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Electrohydrodynamics of a liquid drop in confined domains
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The steady-state electrohydrodynamics of a leaky dielectric drop in confined domains is investigated
analytically. The governing electrohydrodynamic equations are solved for Newtonian and immiscible fluids in
the framework of leaky dielectric theory and for the creeping flow regime. The domain confinement strengthens
or weakens the electric field, depending on R > 1 or R < 1, respectively, where R = σi/σo is the ratio of electric
conductivity of the drop to that of the surrounding fluid. Similarly, the flow intensity decreases for R < 1, but
it remains unchanged or increases for R > 1, depending on the interplay of electric and hydrodynamic effects.
An expression for the drop deformation for small distortion from the spherical shape is found using the domain
perturbation technique. It is shown that below a threshold domain size the confinement effect will lead to the
reversal of the tendency of the net normal hydrodynamic stress in deforming the drop to an oblate or a prolate
shape, and that below a critical domain size the necessary condition for having an oblate drop will be opposite to
the classical one for an unbounded domain.
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I. INTRODUCTION

The behavior of a liquid drop in an externally applied
electric field has been a problem of long-standing interest
because of its relevance in a broad range of natural and
industrial process. Examples include disintegration of rain
drops in thunderstorm [1], electric breakdown of insulating
dielectric liquids due to the presence of small water droplets
[2], enhancement of heat and mass transfer [3,4], and enhanced
coalescence and demixing in emulsions [5]. The electric field
provides a well-known means for manipulation of the drops
through induced interfacial stresses that can deform, burst,
or set the drop in motion. Currently there is a renewed
interest in the subject in the context of micro- and bio-fluidics
applications, such as manipulation of droplets by continuous
electrowetting (electrocapillarity) [6], protein transfection into
cells by collision of droplets [7], and enhancement of heat and
mass transfer by electric-field-driven chaotic mixing [8], to
name a few.

Early analytical studies on the subject were done in the
framework of “electrohydrostatic” theory [2,9–13], where the
drop and the ambient fluid are treated as both being perfect
dielectrics, or as a perfectly conducting fluid in a perfect
dielectric fluid. In either case, the electrohydrostatic theory
predicts that the “net” electric stress will be normal to the
interface, pointing from the fluid of higher electric permittivity
to the one with lower permittivity, and the drop will always
elongate in the direction of the electric field, producing a
prolate spheroid. Furthermore, since the theory entails con-
tinuity of tangential electric stress at the interface, it precludes
the existence of fluid flow at the equilibrium. However, the
experiments of Allan and Mason [11] for a wide range of fluid
systems showed that conducting drops deformed into prolate
spheroids, in agreement with the theory, while some perfect
dielectric drops elongated in the direction perpendicular to
the electric field, becoming an oblate spheroid. Motivated
by the anomalous observations of Allan and Mason [11],
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Taylor [14] pointed out that interfacial hydrodynamic stresses
are consequential for nonprolate deformation. To account for
these stresses, therefore, the fluids should not be treated as
perfect dielectrics; rather they should be considered as having
slight conductivity to allow for accumulation of free charge at
the interface. The action of electric field on this charge will
then lead to an imbalance in the tangential interfacial electric
stresses, which in turn leads to hydrodynamic interfacial
shear stresses that must develop to balance the electrical shear
stresses.

Taylor [14] solved the steady-state axisymmetric electro-
hydrodynamic equations for the fluids inside and outside of
a spherical drop in the creeping flow regime. The domain
was unbounded and an electric field E∞, uniform at large
distance, was applied to the drop. He showed that the relative
importance of the ratios of electric conductivities R = σi/σo

and permittivities S = εi/εo, of the fluid in the drop to the
ambient fluid, is the key parameter in setting the senses of drop
deformation and fluid circulation. Specifically, he showed that
the electric field establishes a circulatory flow in the drop,
consisting of four vortices of equal strengths that are matched
by counterpart vortices in the ambient fluid. For R < S, the
direction of the ambient flow is from the poles (aligned in
the direction of the electric field) to the equator, while for
R > S the flow direction is the opposite. For R = S, there
is no fluid flow since the interface is free of charge. He
also found a characteristic function � to predict the sense
of the drop deformation. For � < 0, the drop deforms to
an oblate spheroid while for � > 0 it deforms to a prolate
spheroid. � = 0 represents a zero deformation state which
is a possibility for leaky dielectric fluids because of intricate
interplay of electric and hydrodynamic stresses, despite the
distorting effect of electric field.

Since the seminal work of Taylor [14], there have been
several major analytical and numerical studies concerning
the dynamics of a leaky dielectric drop. In what follows
we only refer to the more relevant ones. The deformation
of a drop D was calculated by Vizika and Saville [15] who
used Taylor’s solution [14] and balanced the normal stresses
at the drop surface posteriorly. The authors used Taylor’s
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definition for deformation [16] and showed that the sense of
deformation is set by the sign of the characteristic function
� (found earlier by Taylor [14]) and its magnitude is linearly
proportional to the square of the electric field strength E2

∞.
The effect of fluid inertia was studied by Tsukada et al. [17]
who performed Galerkin finite element calculations and solved
the momentum equations by accounting for the convective
terms and compared their numerical results with Taylor’s
results and their own experiments. The authors showed that
the linear D-E2

∞ relationship predicted by Taylor’s asymptotic
solution no longer holds as the electric field strength increases
and inertia effect comes to picture. A comprehensive study
on the effect of inertia was done by Feng and Scott [18]
who used a Galerkin finite element method and examined
the deformation of drops over a broad range of physical
parameters. The authors showed that Taylor’s asymptotic
results tended to underestimate both the flow intensity and
the drop deformation, and that significant differences existed
between their computational predictions and that of asymptotic
theory when the drop deformation became noticeable, even
in the creeping flow limit. Furthermore, they found that a
drop with oblate deformation at low electric field strength can
evolve into a prolate shape as the field strength increases. In
a follow-up study, Feng [19] explored the effect of convection
of free charge at the interface. He concluded that the charge
convection generally tends to reduce the intensity of the
induced flow. Consequently, when the charge convection is
accounted for, oblate drops will be less deformed compared to
when the charge convection is ignored, while the opposite is
true for the prolate drops. While at low electric field strengths a
liquid drop settles to an equilibrium shape, it becomes unstable
and even disintegrates beyond a critical electric field strength;
see, for example, Refs. [1,2,11,12,20,21]. A noteworthy study
in this regard was done by Sherwood [22] who investigated
the response of a leaky dielectric drop in high electric fields
using numerical simulations. More recent studies include the
analytical work of Bentenitis and Kraus [23] who developed
the so-called “extended leaky dielectric method” (ELDM) to
study highly deformed drops in strong electric fields and the
numerical simulations of Lac and Homsy who [24] extended
Sherwood’s work over a broader range of parameters.

While the steady-state electrohydrodynamics of a liquid
drop in an unbounded domain is reasonably well understood,
not much is known about the effect of domain confinement
on the behavior of a drop. This understanding, however, finds
relevance in microfluidic applications where the dimensions
of the channel are typically of the same order as the drop size.
Although from Taylor’s [14] solution one can find an estimate
of the minimum distance at which the confinement effect
becomes insignificant, to understand the manner by which
the results will be affected and for quantification purposes,
one must incorporate the wall effects into the solution. The
goal of this study is, therefore, to explore and quantify the
effect of confinement on the drop deformation. To this end, we
build on Taylor’s solution and solve the electrohydrodynamic
equations for a spherical liquid drop in a confined domain. We
then evaluate the drop deformation for small distortion from
the spherical shape using a domain perturbation technique.

