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Nonlinear diffusion effects on biological population spatial patterns
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Motivated by the observation that anomalous diffusion is a realistic feature in the dynamics of biological
populations, we investigate its implications in a paradigmatic model for the evolution of a single species density
u(x,t). The standard model includes growth and competition in a logistic expression, and spreading is modeled
through normal diffusion. Moreover, the competition term is nonlocal, which has been shown to give rise to
spatial patterns. We generalize the diffusion term through the nonlinear form ∂tu(x,t) = D∂xxu(x,t)ν (with
D,ν > 0), encompassing the cases where the state-dependent diffusion coefficient either increases (ν > 1) or
decreases (ν < 1) with the density, yielding subdiffusion or superdiffusion, respectively. By means of numerical
simulations and analytical considerations, we display how that nonlinearity alters the phase diagram. The type
of diffusion imposes critical values of the model parameters for the onset of patterns and strongly influences
their shape, inducing fragmentation in the subdiffusive case. The detection of the main persistent mode allows
analytical prediction of the critical thresholds.
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I. INTRODUCTION

Pattern formation in population dynamics has been studied
both experimentally and theoretically. In experiments, the
dynamics of insects and bacterial colonies, amongst others,
have been observed [1–5]. From the theoretical viewpoint,
mean-field descriptions render macroscopic or mesoscopic
approximations to describe the behavior of such complex
systems. To take into account spatial inhomogeneities, one
may construct a partial differential equation that rules the
temporal evolution of the population density u(�x,t), a function
of the spatial position �x and time t . Within this family of
models, a standard one was first introduced by Fisher [6]. It
consists of a reaction-diffusion equation, taking into account
growth and competition in the usual logistic form. Recently,
a generalization of the Fisher equation (FE) was introduced
[7–9], namely,

∂

∂t
u(�x,t) = D∇2u(�x,t) + u(�x,t)(a − bJ [u(�x,t)]), (1)

where D,a,b are positive parameters and J is a functional of
the density embodying nonlocality:

J [u(�x,t)] =
∫

�

f (�x,�x ′)u(�x ′,t)d �x ′. (2)

In the particular case f (�x,�x ′) = δ(�x − �x ′), the original (local)
FE is recovered. The introduction of the nonlocal form of
the competition term is motivated by the consideration that
products released in the environment by the individuals may
either harm or support neighbors’ growth. Interestingly, this
nonlocal component was shown to give rise to the formation of
steady spatial patterns [8]. Diverse variants have been studied
before. As influence functions f (�x,�x ′), square and smooth
forms have been considered [8,9]. Nonlocality in the reproduc-
tion rate [2], dimensionality [10], and fluctuation effects [11]
have been investigated too. In all those cases, however, spatial
spread was described by normal diffusion. Meanwhile, there
are indications that the spreading of biological populations is

not due to purely random motion but influenced by the density,
either to favor or to avoid crowding [12–14]. Hence dispersal
is guided by a state-dependent diffusion coefficient rather than
by a constant one.

An important class of generalized diffusion equations is
constituted by the porous media equation ∂tu = ∂xxu

ν , origi-
nally defined for ν > 1 [15]. Although it was later extended to
real ν > −1 [16], here we will restrict our analysis to ν > 0.
Nonlinear diffusion is ruled by a state-dependent diffusion
coefficient, proportional to uν−1, hence embracing the cases
where the coefficient either grows [17] or decreases [18] with
the density u. The generalization of Arrhenius law [19], the
performance of thermal ratchets [20], and other properties
such as aging [21] that arise under this kind of diffusion have
been studied before. Nonlinear diffusion equations in higher
dimensions [22] or even with space-fractional derivatives
[23] have been analytically solved. The nonlinearity leads
to anomalous diffusion [16]: either superdiffusion for ν < 1
or subdiffusion for ν > 1, recovering normal diffusion when
ν = 1. Microscopically, high density regions can slow down
(ν < 1) or intensify (ν > 1) individual displacements, as a
consequence of homophilic behaviors that rule the dynamics
of self-diffusion favoring, or not, the mobility among other
individuals. While ν < 1 reflects a reaction to sparseness (with
high diffusion coefficients where the density is low), on the
contrary, ν > 1 is associated with immobilization in poorly
populated regions.

