PHYSICAL REVIEW E 86, 036305 (2012)

Nonlinear shallow ocean-wave soliton interactions on flat beaches
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Ocean waves are complex and often turbulent. While most ocean-wave interactions are essentially linear,
sometimes two or more waves interact in a nonlinear way. For example, two or more waves can interact and
yield waves that are much taller than the sum of the original wave heights. Most of these shallow-water nonlinear
interactions look like an X or a Y or two connected Ys; at other times, several lines appear on each side of the
interaction region. It was thought that such nonlinear interactions are rare events: they are not. Here we report
that such nonlinear interactions occur every day, close to low tide, on two flat beaches that are about 2000 km
apart. These interactions are closely related to the analytic, soliton solutions of a widely studied multidimensional
nonlinear wave equation. On a much larger scale, tsunami waves can merge in similar ways.

DOI: 10.1103/PhysRevE.86.036305

The study of water waves has a long and storied history,
with many important applications including naval architecture,
oil exploration, and tsunami propagation. The mathematics of
these waves is difficult because the underlying equations are
strongly nonlinear and have a free boundary where water meets
air; there is no comprehensive theory. Here we report that X,
Y, and more complex shallow-water or long-wave nonlinear
interactions frequently occur on two widely separated flat
beaches and are not rare events, as was previously thought. In
fact, these X- and Y-type interactions can be seen daily, shortly
before and after low tide. These phenomena are closely related
to the analytical solution of a multidimensional nonlinear wave
equation that has been studied extensively since 1970 [1,2] and
is a generalization of an equation studied by Korteweg and de
Vries in 1895 [3], which gave rise to the concept of solitons [4].
From the universality of the underlying equation [5] and
the fundamental nature of these waves, it is expected that
similar X- and Y-type structures will be seen in many different
physical problems, including fluid dynamics, nonlinear optics,
and plasma physics.

I. BACKGROUND AND INTRODUCTION

Water waves have been studied by mathematicians, physi-
cists, and engineers for hundreds of years. While there are
many types of water waves, here we will discuss solitary waves
in shallow water; they are often called solitons and they have
unique properties. Solitary waves in fluids [6] and oceans [7]
are a major and active research area.

J. S. Russell, a naval architect, made the first recorded
observation of a solitary wave in the Union Canal, Edinburgh,
in 1834: a stopping barge set off a solitary wave that went along
the canal for one or two miles without changing its speed or its
shape [8]. He did experiments and found, among other things,
that the wave’s speed depends on its height; so he concluded
that it must be a nonlinear effect. J. Boussinesq [9] in the
1870s and D. Korteweg and his student G. de Vries [3] in 1895
derived approximate nonlinear equations for shallow water
waves. They found both solitary and periodic nonlinear wave
solutions to these equations; they also found that the speed is
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proportional to its amplitude—bigger waves move faster. So
Russell’s observations were quantitatively confirmed.

Between 1895 and 1960, solitary waves were mostly
studied by water-wave scientists, mathematicians, and coastal
engineers. In the 1960s, applied mathematicians developed
robust approximation techniques and found that the Korteweg—
de Vries (KdV) equation appears universally when there is
weak quadratic nonlinearity and weak dispersion [5]. In 1965,
Zabusky and Kruskal [4] found that the solitary waves of the
KdV equation have remarkable elastic interaction properties
and termed them solitons. Gardner, Greene, Kruskal, and
Miura [10] then developed a method for solving the KdV
equation with rapidly decaying initial data; this method has
been extended to many other nonlinear equations and is called
the inverse scattering transform (IST) [11,12]—such equations
are called integrable.