The organization of the paper is as follows. In Sec. II, we
discuss the problem setup and the governing nondimensional

numbers. In Sec. III the governing electrohydrodynamic equa-
tions and their solution are presented. The drop deformation is
evaluated in Sec. IV and in Sec. V the deformation-circulation
map is discussed and the effect of confinement on this map is
explored. Finally, in Sec. VI we conclude with a discussion of
the findings.

II. PROBLEM SETUP AND NONDIMENSIONAL
PARAMETERS

The problem setup is shown in Fig. 1, depicting a liquid
drop of radius a suspended in another fluid and confined
by a spherical rigid container of radius b. The drop and
the container are concentric and the origin of the spherical
coordinate system is at the center of the drop. Since the
problem is axisymmetric, the azimuth angle does not come to
the picture, and therefore, we use the axisymmetric spherical
coordinates shown in the figure. The gravity is zero and the
electrohydrodynamic-induced fluid shear does not lead to a
net motion of the drop because of the symmetry. Therefore,
the center of mass of the droplet remains at the origin of
the coordinate. A uniform electric field E0 is imposed at the
surface of the container as shown in the figure.

The physical properties of the fluids are the densities, ρi ,
ρo, the viscosities, μi , μo, the electric permittivities, εi , εo,
and the electric conductivities, σi , σo. The surface tension is γ .
The subscripts i and o denote the physical parameters inside
and outside of the drop. Under the assumption of creeping
flow, the governing nondimensional numbers of this problem
are Cael = μous/γ , R = σi/σo, S = εi/εo, μ̃ = μi/μo, and
λ = a/b. Here Cael is the electric capillary number and
us = εoE

2
0a/μo is a velocity scale that is constructed by

balance of the electric and viscous shear stresses, where
E0 = |E0|. Sometimes in the literature, the Ohnesorge number

θ
i, σi, μi

o, σo, μo

r

b

a

φz

FIG. 1. (Color online) The geometric setup, depicting a liquid
drop of radius a suspended in a pool of another fluid and confined by
a spherical container of radius b. A uniform electric field E0 (V m−1)
is imposed at the surface of the container.
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Oh = μo/
√

ρoaγ or the nondimensional strength of the
electric field E∗ = √

Cael = E0/
√

γ /εoa is used in lieu of
Cael .

III. GOVERNING EQUATIONS

Electrohydrodynamics deals with interactions of electric
field and fluid flow. As such, the laws concerning the fluid
dynamics and electric field and their coupling need to be
considered. Here, the governing equations are the conser-
vations of mass and momentum, and simplified Maxwell’s
electromagnetic equations. For leaky dielectric fluids with
constant properties and net zero charge in the bulk, it can be
shown that the electric field equations are decoupled from the
fluid flow equations, but the fluid flow equations are coupled
to the electric field equations through the momentum jump
conditions [25–27]. This decoupling allows one to solve the
electric field and hydrodynamic equations sequentially.

A. Electric field equations and their solutions

The charge conservation equation, along with the fact that
the electric field E is irrotational and divergence free, leads to
the Laplace equation for the electric potential [27]:

∇2φ = 0. (1)

Equation (1) is valid for fluids inside and outside of the
drop and is solved using the following boundary condi-
tions: (1) φi(0,θ ) should be bounded, (2) φi(a,θ ) = φo(a,θ ),
(3) σi∂φi/∂r(a,θ ) = σo∂φo/∂r(a,θ ), and (4) φo(b,θ ) =
E0b cos θ . More details about these boundary conditions can
be found in Ref. [28]. Solution of Eq. (1) yields the electric
potentials for the inside

φi = �φi∞ ;
φi∞

E0a
= 3

R + 2

(
r

a

)
cos θ, (2)

and the outside

φo = �φo∞ ;
φo∞

E0a
=

[(
r

a

)
− R − 1

R + 2

(
a

r

)2]
cos θ, (3)

where

�(λ,R) = R + 2

(R + 2) − λ3(R − 1)
(4)

is a correction factor that takes into account the confinement
effect on the electric field. Here, φi∞ and φo∞ represent the
electric potentials in an unbounded domain.

Several observations can be made about Eqs. (2)–(4). In
the limit of λ → 0, � → 1, and the solution in an unbounded
domain is recovered. Second, R > 1 results in � > 1 and vice
versa. This suggests that for drops more (less) conducting than
the ambient fluid, the confinement effect yields higher (lower)
electric potential field. Third, in the two opposing limits of
R � 1 and R � 1, � is asymptotic to �0 ≡ 2/(2 + λ3) and
�∞ ≡ 1/(1 − λ3) lines, respectively. Since �∞/�0 > 1, the
confinement effect will be more pronounced for drops more
conducting than the ambient fluid compared to the opposite
case. Figure 2 summarizes these observation.

To understand the reason behind the variations of � with
R and λ as depicted in Fig. 2, one needs to compare the
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FIG. 2. (Color online) Variations of the correction factor for
the electric field � with nondimensional domain size λ = a/b and
conductivity ratio R = σi/σo.

electric potential field in the finite domain with that in an
unbounded domain in the range 0 < r < b. This comparison
essentially boils down to comparing the electric potentials for
the two cases at r = 0 and r = b, for a fixed θ . At r = 0, the
electric potential is null for both cases. However, at r = b the
electric potential for the confined domain is φ(b) = E0b cos θ ,
while it is φo∞ (b) = E0b{1 − [(R − 1)/(R + 2)]λ3} cos θ for
the unbounded domain. It is clear that the term in the brackets
is less than 1 for R > 1. Thus, for R > 1, φo∞ (b) < φ(b).
Since the electric potential at the center of the drop is the same
for both cases, therefore, the electric potential will be stronger
over the range 0 < r < b for a bounded domain compared to
an unbounded one; hence � > 1 for R > 1. A similar argument
can be used to justify why � < 1 for R < 1. It should be noted
that when R deviates substantially from 1, the confinement
effect is stronger when R > 1, while it is weaker when R < 1.
This can be verified by noting that dφo∞ (b)/dR ∼ 1/(R + 2)2.
Particularly, for the two extreme cases of R � 1 and R � 1,
it is seen that φo∞ (b) ∼ E0b[1 − λ3] for the former, while
φo∞ (b) ∼ E0b[1 + (1/2)λ3] for the latter.
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FIG. 3. (Color online) Contours of the electric potential and the electric field streamlines for fluid systems with R = 10−4 (left panel), 0.9
(middle panel), and 104 (right panel) at λ = 0.25.