We will analyze the effects of nonlinear diffusion on pattern
formation by considering the one-dimensional generalized FE
with nonlocal competition

∂

∂t
u(x,t) = D

∂2

∂x2
uν(x,t) + u(x,t)(a − bJ [u(x,t)]). (3)

Since alternative forms of the functional f (x,x ′) do not yield
substantially different results [8], we will restrict our analysis
to the case where f (x,x ′) is constant for x − w � x ′ � x + w,
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and zero otherwise, namely, f (x,x ′) = 1
2w

�(w − |x − x ′|),
where � is the Heaviside step function.

II. RESULTS

Numerical integration of Eq. (3) was performed by means
of a standard forward-time centered-space scheme with inte-
gration time step dt � 10−3 and width of spatial grid cells
dx � 0.1. We set periodic boundary conditions, with periodic
domain size L = 100. As initial condition we considered
small amplitude random perturbations either above the null
state or around the nontrivial homogeneous solution. We also
considered square pulses (with small random fluctuations)
with zero values everywhere else.

Typical long-time patterns, robust under changes in the
initial conditions here considered, are shown in Fig. 1. Notice
that, while the number of peaks is not affected by changing
ν, the form of the patterns becomes substantially different.
By increasing ν, the width (inverse concavity) of the crests
increases and the density at the valleys decreases, such that for
ν > 1 disconnected regions can arise.

Figure 2 shows the time evolution for ν = 4, starting with
small random values of the density u(x,0). It rapidly increases
for all x towards the level corresponding to the homogeneous
solution, u0 = a/b (t < 10), while patterns develop. After t =
100 no substantial changes are detected at the crests. Between
successive crests, the density tends to zero (exponentially fast
with time). This fragmentation or clusterization process [24]
yields isolated population groups (clusters). Therefore fluxes
between clusters are eliminated in the long-time limit. This
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FIG. 1. Long-time patterns obtained from numerical integration
of Eq. (3), with a = b = 1, L = 100, D = 0.1, w = 10, and different
values of ν indicated on the figure, in (a) linear and (b) logarithmic
scales. In the inset, the long-term profiles in the full grid are shown.
The profiles are plotted for t = 200, but they remain unchanged
after t � 100.
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FIG. 2. Time evolution of the density profile obtained from
numerical integration of Eq. (3) with a = b = 1, L = 100, D = 0.1,
w = 10, and ν = 4, represented for different times t indicated on
the figure, in (a) linear and (b) logarithmic scales. The thick line
corresponds to t = 200.

phenomenon is crucial in connection with “epidemic” spreads
within a population.

A. Stability analysis

To determine the stability conditions we follow the standard
procedure of considering a first-order perturbation around the
homogeneous solution u0 = a/b:

u(x,t) = u0 + ε exp(ikx + λkt), (4)

where ε is the perturbation initial amplitude, k is the wave
number, and λk is the exponential rate of temporal behavior.
Substituting Eq. (4) into Eq. (3) gives the dispersion relation

λk = −νDuν−1
0 k2 − a

sin(wk)

wk
, (5)

which generalizes the one obtained by Fuentes et al. [9].
Defining the nondimensional rate 	k ≡ λk

a
, Eq. (5) can be

rewritten in a single parameter form as

	k = −β(wk)2 − sin(wk)

wk
, with β ≡ νDuν−1

0

aw2
. (6)

Negative 	k means relaxation back to the uniform state.
Figure 3 depicts the dispersion relation in a typical case where
	k can take positive values allowing instability growth.