In 1970, Kadomtsev and Petviashvili [1] (KP) extended the
KdV equation to include transverse effects; this multidimen-
sional equation, like the KdV equation, is integrable [2]. Our
observations in this article are related to soliton solutions of
the KP equation that do not decay at large distances; these
interacting, multidimensional line soliton solutions can be
found analytically [11]. Before our observations, there was
only one well-known photograph of interacting line solitons
in the ocean and it was thought that such interactions are
rare events; it was taken in the 1970s in Oregon (Fig. 4.7b in
ref [11]) and is similar to Fig. 3. Since the KP equation has
other X, Y, and more complex line soliton solutions, we sought
and found ocean waves with similar behavior (Figs. 1-6).
Surprisingly, these X, Y, and more complex types of line
solitons appear frequently in shallow water on two relatively
flat beaches, some 2000 km apart. These freely propagating,
interacting line solitons are remarkably robust. While these
interactions are not stationary and so only last a few seconds,
a casual observer will be able to see them with the insights
provided in this article. Interestingly, in laboratory experiments
involving internal waves emanating from the interaction of
cylindrical wave fronts, Maxworthy [13, Fig. 11] reported an
X-type internal wave interaction; Weidman et al. [14] later
showed that the length of the stem in [13, Fig. 11] follows
a Hopf bifurcation when plotted against the intersection
angle.
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FIG. 1. (Color online) A plot and a photograph of an X-type
interaction. (a) A plot of an analytical line-soliton interaction solution
of the KP equation at# = O using (3) and (4). In this and the following
plots, we picked the k; and P; to be qualitatively similar to the
photograph in part (b). Here, ky =k, =1/2, P =—P, =2/3 so
e412 ~ 2.3, (b) Taken in Mexico on 31 December 2011; notice the
large amplitude of the short stem. (c) A 3d plot of the solution in
(a), which qualitatively agrees with (b); we only include one 3d plot
because the density plots show the interaction behavior clearly.

II. OBSERVATIONS

Single-line, solitary water waves are familiar to every beach
goer: they are localized in the direction of propagation and have
a distinctive, humplike wave profile. These waves break when
they are sufficiently large compared to the depth and they often
curve from transverse beach and bottom effects. We will focus
on interacting line solitons that form X, Y, and more complex
interactions.

It was thought that X-type ocean-wave interactions happen
infrequently. This is not the case: X- and Y-type ocean-wave
interactions occur daily, shortly before and after low tide on
relatively flat beaches. M.J.A. observed these interactions near
20°41'22"N, 105°17'44”"W in Nuevo Vallarta, Mexico, from
2009 to 2012 between December and April. D.B. observed
these interactions near 33°57’52”N, 118°27'35”W on Venice
Beach, California, in May 2012—about 2000 km away.
Figures 1-6 show a few of the thousands of photographs that
we took. The water depth where we saw these interactions was
shallow, usually between 5 and 20 cm; the beaches are long and
relatively flat; the interactions usually happen within 2 hours
before and after low tide; the cross-waves produced near a jetty
appear to help induce these interactions. We found that these
X- and Y-type interactions usually come in groups, which last

FIG. 2. (Color online) A plot and photographs of a Y-type
interaction. (a) k; = 1/2, k, =1, P, =3/4, P, = 1/4 s0 e*12 = 0.
(b) Taken in Mexico on 6 January 2010. (c) Taken in California on
3 May 2012.

a few minutes. We saw many X- and Y-type interactions each
day that we made observations; the relative frequencies of the
interactions were different at the two beaches—M.J.A. saw
X-type interactions like Fig. 1 more often than D.B. We also
saw more complex interactions, such as three line solitons
on one side of the interaction region and two line solitons
to the other side, which we will call a 3-in-2-out interaction;
these more complex interactions are much less frequent than
X- and Y-type interactions. Our observations indicate that X-
and Y-type interactions are remarkably robust: they typically
persist through bottom-depth changes, perturbations from
wind and spray, and sometimes even breaking.