The electric field is found using E = −∇φ, yielding

Ei = �Ei∞ ;
Ei∞

E0
= 3

R + 2
(−cosθer + sin θeθ ) (5)

and

Eo = �Eo∞ ;
Eo∞

E0
= −

[
1 + 2(R − 1)

R + 2

(
a

r

)3]
cos θer

+
[

1 − R − 1

R + 2

(
a

r

)3]
sin θeθ , (6)

where Ei∞ and Eo∞ are the electric fields in an unbounded
domain. To gain insight into the structure of the electric field,
Ei∞ and Eo∞ can be rewritten in terms of the imposed electric
field E0 [29], where it is possible to see that the electric
field inside the drop is uniform and that the external
electric field comprises the imposed electric field E0 and a field
due to a dipole aligned with the field. Also, for visualization
of the electric field distribution, it will be helpful to define an
electric streamfunction ψe. This is done in a manner similar to
the derivation of the velocity streamfunction ψ . Considering
that ∇ · E = 0, the components of the electric field can
be defined in terms of ψe as Er = [1/(r2 sin θ )](∂ψe/∂θ )
and Eθ = −[1/(r sin θ )](∂ψe/∂r). This yields ψe

i = �ψe
i∞ ,

ψe
o = �ψe

o∞ , where ψe
i∞/E0a

2 = −[3/(2R + 4)](r/a)2 sin2 θ

and ψe
o∞/E0a

2 = −(1/2){(r/a)2 + [2(R−1)/(R+2)](a/r)}
sin2 θ are the electric streamfunctions in an unbounded
domain. We note that the streamlines and equipotential lines
are mutually orthogonal, and while the velocity streamfunction
ψ is continuous at the interface, this is not the case for ψe as
Eri

(a,θ ) �= Ero
(a,θ ).

The structure of the electric potential φ around the drop
is of interest since it controls the electric stresses, which
in turn control the drop deformation and fluid circulation.
Inspection of Eqs. (2)–(4) shows that the electric potential
is controlled by the conductivity ratio R and the confinement
parameter �. However, the confinement parameter does not
alter the structure of φ; rather it modifies its magnitude.
Therefore, we only explore the effect of conductivity ratio
R on the electric potential for a fixed domain size. Figure 3
shows the equipotential contours and streamlines (i.e., lines of
forces) for three different fluid systems at λ = a/b = 0.25 and
nondimensional conductivity ratios of R = σi/σo = 10−4, 0.9,
and 104. The first system, R = 10−4, represents a fluid drop
much less conducting than the ambient fluid, such as fluid
systems C and F in Table II. The second system, R = 0.9,
represents a drop whose electric conductivity is comparable
with that of the ambient, R ∼ 1. The third system, R = 104,
represents a drop that is much more conducting than the
ambient fluid, such as systems D and E in Table II. Note that
the property ratios in Table II are based on the measurements
of Refs. [20,30–32] as listed in Table I. For the first system, the
equipotential lines inside the drop are horizontal, suggesting
that the inner electric potential changes linearly in the direction
of the field. Also the contour lines inside the drop are more
concentrated compared with the external equipotential lines,
which is an indication of the steep gradient in the drop due to
its low electric conductivity. Away from the drop surface the
contour lines are horizontal, but they bend toward the surface
as they approach it. Here the external electric streamlines in the
vicinity of the drop surface conform to the geometry by turning
around as they pass the sides. This is because the normal
component of the electric field Eno

∼ ∂ψe/∂t is nearly zero

TABLE I. Physical properties of the fluids used. The surface tensions for fluid systems (1) + (2), (3) + (4), and (5) + (6) are γ =
1.45 × 10−3, 5.5 × 10−3, 72.8 × 10−3 N m−1, respectively. Here ε0 = 8.854 × 10−12 F m−1 is the permittivity of the free space.

No. Fluid σ (S m−1) ε (F m−1) μ (Pa s) ρ (kg m−3)

1 silicon oil 1 2.67 × 10−12 2.66ε0 0.0167 941
2 corn oil 1.06 × 10−11 3.24ε0 0.0421 914
3 silicon oil 2 3.33 × 10−11 2.77ε0 12 980
4 oxidized castor oil 10−9 6.3ε0 6.5 980
5 water O(10−4) to O(10−2) 80ε0 0.001 998.20
6 air O(10−15) ε0 1.82 × 10−5 1.205

036310-4



ELECTROHYDRODYNAMICS OF A LIQUID DROP IN . . . PHYSICAL REVIEW E 86, 036310 (2012)

0 1 2 3 4
0

1

2

3

4

r/a

φ
aEo

R = 10−4

R = 0.9
R = 104

FIG. 4. (Color online) Variation of electric potential at θ = π/4
and λ = 0.25 in the radial direction, corresponding to the fluid
systems shown in Fig. 3.

at the interface, noting that σiEni
= σoEno

at the interface and
σo � σi . For R = 0.9, both equipotential lines and streamlines
are nearly uniform, reflecting the fact that the electric potential
field is nearly linear throughout the domain. For R = 104,
the electric potential inside the drop vanishes and the drop
surface becomes a surface of equipotential. Furthermore, the
external equipotential lines near the interface conform to
its shape by turning around as they pass the upper and the
lower halves. This is because that the tangential component of
electric field is nearly zero at the interface, Et ∼ −∂φ/∂t ∼ 0,
which occurs because the electric field is nearly zero inside the
drop (Eti ∼ 0, Eni

∼ 0), and the tangential component of the
interfacial electric field strength is continuous, Eti = Eto . The
streamlines, however, bend toward the interface and are normal
to the interface at the intersection point as the normal gradient
of the streamfunction at the interface is nearly zero; i.e., Et ∼
∂ψe/∂n ∼ 0. Figure 4, which shows the variation of φ(r,π/4)
in the radial direction, summarizes some of these observations.

1. The electric surface charge

The strength and distribution of the free charges have a
profound effect on the sense of drop deformation and fluid
circulation. The charge density (C m−2) can be found from
qs = [[εE]] · n, where n is an outward unit vector normal to
the interface [27]. Here the symbol [[]] denotes the jump in a
physical parameter, such as a Q, at the interface:

[[Q]] = Qo − Qi. (7)

Considering the continuity of electric current density at the
interface (σiEni

= σoEno
) yields qs = εoEno

(1 − S/R), En

being the normal component of E. Evaluation of Eno
≡ Ero

at the interface from Eq. (6) and substitution of the resulting
expression into the statement for qs leads to

qs = �qs∞ ;
qs∞

εoE0
= 3(S − R)

R + 2
cos θ, (8)

where qs∞ is the free surface charge density in an unbounded
domain.

2. The jump in electrical stresses

The interfacial jumps in the tangential and normal electric
stresses are the drivers behind the fluid flow circulation and
interface deformation, respectively. To calculate these terms,
the electric stresses must be evaluated first using the Maxwell
stress tensor

τ e = εEE − 1
2E2εI, (9)

where E2 = E · E and I is the identity tensor. Here it is more
useful to express these stresses in terms of a tangent-normal
coordinate system and to customize the resulting expressions
for other coordinates afterward. Doing so, the stresses will be
valid for a general interface in any coordinate system. In a
t-n coordinate system, E = Et t + Enn, where Et = −∂φ/∂t ,
En = −∂φ/∂n, t is a unit vector tangent to the drop in the
counterclockwise direction, and n is a unit vector normal to
the drop in the outward direction. Accordingly, the jumps in
the normal and tangential electric stresses are

[[
τ e
nn

]] = εo

2

[(
1 − S

R2

)
E2

no
+ (S − 1)E2

t

]
(10)

and [[
τ e
nt

]] = εoEno
Et

(
1 − S

R

)
= qsEt , (11)

respectively. For the problem at hand where En ≡ Er and Et ≡
Eθ , evaluation of Er and Eθ at the interface using Eqs. (5) and
(6) and substitution of the resulting expressions into Eq. (10)
yields [[

τ e
rr

]] = �2[[τ e
rr

]]
∞;

(12)[[
τ e
rr

]]
∞

εoE
2
0

= 9

2

(R2 + 1 − 2S) cos2 θ + S − 1

(R + 2)2
,

where [[τ e
rr ]]∞ is the jump in the normal stress in an unbounded

domain. Similarly, the jump in the tangential electric stress is
found:

[[
τ e
rθ

]] = �2
[[
τ e
rθ

]]
∞;

[[
τ e
rθ

]]
∞

εoE
2
0

= 9

2

S − R

(R + 2)2
sin 2θ, (13)

where [[τ e
rθ ]]∞ is the jump in the tangential stress in an

unbounded domain.
In summary, the confinement leads to rescaling of φ∞,

ψe
∞, E∞, and qs∞ by �, and rescaling of [[τ e

rr ]]∞ and [[τ e
rθ ]]∞

by �2. However, it does not alter the structure of any of these
entities.