Even if the analysis at short times does not guarantee
the later evolution towards a stationary state, the mode with
largest growth rate k∗ (absolute maximum of the dispersion
relation 	k vs k) could play a crucial role. This mode will
excite other wavelengths though the coupling nonlinear term;
however, if they are damped, k∗ will remain selected and its
harmonics will shape the patterns. Substitution of the Fourier
series expansion u(x,t) = ∑∞

k=−∞ ck(t) exp(ikx) into Eq. (3),
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FIG. 3. Dispersion relation 	k = λk/a vs scaled k (solid line),
for β = 5 × 10−4. The dotted line corresponds to the term
− sin(wk)/(wk) and the dashed line to the zero line, drawn for
comparison. In the inset, we show the position of the first maximum k0

as a function of β ≡ νDuν−1
0 /(aw2). The vertical dotted line indicates

the instability threshold.

when ν = 1, leads to the following evolution equations for the
Fourier coefficients ck [9]:

dck

dt
= −Dk2ck + ack − b

∑
m

cmc̄k−m

sin mw

mw
. (7)

These equations are highly coupled through the last nonlinear
term. If ν 	= 1, there will still be an additional nonlinearity in
the first term of the right-hand side; anyway, let us consider the
case where the first term is very small, allowing the existence
of unstable modes. The amplitude of the mode corresponding
to the uniform state, c0, grows with rate a until stabilization,
as observed in numerical simulations, e.g., in the example of
Fig. 2 the level u0 = a/b = 1 is attained at times of order 1/a.
The mode with largest initial (positive) rate quickly develops
and keeps dominating at intermediate timescales. Notice in
Fig. 2 an almost perfect sinusoidal profile at time t � 20. If
a unique mode contributes to the sum in Eq. (7), it grows
with the rate given by Eq. (5) until stabilization, while the
remaining modes will be dumped. Actually a set of undamped
harmonics, characteristic of each value of ν, also persists to
shape the profiles. Typical Fourier spectra for the long-term
patterns are shown in Fig. 4. Although we do not have a
rigorous mathematical proof, we will see that numerical results
indicate that the dominant persistent mode, defining pattern
wavelength, is the fastest growing one at short times.

	k possesses infinite local maxima located at kn, n =
0,1, . . . . Since the absolute maximum is the first one, then
k∗ = k0 (see Fig. 3). In the inset of Fig. 3, k0 (numerically
obtained) is plotted as a function of β. For sufficiently small β,
	k is dominated by the last term in Eq. (6), yielding k0 = θ0/w

with θ0 � 1.43π . Figure 4 shows that the dominant mode of
long-time patterns is in good accord with k0.

Perturbations to the homogeneous solution vanish if 	k <

0. Since sin(wk) is bounded, then the instability condition
	k > 0 implies

β < (wk)−3. (8)
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FIG. 4. (Color online) Fourier spectra for the long-time patterns
shown in Fig. 1. The vertical dotted line indicates the position of the
dominant mode k0.

For the mode with largest growth, considering the approxima-
tion k0 = θ0/w � 1.43π/w, one has the instability condition

β ≡ νDuν−1
0

aw2
< θ−3

0 � (1.43π )−3. (9)

This is equivalent to requiring the positivity of the first maxi-
mum. Notice in the inset of Fig. 3 that k0 � 1.43π/w remains
a good approximation in the whole instability region, below
the threshold (vertical dotted line in the inset). Beyond this
point the maximum becomes negative, hence the homogeneous
solution recovers its stability for any wavelength. Equation (9)
defines the critical value βc ≡ θ−3