We observed three types of X interactions: an interaction
with a short stem (Fig. 1), an interaction with a long stem
where the stem height is higher than the incoming line solitons
(Figs. 3 and 4), and an interaction with a long stem where the
stem height is lower than the tallest incoming line soliton
(Fig. 5). The amplitude of the short-stem X-type interaction
can be quite large in deeper water. Interestingly, the length of
the stem often increases as the depth decreases. Figure 2 shows
a typical Y-type interaction. A more complex interaction, with
three “incoming” and two “outgoing” segments, is shown
in Fig. 6.

When one knows what to look for and when and where
to look for them, X- and Y-type interactions are fairly easy
to observe. In addition to happening less frequently, more
complex interactions are harder to see because they are highly
non-stationary and have shorter interaction times than X- and
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FIG. 3. (Color online) A plot and photographs of an X-type
interaction with a longer stem. (a) ky =k, =1/2, P, =—1/4 —
1072, P, =3/4 so e*> ~ 51. (b) Taken in California on 2 May
2012 in shallower water than Fig. 1(b). (c) Taken in California on
4 May 2012.

Y-type interactions. Another difficulty is that most water waves
break before X- or Y-type interactions form; so sustained
observation may be needed. Along with the photographs here,
we have also taken many videos that show the development
and general dynamics of these waves; the readers can watch
some of these videos and see many more photographs at our
websites [15].

III. MATHEMATICAL DESCRIPTION
The KP equation [1],

ad 1 3 h? 1
a (—'7: + 0+ oy + _ynxxx> + Enyy =0, (1

Jeh 2h 2
is the two-space and one-time dimensional equation that
governs unidirectional, maximally balanced, weakly nonlinear
shallow water waves with weak transverse variation. Here,
subscripts denote partial derivatives, n = n(x,y,t) is the wave
height above the constant mean height A, g is gravity, y =
1 —1/3, T =T/(pgh?) is a dimensionless surface tension
coefficient, and p is density. When there is no y dependence,
the equation reduces to the KdV equation [3]. The KP equation
was first derived in the context of plasma physics [1] and was
later derived in water waves [16]. The sign of y is important:
there is “large” surface tension when y < 0 and this equation
is called KPI; there is “small” surface tension when y > 0
and this equation is called KPII. We can rescale (1) into the

FIG. 4. (Color online) A plot and photographs of an X-type
interaction with a very long stem. (a) k; =k, =1/2, P, = —P; +
10719 = 1/2s0e?2 &~ 5 x 10°. (b) Taken in Mexico on 28 December
2011 in shallower water than Fig. 3(b). (c) Taken in California on
3 May 2012.

nondimensional form [5]
(ul + 6uu, + uxxx)x + 3O"/‘yy =0, (2)

where u relates to the wave height n and o = =1 corresponds
to the sign of y.

For large surface tension, KPI has a lump-type solution that
decays in both x and y but has not yet been observed. Only
recently has a large-surface-tension one-dimensional soliton
been observed [17]; it satisfies the KdV equation and is a
depression from the mean height.

We will only discuss KPII here because surface tension is
small for ocean waves. The KPII equation has solutions with a
single phase, which we will call line solitons. We are interested
in the interactions of line solitons. These solutions can be found
by so-called direct methods [11]: special N-soliton solutions
of the KP equation can be written in the form [18]

3*Fy
ax2’
where Fy is a polynomial in terms of suitable exponentials.

This solution is convenient for finding the simplest such
solution: the first three are

3)

Uu=uy =

Fi=1+ em, =1+ e + e + e771+n2+A12’
Fa=1+ Z el + Z eNitnitA;
1<i<3 1<i<j<3
A Ap+A
+en1+nz+n3+ n+Ai+ 3 (4a)
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FIG. 5. (Color online) A plot and photographs of an X-type
interaction, where the stem has a lower rather than a higher amplitude.
@k =1,k =1/2,P,=1/2—10"7, P, =0soe*? ~ 5 x 1078,
(b) and (c) Taken in California on 3 May 2012.