B. Fluid flow equations and their solutions

The governing equations for steady-state, incompressible,
and creeping flows are the conservations of mass ∇ · u = 0 and
momentum −∇p + μ∇2u + Fe = 0, where u is the fluid ve-
locity, p is the pressure, and Fe = ∇ · τ e = qvE − (1/2)E2∇ε

is the electric force density. Here qv = ∇ · εE is the volumetric
free charge density (C m−3). For leaky dielectric fluids with
constant properties, Fe is zero in the fluid bulk, since qv = 0
and ∇ε = 0. As such, the electric force enters the picture only
through the momentum jump conditions. Here it is possible to
derive an equation for the streamfunction ψ , which satisfies
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the mass and momentum conservation equations

D4ψ = 0, (14)

where D4 = D2(D2), D2 being the well-known operator that
resembles Laplacian. Equation (14) is valid for fluids inside
and outside of the drop and is solved using the following
boundary conditions: (1) uri

and uθi
should be bounded at

r = 0, (2) uθi
(a,θ ) = uθo

(a,θ ), (3) uri
(a,θ ) = uro

(a,θ ) = 0,
(4)[[τh

rθ ]] + [[τ e
rθ ]] = 0, where τh

rθ is the hydrodynamic shear
stress, (5) uro

(b,θ ) = uθo
(b,θ ) = 0. Boundary condition (4)

suggests a solution of the form ψ(r,θ ) = rn sin2 θ cos θ , where
n is a real constant to be determined. Substitution for ψ =
rn sin2 θ cos θ into Eq. (14) results in an algebraic equation
for n, the solution of which leads to n = 0, −2, 3, and 5.
Accordingly, ψo = (A + Br−2 + Cr3 + Dr5) sin2 θ cos θ and
ψi = (E + Fr−2 + Gr3 + Hr5) sin2 θ cos θ , where A–H are
constants to be determined. Application of boundary
condition (1) results in E = F = 0, and application
of the rest of the boundary conditions yields A =
Umaxa

2�A/�E , B = Umaxa
4�B/�E , C = Umaxa

−1�C/�E ,
D = Umaxa

−3�D/�E , G = Umaxa
−1, and H = −Umaxa

−3,
where Umax is the maximum velocity at the surface of the drop
and �A–�E are coefficients that are functions of λ (Appendix
A). Accordingly, the streamfunctions for the fluids inside and
outside are

ψi

Umaxa2
=

[(
r

a

)3

−
(

r

a

)5]
sin2 θ cos θ (15)

and

ψo

Umaxa2
= 1

�E

[
�B

(
a

r

)2

+ �A

+�C

(
r

a

)3

+ �D

(
r

a

)5]
sin2 θ cos θ, (16)

and the velocities are

uri

Umax
=

[(
r

a

)3

−
(

r

a

)]
(1 − 3 cos2 θ ), (17)

uθi

Umax
= 1

2

[
5

(
r

a

)3

− 3

(
r

a

)]
sin 2θ, (18)

uro

Umax
= − 1

�E

[
�B

(
a

r

)4

+ �A

(
a

r

)2

+�C

(
r

a

)
+ �D

(
r

a

)3]
(1 − 3 cos2 θ ), (19)

and

uθo

Umax
= 1

2�E

[
2�B

(
a

r

)4

− 3�C

(
r

a

)
− 5�D

(
r

a

)3]
sin 2θ.

(20)

The maximum surface velocity is

Umax = �Umax∞ ; Umax∞ = 9

10

us

1 + μ̃

S − R

(R + 2)2
, (21)

where Umax∞ is the maximum surface velocity in an unbounded
domain, us = εoE

2
0a/μo is the velocity scale, and

�(λ,R,μ̃) = �2 �E (1 + μ̃)

μ̃�E + �B + �D

(22)

is a correction factor that accounts for the confinement effect
on the velocity field.

A few observations can be made about Eqs. (15)–(22). First,
in the limit of λ → 0, the solution in an unbounded domain
is recovered. Second, the streamfunctions ψi and ψo are zero
along the lines θ = 0, θ = π/2, θ = π , and the surfaces of
the drop r = a and the container r = b. These lines are the
dividing streamlines, which divide the flow field to eight
quadrants. Third, evaluation of Eqs. (18) and (20) at r = a

shows that uθi
(a,θ ) = uθo

(a,θ ) = Umax sin 2θ , and therefore
the maximum surface velocity takes place at angles θ = π/4
and θ = 3π/4. Fourth, the flow strength is characterized by
Umax, as formulated by Eqs. (21) and (22). For a given fluid
system, the confinement affects the maximum surface velocity
Umax through �. The sign of � is always positive, and therefore
the sense of flow circulation is controlled by the sign of Umax,
which in turn is determined by the relative magnitudes of R and
S. For R < S, Umax > 0, and vice versa. Therefore, for R < S

the ambient fluid flows from the poles toward the equator,
while for R > S the direction of the flow is reversed. The
sense of flow circulation correlates positively with the sense
of the net shear stress, given by Eq. (13). Fifth, comparison
of Eqs. (15) with (B1) and (16) with (B2) shows that the
confinement affects the structure of the outer flow field, but it
does not alter the the structure of the inner one.

To explore the confinement effect on the velocity field, in
Fig. 5 we plot nondimensional streamlines for a fluid system
with R < S at three different nondimensional domain sizes of
λ = a/b = 0.5, 0.25, and 0. This fluid system represents, for
example, systems A, C, and F of Table II. Here Umax > 0,
and therefore, the ambient fluid runs from the poles toward the
equator. The flow consists of four toroidal vortices inside the
drop that are matched with their counterparts in the ambient
fluid. The streamlines in the ambient fluid are initially in the
form of closed curves. However, as the domain size increases,
the closed curves expand and eventually transform to open
curves. The open circles mark the positions of the cores
of the inner vortices. The fluid flow decays away from the
drop as is evidenced from the divergence of the streamlines.
Furthermore, the velocity field is weaker in the poles compared
with that in the equator. As the domain size increases, the
cores of the external vortices move gradually outward, while
the cores of the inner vortices remain stationary. The r and
θ coordinates of the inner cores can be found by setting
uθi

and uri
to zero, respectively, leading to r = √

3/5a and
θ1 = cos−1(1/

√
3) � 55◦ and θ2 = cos−1(−1/

√
3) � 145◦.

The fact that θ1 > π/4 and θ2 > 3π/4 suggests that the flow
is stronger near the equator. For fluid systems B, D, E where
R > S, the flow structure will be exactly the same but the sense
of flow circulation will be the opposite.