0 for the onset of patterns.
As intuitively expected, on the basis of the homogenizing

role of diffusion, the inequality in Eq. (9) indicates that the
diffusion constant cannot exceed a limiting value for the
perturbation to depart from the homogeneous state. In accord
with Eq. (9), in the limit D → 0, patterns are also observed.
Then, diffusion is not a necessary ingredient for the onset
of patterns but has a role in pattern shaping. Figure 5(a)
shows the density profiles that emerge for different values
of D in the normal case ν = 1. For D = 0 patterns are noisy
due to the lack of the smoothing effect of diffusion and the
amplitude is less uniform but the wavelength  is well defined.
Moreover, between bumps, the density tends to zero as in
the subdiffusive case of Fig. 2. The width of the bump at
zero height, 2x0, is also well defined. Beyond fluctuations, the
results are robust, at least under the types of initial conditions
analyzed. In the absence of diffusion, the steady state must
verify u(x)[a − bJ (x)] = 0, then either u(x) vanishes or its
integral within the interval (x − w,x + w) must adopt the
constant value a/b. The former case requires that the null
solution becomes stable in some regions. The latter requires
that each cluster does not see the neighbors and any point
in the cluster must be influenced by the full cluster. This
means that 2x0 � w �  − 2x0, which is verified in numerical
experiments.

For D = 10−5, patterns are still noisy at t = 100, but are
expected to smooth out at much longer times. In this case also
the density between crests goes to zero exponentially fast with
time, as can be seen in Fig. 5(b). In the case of the figure, the
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FIG. 5. (Color online) (a) Long-time patterns obtained from
numerical integration of Eq. (3) up to time t = 100, with a = b = 1,
ν = 1, w = 5, L = 100, and different values of D indicated on the
figure. In the inset, the profiles in the full grid are shown. In (b) the
time evolution for D = 10−5 is shown in logarithmic scale. Times are
indicated in the figure.

clusterization occurs for D � 10−3, while for larger values of
D not only the crests but also the valleys stabilize in a finite
value as time goes by. Then clusterization occurs for D below
a threshold value only. Note the resemblance of the noisy
profiles with those observed in experiments with bacteria [4].
But here clusters arise naturally, without imposing absorbing
or zero flux boundaries.

If D 	= 0, Eq. (9) predicts the existence of a minimal value
of the interaction range w required for pattern formation, with
all other parameters kept fixed. This critical value depends on
the kind of diffusion through the factors ν and uν−1

0 . Note also
that for ν 	= 1 there is an influence of u0 too, which is absent
in the normal case (ν = 1).

According to the hypothesis that k0 is the characteristic
wave number of the stationary pattern, and taking into account
that boundary conditions are periodic (i.e., an integer number
of wavelengths must accommodate to the size of the system L),
the number of maxima m is given (on average) by

m = k0L

2π
= θ0

2π

L

w
� 0.715

L

w
. (10)

Even in the cases when Eq. (10) gives an integer value,
it is expected to furnish the number of peaks observed in
the average. In practice, depending on the initial conditions,
the crests come out and grow accommodating its number
approximately to the rounded value of m. Fluctuations in the
effective m are larger the larger m or the further is m from an
integer value. For instance, in the example of Fig. 1, instead
of seven, eight crests are observed in some realizations, being
m � 7.15.

These observations can be verified through numerical
integration of the evolution equation. In Fig. 6, we show the
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FIG. 6. Number of maxima m as a function of the nonlocality
width w, for a = b = 1, L = 100, and D = 0.01, and different
values of ν indicated in the figure. The solid line corresponds to the
approximate theoretical relation (10) and the symbols to the outcomes
of numerical simulations.

number of maxima m of the patterns as a function of w together
with the theoretical prediction given by Eq. (10). An excellent
agreement between theoretical and numerical outcomes can
be observed. Then, in good approximation, the dominant
wavelength only depends on the relation L/w independently
of the remaining parameters. However, these parameters
determine pattern upraise through the critical value of β, given
by Eq. (9), and may also influence pattern shape. In particular,
on average, m does not depend on ν, as can be observed
in the example of Fig. 1. The wave number is preserved
in the limit D → 0, even if in approaching this limit more
and more modes become unstable (i.e., more local maxima
of 	k become positive), but the global maximum remains
approximately the same. Then, diffusion is not necessary
for pattern formation, nor does it influence the characteristic
wavelength.

