetting
interface is studied to enhance temperature changes due to
the interfacial thermal resistance which leads to temperature
jumps at the liquid-solid interfaces. When the driving force is
doubled, the larger viscous heat generated by the shear may not
be transferred to the walls as efficiently, so the interior fluid is

FIG. 9. (Color online) The velocity distribution of nanoparticle
suspension along the z dimension.

FIG. 10. (Color online) The local viscosity of nanoparticle sus-
pension with various particle volume fractions along the z dimension.

much warmer. As a consequence, the viscosity for the stronger
driven fluid, which is warmer, is smaller, as shown in Fig. 7.

To study the effect of particle addition on fluid properties,
we investigate fluids with 2% and 5% particles by volume. In
each case a force of 0.02 is added to every fluid atom, and the
particles are spherically shaped with a radius of 2.

The particle atom density profiles are presented in Fig. 8. As
clearly seen in the figure, particularly for 5% suspension, the
particle concentration is higher in the central part of the fluid.
The particles are likely driven to the center by the fact that the
velocity gradient there is zero (see Fig. 9). As a consequence,
the particle associated with the higher local viscosity has a less
detrimental effect on the fluid flow.

In Fig. 10, we present local viscosity for pure fluids and
suspensions. In the case of a 2% suspension, the local viscosity
is a little larger than that of a pure fluid at corresponding
locations, however, in both cases, the local fluid viscosity near
the wall is larger than that in the interior fluid. When the particle
volume fraction increases to 5%, the viscosity is much larger
and in fact has a maximum at the center of the channel. This
indicates that with high particle loadings, the particle-related
viscosity increase dominates over the wall effects.

IV. CONCLUSION

Kinetic properties, especially the viscosity of pure fluid
and nanoparticle suspensions flowing in nanochannels, were
studied with the molecular dynamics method. We demon-
strated that the adhesive interaction between walls and fluid
atoms plays a significant role in the fluid’s viscosity due to
the solidlike structure acquired by the fluid near the channel
walls. Owing to stronger interactions, this effect is particularly
significant in the case of the wetting interface.

Moderate particle loading leads to an overall viscosity
increase, however, the viscosity remains higher near the
walls. With larger particle loadings, the viscosity increase is
significantly larger and the maximum viscosity in the center
of the channel is larger, too. This is caused by the fact that
nanoparticles are driven to the center as they reside in the
region of low shear stress. It is also possible that large particle
loadings lead to the partial destruction of the interfacial layer,
which, as a consequence, diminishes the wall effect on the
viscosity.
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