Figure 6 shows the variation of nondimensional radial and
tangential velocities versus r/a for the flow fields shown in
Fig. 5. Here the radial velocity ur is plotted at θ = 0, where it
is maximum in an absolute sense, and the tangential velocity uθ

is plotted at θ = θ1 � 55◦ to show the effect of confinement on
the evolution of the radial coordinate of the cores of the external
vortices. For both bounded and unbounded domains, the radial
velocity is zero at the center r = 0 and the drop surface
r = a, while it reaches a maximum at r/a = √

3/3. For the
unbounded domain, the outer radial velocity uro

reaches a local
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FIG. 5. (Color online) Nondimensional streamlines for a fluid
system with R < S at λ = 0.5 (top panel), 0.25 (middle panel), and
0 (bottom panel). Here the ambient fluid runs from the poles toward
the equator.

maximum in an absolute sense in r/a = √
2 and gradually

decays until it levels off to zero. As the domain size becomes
smaller, the magnitude of the local maximum of uro

becomes
smaller and also the velocity decays faster. The tangential
velocity is zero at the center and at the cores of the internal and
external vortices. It gradually decays away from the surface
for the unbounded domain, while it abruptly drops off to zero

at r = b for the bounded domains. Comparing the radial and
the tangential velocities at a fixed λ, it is seen that the rate of
decay of the tangential velocity is faster. In particular, for the
unbounded domain, uθo

∼ 1/(r/a)4, while uro
∼ 1/(r/a)2.

The effect of confinement on the strength of the flow field
is characterized by �(λ,R,μ̃), according to Eqs. (21) and
(22). The fact that � depends on both R and μ̃ indicates
that the confinement affects the flow field through both the
electric and hydrodynamic forces. To isolate these effects,
we decompose � to two parts by rewriting it as � = �e�h,
where �e = �2 and �h = [�E(1 + μ̃)]/[μ̃�E + �B + �D]
are two subfactors that represent the electric and hydrodynamic
effects, respectively. Figure 7 shows the variations of �, �e,
and �h with λ. As is evident, � is (essentially) a monotonic
function of λ, and except for fluid systems B,D, and E, it
is a decreasing function of λ. The behavior of λ − �e ≡ �2

curve is similar to that of λ − � curve, described in Fig. 2, i.e.,
�e ≡ �2 increases with λ for systems with R > 1 and vice
versa. The λ-�h curve, however, is monotonically decreasing
with λ for all the systems, but the rate of decay is inversely
proportional to μ̃. The behavior of �, however, depends on
the interplay of �e and �h, resulting in an increase in Umax for
systems E, a decrease for systems A, C, and F , and essentially
no changes for systems B and D.

IV. DROP DEFORMATION

The analysis so far was based on the premise that the drop
remains spherical. However, the drop is likely to deform as a
result of the electric and hydrodynamic stresses. For small
deformation, it is possible to calculate the distortion from
spherical shape using normal stress balance at the drop surface[[

τ e
rr

]] + [[
σh

rr

]] = γ κ, (23)

where [[σh
rr ]] = [[τh

rr ]] − [[p]] is the jump in the total normal
hydrodynamic stress ([[τh

rr ]] is the jump in the the deviatoric
part and [[p]] is the jump in the pressure), γ is the surface
tension, and κ is twice the mean curvature of the drop. The
form of the jump in the normal electric stresses, Eq. (12),
suggests that the drop shape function ξ should be of the form

ξ = a[1 + (2D/3)(3 cos2 θ − 1)]. (24)

Here D = (zmax − rmax)/(zmax + rmax) is the Taylor
deformation parameter [12], which needs to be determined,
zmax and rmax being the end-to-end length of the drop in the
direction of electric field and the maximum breadth in the
traverse direction, respectively. We note that Eq. (24) and its
variants have been used by others, including Ref. [15], and
that this equation satisfies the incompressibility condition.
Here, we assume that the drop deformation D is small (i.e.,
Cael � 1); therefore the interfacial jump conditions are
imposed at r = a rather than r = ξ . This assumption implies
that the r-θ coordinate system is a tangent-normal coordinate
system. The detailed justification for this assumption can be
found in Ref. [33]. The components of Eq. (23) are computed
as follows. The net normal electric stress [[τ e

rr ]] is already
available from Eq. (12), and for small deformation

κ = 2

a
+ 8D(3 cos2 θ − 1)

3a
, (25)
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TABLE II. Ratios of the material properties (i.e., drop property over that of the ambient) for selected fluid systems. The individual properties
are as listed in Table I.

System Fluids R S μ̃ ρ̃

A silicon oil 1 in corn oil 0.252 0.820 0.3975 1.03
B corn oil in silicon oil 1 3.97 1.22 2.515 0.97
C silicon oil 2 in oxidized castor oil 0.033 0.4397 1.8462 1
D oxidized castor oil in silicon oil 2 30.03 2.274 0.5417 1
E water in air O(1011) to O(1013) 80 54.95 828.38
F air in water O(10−11) to O(10−13) 0.0125 0.0182 0.001

according to Ref. [33]. To compute [[σh
rr ]], [[τh

rr ]] is found from
the velocity field, leading to

[[
τh
rr

]] =�
[[
τh
rr

]]
∞;

[[
τh
rr

]]
∞

μoUmax∞
/
a

= 4(1 − μ̃)(1 − 3 cos2 θ ),

(26)

where [[τh
rr ]]∞ is the jump in the deviatoric normal

hydrodynamic stress in an unbounded domain. The pressure
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FIG. 6. (Color online) Variations of the radial ur/Umax and
tangential velocity uθ/Umax with r/a for the flow fields of Fig. 5.
Here ur is evaluated at θ = 0, while uθ is evaluated at θ = θ1 � 55◦.

jump is found by integration of the momentum equation,
−∇p + μ∇2u = 0, leading to

[[p]]

μoUmax/a
=

[
2 − 7μ̃ + 5�C

�E

]
(1 − 3 cos2 θ ), (27)

where we have ignored the constants of integration as they
will be balanced with the other isotropic terms of Eq. (23).
Thus, the jump in the total normal hydrodynamic stress is[[

σh
rr

]]
μoUmax∞/a

= �2F(1 + μ̃)(1 − 3 cos2 θ ), (28)

where

F(λ,μ̃) = (2 + 3μ̃) �E − 5�C

μ̃�E + �B + �D

(29)

is a characteristic function that, in conjunction with Umax∞ ,
determines the sense of [[σh

rr ]]. Figure 8 shows the variations
of F with λ = a/b for the fluid systems of Table II. As is
evident, F decreases monotonically with λ but the rate of
decay is inversely proportional to μ̃, which is in line with the
behavior of �h seen in Fig. 7.