where 11, = k;[x + P;y — (k2 + 30 PHr) + 0", k;, Py, 1
are constants, and

Ay _ (ki —k;)* — o (P; — P;)*

ki k)P — o (P — P

i<j.  (4b)

For KPII (where 0 = 1), u;, F corresponds to the simplest
one-line soliton, which is essentially one-dimensional. The
more interesting case of u,, F, corresponds to the interaction
of two-line-soliton waves. These interactions have distinct
patterns: when e42 = O(1), we get an X-type interaction
with a short stem (Fig. 1); when e4”2 > 1, we get an X-type
interaction with a long stem where the stem height is higher
than the incoming line solitons (Figs. 3 and 4); when e « 1,
we get an X-type interaction with a long stem where the
stem height is less than the height of the tallest incoming
line soliton (Fig. 5); and when e4”2 =0, we get a Y-type
interaction (Fig. 2). As mentioned earlier, the length of the
stem appears to be correlated to the depth of the water. Short
stems where e”12 = O(1) are usually found in much deeper
water than long-stem X- or Y-type wave interactions where
e > loret? « 1.

Recently, novel and exotic weblike structures for the KP
equation (N-in-M-out) have been found using Wronskian
methods [19,20] that go beyond the simplest “building block”
solutions of X- and Y-type line soliton solutions. Note also
that an N-in-M-out solution (where M < N) can be found by
starting with Fy and taking k; and P; such that ¥ = ... =
ey = ; Fig. 6 shows such a 3-in-2-out interaction. It was

FIG. 6. (Color online) A plot and photographs of a 3-in-2-out
interaction, where there are three line solitons on one side of the
interaction region and two line solitons on the other side. (a) k; = 1,
ky=2,ky=3, Pp=—-1/3, P, =-2/3, P, =—-5/3. (b) and (c)
Taken in California on 4 May 2012.

recently shown that these line interactions persist under the
next-order perturbations in the equations for water waves [21];
while the stem can be four times the height of the incoming
line solitons in the KP equation, it is less than four times the
height when higher order terms are included.

IV. X- AND Y-TYPE STRUCTURES
AND TSUNAMI PROPAGATION

Miles [22,23] first discovered that Y-type solutions could
be associated with the KP equation; he also related it to
“Mach-stem reflection,” the phenomenon that occurs in gas
dynamics. Interestingly, Wiegel [24] reported that the 1946
Aleutian earthquake induced tsunami caused a Mach-stem
reflection along the cliffs of the western edge of Hilo Bay in
Hawaii. Yeh et al. [25] revisited Mach-stem reflection in water
waves with an inclined bottom, both analytically in the context
of the KP equation and in a laboratory water-wave tank.

Recent observations of the 2011 Japanese Tohoku-Oki
earthquake induced tsunami indicate that there was a “merg-
ing” phenomenon from a cylindrical-wave-type interaction
[26] that significantly amplified the tsunami and its destructive
power. This effect is remarkably similar to the initial formation
of an X- or Y-type wave: while it is initially a linear
superposition effect, the interaction can be significantly mod-
ified or enhanced by nonlinearity after propagating to shore.
Moreover, for large distances (in the open-ocean direction)
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an earthquake-induced tsunami will propagate approximately
like the KP equation. So strong nonlinear effects from X- or
Y-type interactions can have serious effects for land much
further away; the destruction in Sri Lanka from the 2004
Sumatra-Andaman earthquake-induced tsunami is an example
of such a long-distance effect.

V. CONCLUSION

We reported that X- and Y-type shallow water wave
interactions on a flat beach are frequent, not rare, events. Casual
observers can see these fundamental wave structures once they

PHYSICAL REVIEW E 86, 036305 (2012)

know what to look for. Extensive ocean observations reported
here enhance and complement laboratory and analytical
findings. We expect that similar interactions will be observed in
many other fields—including fluid dynamics, nonlinear optics,
and plasma physics—because the leading-order equation here
is also the leading-order equation for many other physical
phenomena.
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