Substituting for [[τ e
rr ]], [[σh

rr ]], and κ from Eqs. (12), (28), and
(25), respectively, into Eq. (23) and equating the coefficients
of cos2 θ in both sides of the resulting expression yield the
drop deformation

D = 9Cael

16

�2�

(R + 2)2
, (30)

where

� = R2 + 1 − 2S + 3
5F(R − S) (31)

is the characteristic function that determines the shape of the
drop. In the limit of λ → 0, F(λ,μ̃) = (3μ̃ + 2)/(μ̃ + 1) ≡
F∞, �2 = 1, and the deformation of a drop in an unbounded
domain [15] is recovered:

D∞ = 9Cael

16

�∞
(R + 2)2

, (32)

where

�∞ = R2 + 1 − 2S + 3

5

3μ̃ + 2

μ̃ + 1
(R − S). (33)

As is evident from Eq. (30), the sense of drop deformation
depends on the sign of �; for � > 0, D > 0, and the drop
will deform to a prolate ellipsoid; for � < 0, D < 0, and
the drop will deform to an oblate ellipsoid; and for � = 0,
D = 0, and the drop retains its spherical shape, despite the
action of the electric forces. The domain confinement rescales
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FIG. 7. (Color online) Variations of the correction factor for the
strength of the velocity field � (top panel), a correction subfactor
accounting for the electric effect �e (middle panel), and a correction
subfactor accounting for the hydrodynamic effect �h (bottom panel)
with λ.

the magnitude of the deformation parameter D∞ by �2, and
modifies its formulation by modification of �∞. We note

0 0.2 0.4 0.6 0.8
−2

0

2

4

λ

F

System A
System B
System C
System D
System E
System F

FIG. 8. (Color online) Variation of the characteristic function
F with the nondimensional domain size λ for the fluid systems of
Table II.

that Cael ∼ E2
0 , and therefore the deformation parameter D

scales with E2
0 , a fact that has been verified by several

authors for a drop in an unbounded domain; see, for example,
Refs. [15,17,18]).

Figure 9 shows the variations of the nondimensional
deformation parameter D/|D∞| with λ for the fluid systems
listed in Table II. Other pertinent information about these cases
can be found in Table III. For sufficiently large domains (i.e.,
λ � 0.2) the deformation is essentially independent of the
domain size. However, beyond λ ∼ 0.2 the confinement effect
becomes visible. Three different behaviors can be detected
for these fluid systems: (1) the drops in systems A and C,
which are initially oblate, become less and less deformed and
eventually turn into a prolate, (2) the deformations of the drops
in systems D and E, which are initially prolate, increase, and
(3) the deformations of the drops in systems B and F , which are

0 0.2 0.4 0.6 0.8
−2

−1

0

1

2

3

4

λ

D |D
∞
|

System A
System B
System C
System D
System E
System F

FIG. 9. (Color online) Variation of the deformation parameter
D = (zmax − rmax)/(zmax + rmax) with nondimensional domain size
λ = a/b for the fluid systems of Table II. Other pertinent information
is given in Table III.
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TABLE III. The pertinent information about Fig. 9.

System a (m) E0 (V m−1) Cael Oh

A 0.001 5000 4.95 × 10−4 1.156
B 0.001 5000 4.06 × 10−4 0.4521
C 0.001 5000 2.54 × 10−4 88.54
D 0.001 5000 1.11 × 10−4 163.451
E 0.001 10 1.22 × 10−11 0.0019
F 0.001 1000 9.73 × 10−6 0.0037

initially prolate, does not change significantly. The observed
behavior is due to two reasons: (1) change in magnitude of
both [[τ e

rr ]] and [[σh
rr ]] due to change in �2, and (2) the change

in magnitude and the sign of [[σh
rr ]] due to change in F . This

will be discussed in more detail in Sec. V.

V. DEFORMATION-CIRCULATION MAP

The possible senses of drop deformation and fluid
circulation around the drop can be presented in a so-called
deformation-circulation map in S-R coordinates. For an
unbounded domain, the map not only represents the
steady-state dynamics of an isolated drop but also provides
useful information about the modes of interactions of two
drops at finite distances. See, for example, Refs. [20,24,28,29].
To construct this map, we note that the � = 0 curve divides
the S-R domain into two regions of oblate (� < 0) and prolate
deformation (� > 0). We further note that the R = S line
delineates the domain into two parts according to the sense
of fluid flow around the drop; for R < S the flow will be from
the poles to the equator while for R > S the flow will be in
the opposite direction. When the � = 0 curve and R = S line
are plotted together, it results in a map of the expected shape
(oblate/prolate) and fluid circulation (poles to equator/equator
to poles). Figure 10 shows the deformation-circulation map
and the corresponding regions, identified as regions O, P 1,
and P 2, for a drop in an unbounded domain. Notice that since
� is a weak function of μ̃, � = 0 is plotted only for μ̃ = 1.
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e
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FIG. 10. (Color online) Deformation-circulation map for a drop
in an unbounded domain.

In region O, � < 0 and R < S, the drop deforms to an oblate
(D < 0) and the flow is from the poles to the equator. In region
P 1, � > 0 and R < S, the drop becomes prolate (D > 0) and
the flow is from the poles to the equator. In region P 2, � > 0
and R > S, the drop becomes prolate (D > 0) and the flow
is from the equator to the poles. Accordingly, pole-to-equator
flow (R < S) is the necessary condition for drop to become
oblate or to retain its spherical shape.

To find out how the confinement affects the sense of
drop deformation and fluid circulation, we follow the
evolution of the zero-deformation curve with λ = a/b in
the deformation-circulation map. For a fixed λ, setting
� = 0 results in a quadratic algebraic equation in terms of R,
� ≡ AR2 + BR + C(S) = 0, whereA = 1,B = (3/5)F , and
C(S) = 1 − S[(3/5)F + 2]. Assigning discrete values to S in
the range 0.1 < S < 100, the roots of the algebraic equation
give the corresponding values of R that make � = 0; i.e.,
R1,2 = (1/2)[−(3/5)F ± √

�], where � = B2 − 4AC is the
discriminant. Inspection of the quadratic algebraic equation
and its roots shows that the possible solutions can be identified
based on the three parameters SC , S�, and Fcr . Here SC ≡
1/[2 + (3/5)F] and S� ≡ [2 − (3/5)F]/4 are the two points
along the S axis where C(SC) = 0 and � = 0, respectively, and
Fcr = −10/3 is the F where SC → ∞ and � = 0. We note
that SC/S� = 4/[4 − (9/25)F2], and therefore, SC is always
greater than S�. Three possibilities exist, depending on the
sign of F and its magnitude relative to Fcr . For F > 0, there
is one solution for S > SC . For Fcr < F < 0, there are two
solutions for S� < S < SC and one solution for S > SC . For
F < Fcr , there are two solutions for S < S�. It is interesting
to note that for F = Fcr , the zero-deformation curve
transforms to the R = 1 line, according to Eqs. (29) and (31).

Figure 11 shows the deformation-circulation map at se-
lected values of λ = a/b. Here the viscosity ratio is μ̃ =
0.3975 andF∞ = 2.2844. In this figure, O, P 1, and P 2 denote
oblate, prolate 1, and prolate 2, as in Fig. 10. For panels (a) and
(b), F > 0 and the map is very similar to that for a drop in an
unbounded domain. For these two panels, S� does not play a
role since it falls in the no-solution region (S < SC). For panels
(c)–(f),Fcr < F < 0 and there are two solutions for S� < S <

SC and one solution fo S > SC . Note that for panel (f), SC =
500. Panel (f) marks a new development in the solution. HereF
is essentially the same as Fcr . Consequently, a slight decrease
in the domain size results in F = −3.37 � Fcr , and therefore
shifting of the � = 0 curve from S > S� region to S < S�

region [panel (g)]. From this point onward, SC does not play a
role since it is negative and will remain so. The interesting out-
come of decreasingF belowFcr is that the necessary condition
for having an oblate deformation is now R > S, which is the
opposite to that for a drop in an unbounded domain, and also
opposite to that for a drop in a bounded domain when λ < λcr ,
λcr being the domain size that leads to F = −10/3 ≡ Fcr . For
panels (g)–(i), there are two solutions for S < S� and the size
of the oblate region gradually increases.

The physical interpretation of the results shown in Figs. 9
and 11 is described in the present and the next paragraph.
The sense of drop deformation is set by the net normal
electric and hydrodynamic stresses, [[τ e

rr ]] and [[σ e
rr ]], ac-

cording to Eq. (23). The individual contribution of these
stresses in the deformation can be quantified by inspection
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FIG. 11. (Color online) Evolution of the deformation-circulation map with the nondimensional domain size λ. Here, μ̃ = 0.3975 and
F∞ = 2.2844.

of Eqs. (12), (28), and (31), in conjunction with the detail
of derivation of Eq. (23). This yields � = �e + �h, where
�e ≡ R2 + 1 − 2S and �h ≡ (3/5)F(R − S) represent, re-
spectively, the contribution of the net normal electric and
hydrodynamic stresses. Accordingly, D can be rewritten
as D = De + Dh, where De = (9Cael/16)[�2�e/(R + 2)2]
and Dh = (9Cael/16)[�2�h/(R + 2)2]. For a drop in an un-
bounded domain, F∞ = (3μ̃ + 2)/(μ̃ + 1) is always positive,
and therefore, the tendency of the net normal hydrodynamic
stress [[σh

rr ]]∞ in setting the sense of drop deformation is solely
determined by the sign of R − S. Here, [[σh

rr ]]∞ tends to deform
the drop to a prolate in the R > S region and to an oblate in
the R < S region. For a drop in a confined domain, however,
this tendency depends on the sign of F(R − S) as F can be
positive or negative (Fig. 8). For both bounded and unbounded

domain, [[τ e
rr ]] tends to deform the drop to a prolate for R > S,

and to an oblate in nearly all the region identified by O in
Fig. 10. Since �e is quadratic in R, the contribution of [[τ e

rr ]]
compared to [[σh

rr ]] is stronger in the R > S region and weaker
in the R < S region.

A decrease in the domain size leads to a decrease in the
magnitude of F . While F is still positive, this leads to a
decrease in the magnitude of [[σh

rr ]] but does not affect its sign.
Here, the decrease in the magnitude of [[σh

rr ]] does not lead to a
modification of the map in the R > S region as [[τ e

rr ]] also tends
to deform the interface to a prolate in that region. However,
the weakening of [[σh

rr ]] affects the R < S region since [[σh
rr ]]

is of the same order of or larger than [[τ e
rr ]] in that region. This

is the reason for the shrinkage of the oblate region in panel (b)
relative to the same region in Fig. 10, which is noticeable but
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not dramatic. Below a threshold domain size λ−1
0 , determined

from F = 0, Fcr < F < 0 and the shrinkage in the oblate
region accelerates since the sign of [[σh

rr ]] is reversed. This is
seen in panels (c)–(f). From this point onward, [[σh

rr ]] tends
to deform the drop to an oblate in the R > S region and to a
prolate in the R < S region. However, since [[σh

rr ]] is not as
strong as [[τ e

rr ]], it does not affect the R > S region. Below a
critical domain size λ−1

cr , determined from F = −10/3 ≡ Fcr ,
F < Fcr < 0 and [[σh

rr ]] is sufficiently strong. Consequently,
the net hydrodynamic stress leads to deformation of the drop
to an oblate in some part of the R > S region as shown in
panels (g)–(i).

VI. CONCLUSION

The effect of a uniform electric field on steady-state
behavior of a drop in a confined domain was investigated
analytically. It was shown that the domain confinement led
to the scaling of the electric potential φ∞, the electric field
E∞, and the free electric surface charge qs∞ by a correction
factor �, where � > 1 for R > 1 and � < 1 for R < 1. On
the other hand, the net electric stresses, [[τ e

rr ]]∞ and [[τ e
rθ ]]∞,

were scaled by �2. The effect of confinement on the strength
of the velocity field was investigated and it was shown that the
flow strength, represented by the maximum surface velocity
Umax∞ , was scaled by a correction factor �(R,μ̃,λ), where �

was a decreasing function of λ = a/b for R < 1 while it grew
with λ = a/b for R � 1. The deformation of the drop was
calculated posteriorly using a normal stress balance at the drop
surface, and a zero-deformation curve � = 0 was found, which
delineated the region in the S-R space according to the sense
of drop deformation. It was shown that the confinement effect
could lead to the reversal of the tendency of the net normal
hydrodynamic stress [[σh

rr ]] in deforming the drop to an oblate
or a prolate below a threshold domain size λ−1

0 , determined
from F = 0, and that below a critical domain size λ−1

cr < λ−1
0 ,

determined from F = −10/3 ≡ Fcr , the necessary condition
for having an oblate deformation would be R > S, which is
the opposite to the corresponding condition for a drop in an
unbounded domain, and also opposite to that for a drop in a
confined domain where λ < λcr .

APPENDIX A: COEFFICIENTS USED IN THE SOLUTION
OF THE STREAM FUNCTION

The following coefficients are used in the solution of the
stream functions:

�A (λ) = −20λ14 + 28λ12 − 58λ7 + 70λ5 − 20, (A1)

�B (λ) = 12λ12 − 20λ10 + 8λ7 + 30λ5 − 50λ3 + 20, (A2)

�C (λ) = 8λ17 − 28λ12 + 40λ10 − 70λ5 + 50λ3, (A3)

�D (λ) = −8λ17 + 20λ14 − 12λ12 − 20λ10 + 50λ7 − 30λ5,

(A4)
and

�E (λ) = 8λ17 − 50λ14 + 84λ12 − 30λ10 − 117λ7

+ 210λ5 − 125λ3 + 20. (A5)

The above coefficients have the following attributes: (1)
for λ = 1, all �’s are zero, (2) in the limit of λ → 0, �A =
−20, �B = 20, �C = 0, �D = 0, and �E = 20, (3) �B +
�A + �C + �D = 0 as required by uro

(a,θ ) = 0, (4) �Bλ2 +
�A + �C/λ3 + �D/λ5 = 0 as required by uro

(b,θ ) = 0,
(5) 2�Bλ4 − 3�C/λ − 5�D/λ3 = �E as required by
uθ (a,θ ) = Umax sin 2θ .

APPENDIX B: SUMMARY OF THE RESULTS FOR
HYDRODYNAMICS OF A DROP IN AN

UNBOUNDED DOMAIN

For a drop in an unbounded domain, the stream functions
are

ψi∞

Umax∞a2
=

[(
r

a

)3

−
(

r

a

)5]
sin2 θ cos θ (B1)

and

ψo∞

Umax∞a2
=

[(
a

r

)2

− 1

]
sin2 θ cos θ, (B2)

where the maximum velocity Umax∞ is as given in Eq. (21).
The velocities are

uri∞

Umax∞
=

[(
r

a

)3

−
(

r

a

)]
(1 − 3 cos2 θ ), (B3)

uθi∞

Umax∞
= 1

2

[
5

(
r

a

)3

− 3

(
r

a

)]
sin 2θ, (B4)

uro∞

Umax∞
=

[(
a

r

)2

−
(

a

r

)4]
(1 − 3 cos2 θ ), (B5)

and

uθo∞

Umax∞
=

(
a

r

)4

sin 2θ. (B6)

The jump in the pressure is

[[p]]∞
μoUmax/a

= (2 − 7μ̃)(1 − 3 cos2 θ ), (B7)

and the jump in the deviatoric normal hydrodynamic stress
is as given in Eq. (26), yielding the jump in the normal
hydrodynamic stress[[

σh
rr

]]
∞

μoUmax∞
/
a

= (3μ̃ + 2)(1 − 3 cos2 θ ). (B8)

The net hydrodynamic shear stress is [[τh
rθ ]]∞ = −[[τ e

rθ ]]∞, as
required by the tangential stress balance at the interface.

[1] W. A. Macky, Proc. R. Soc. London A 133, 565 (1931).
[2] C. G. Garton and Z. Krasucki, Proc. R. Soc. London A 280, 211

(1964).

[3] F. A. Morrison, Trans. ASME: J. Heat Transfer 99, 269
(1977).

[4] T. B. Jones, Adv. Heat Trans. 14, 107 (1978).

036310-12

http://dx.doi.org/10.1098/rspa.1931.0168
http://dx.doi.org/10.1098/rspa.1964.0141
http://dx.doi.org/10.1098/rspa.1964.0141
http://dx.doi.org/10.1115/1.3450680
http://dx.doi.org/10.1115/1.3450680
http://dx.doi.org/10.1016/S0065-2717(08)70086-8


ELECTROHYDRODYNAMICS OF A LIQUID DROP IN . . . PHYSICAL REVIEW E 86, 036310 (2012)

[5] K. J. Ptasinski and P. J. A. M. Kerkhof, Sep. Sci. Technol. 27,
995 (1992).

[6] A. Banerjee, E. Kreit, Y. Liu, J. Heikenfeld, and I. Papautsky,
Lab Chip 12, 758 (2012).

[7] K. Ikemoto, I. Sakata, and T. Sakai, Sci. Rep. 2, 289 (2012).
[8] M. R. Abdelaal and M. A. Jog, Int. J. Heat Mass Transf. 55, 251

(2012).
[9] C. T. O’Konski and H. C. Thacher, J. Phys. Chem. 57, 955

(1953).
[10] C. T. O’Konski and F. E. Harris, J. Phys. Chem. 61, 1172

(1957).
[11] R. S. Allan and S. G. Mason, Proc. R. Soc. London A 267, 45

(1962).
[12] G. I. Taylor, Proc. R. Soc. London A 280, 383 (1964).
[13] C. E. Rosenkilde, Proc. R. Soc. London A 312, 473 (1969).
[14] G. I. Taylor, Proc. R. Soc. London A 291, 159 (1966).
[15] O. Vizika and D. A. Saville, J. Fluid Mech. 239, 1 (1992).
[16] G. I. Taylor, Proc. R. Soc. London A 146, 501 (1934).
[17] T. Tsukada, T. Katayama, Y. Ito, and M. Hozawa, J. Chem. Eng.

Jpn. 26, 698 (1993).
[18] J. Q. Feng and T. C. Scott, J. Fluid Mech. 311, 289 (1996).
[19] J. Q. Feng, Proc. R. Soc. London A 455, 2245 (1999).

[20] S. Torza, R. G. Cox, and S. G. Mason, Philos. Trans. R. Soc.
London A 269, 295 (1971).

[21] C. T. R. Wilson and G. I. Taylor, Proc. Cambridge Philos. Soc.
22, 728 (1925).

[22] J. D. Sherwood, J. Fluid Mech. 188, 133 (1988).
[23] N. Bentenitis and S. Krause, Langmuir 21, 6194 (2005).
[24] E. Lac and G. M. Homsy, J. Fluid Mech. 590, 239 (2007).
[25] D. A. Saville, Annu. Rev. Fluid Mech. 29, 27 (1997).
[26] P. A. Arp, R. T. Foister, and S. G. Mason, Adv. Colloid Interface

Sci. 12, 295 (1980).
[27] J. R. Melcher and G. I. Taylor, Annu. Rev. Fluid Mech. 1, 111

(1969).
[28] M. N. Reddy and A. Esmaeeli, Int. J. Multiphase Flow 35, 1051

(2009).
[29] J. C. Baygents, J. J. Rivette, and H. A. Stone, J. Fluid Mech.

368, 359 (1998).
[30] T. Tsukada, Y. Yamamoto, T. Katayama, and M. Hozawa,

J. Chem. Eng. Jpn. 27, 662 (1994).
[31] D. Eisenberg and W. Kauzmann, The Structure and Properties

of Water (Oxford University Press, New York, 1969).
[32] L. G. Hector and H. L. Schultz, J. Appl. Phys. 7, 133 (1936).
[33] A. Esmaeeli and P. Sharifi, Phys. Rev. E 84, 036308 (2011).

036310-13

http://dx.doi.org/10.1080/01496399208019021
http://dx.doi.org/10.1080/01496399208019021
http://dx.doi.org/10.1039/c2lc20842c
http://dx.doi.org/10.1038/srep00289
http://dx.doi.org/10.1016/j.ijheatmasstransfer.2011.09.009
http://dx.doi.org/10.1016/j.ijheatmasstransfer.2011.09.009
http://dx.doi.org/10.1021/j150510a024
http://dx.doi.org/10.1021/j150510a024
http://dx.doi.org/10.1021/j150555a009
http://dx.doi.org/10.1021/j150555a009
http://dx.doi.org/10.1098/rspa.1962.0082
http://dx.doi.org/10.1098/rspa.1962.0082
http://dx.doi.org/10.1098/rspa.1964.0151
http://dx.doi.org/10.1098/rspa.1969.0172
http://dx.doi.org/10.1098/rspa.1966.0086
http://dx.doi.org/10.1017/S0022112092004294
http://dx.doi.org/10.1098/rspa.1934.0169
http://dx.doi.org/10.1252/jcej.26.698
http://dx.doi.org/10.1252/jcej.26.698
http://dx.doi.org/10.1017/S0022112096002601
http://dx.doi.org/10.1098/rspa.1999.0402
http://dx.doi.org/10.1098/rsta.1971.0032
http://dx.doi.org/10.1098/rsta.1971.0032
http://dx.doi.org/10.1017/S0305004100009609
http://dx.doi.org/10.1017/S0305004100009609
http://dx.doi.org/10.1017/S0022112088000667
http://dx.doi.org/10.1021/la0472448
http://dx.doi.org/10.1017/S0022112007007999
http://dx.doi.org/10.1146/annurev.fluid.29.1.27
http://dx.doi.org/10.1016/0001-8686(80)80013-3
http://dx.doi.org/10.1016/0001-8686(80)80013-3
http://dx.doi.org/10.1146/annurev.fl.01.010169.000551
http://dx.doi.org/10.1146/annurev.fl.01.010169.000551
http://dx.doi.org/10.1016/j.ijmultiphaseflow.2009.06.008
http://dx.doi.org/10.1016/j.ijmultiphaseflow.2009.06.008
http://dx.doi.org/10.1017/S0022112098001797
http://dx.doi.org/10.1017/S0022112098001797
http://dx.doi.org/10.1252/jcej.27.662
http://dx.doi.org/10.1063/1.1745374
http://dx.doi.org/10.1103/PhysRevE.84.036308