Notice also that condition (9) indicates that, although
approximately the same number of maxima is expected
independently of ν, there are critical thresholds νc beyond
which no patterns occur. This is illustrated in Fig. 7 for the
case a = b = 1, for which νc = w2/(Dθ3

0 ).
When diffusion is anomalous, u0 = a/b is also determinant

of pattern formation. How the phase diagram is altered by
changes in u0 is illustrated in Fig. 8. The shadowed area
represents the region where no patterns emerge when u0 = 1.
For other values of u0, only the frontier is shown. For u0 � 1,
the critical curve increases monotonically with ν, such that
only small ν (superdiffusion) allows pattern formation for a
given interaction range w, when the remaining parameters are
kept fixed. However, the monotonic behavior of the critical
curve is broken when u0 < 1. Thus, for low values of w there
is also an upper critical value of ν for the onset of patterns, but
for large w, patterns occur for any ν.

B. Patterns shape

Although the characteristic mode does not depend on ν, its
amplitude does. This is shown in Fig. 9 where the amplitude

036215-4



NONLINEAR DIFFUSION EFFECTS ON BIOLOGICAL . . . PHYSICAL REVIEW E 86, 036215 (2012)

ν
0 1 2 3 4 5

m

0

20

40

60

80

100

w = 1
w = 2

FIG. 7. Number of maxima m as a function of ν for two different
values of w indicated in the figure, with a = b = 1, L = 100, and
D = 0.01. Dashed lines correspond to the theoretical prediction given
by Eq. (10), with the additional condition (9), defining a critical value
νc beyond which no patterns occur (we set m = 0 in such case).

�u = umax − umin obtained from numerical simulations is
represented as a function of w for different values of ν.

For vanishing w we recover the local case f (x,x ′) =
δ(x − x ′) in which no patterns emerge, as supported by
numerical simulations. In agreement with Eq. (9), there is
a critical value wc, at which the amplitude vanishes. Notice
the abrupt decay of the amplitude at the critical value.
This threshold was not detected in previous works dealing
with normal diffusion possibly because of the range of
parameters used. For instance, in Ref. [8], wc/L would be
of the order of 10−3. The critical value wc decreases with ν,
indicating that a shorter influence range w is required when
the dispersion passes from subdiffusive to superdiffusive. Then
superdiffusion favors pattern formation and the amplitude of
the patterns is larger. For w = L/2 (or its multiples), the
nonlocal term becomes J [u(x,t)] = J (t), which follows the
equation dJ/dt = (a − bJ )J . Then, in the long-time limit

ν
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FIG. 8. Phase diagram of pattern formation in the νw plane, for
u0 = 1, following Eq. (9). Shadowed is the region where no patterns
arise. The lines show the frontier of the phase diagram for other
values of u0 = a/b. Patterns emerge for w > wc (above the critical
line). Parameter values are L = 100, D = 0.01, and a = 1.
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FIG. 9. Pattern amplitude �u ≡ umax − umin as a function of the
interaction width w, for a = b = 1, L = 100, D = 0.01, and different
values of ν indicated in the figure. The dotted lines are a guide to the
eyes; the vertical ones indicate the critical value predicted by Eq. (9).

J → u0, implying that the homogeneous state should also be
attained in this extreme case.

Furthermore, ν can have strong effects on patterns shape. As
depicted in Fig. 1, subdiffusion (ν > 1) induces fragmentation
(clusterization). Solutions that vanish outside a finite support
are typical of nonlinear subdiffusion [12]. In the opposite
case ν < 1 (superdiffusion), the effects are not so striking
concerning pattern shape, for moderate values of the diffusion
coefficient. The region between crests assumes larger values
the smaller ν. Fragmentation also emerges for any kind of
diffusion when D is small enough (as discussed in connection
to Fig. 5) or also if w becomes large enough (not shown). The
shape of the clusters depends on ν. Their amplitude decays
and their width increases as ν increases.

It is noteworthy that the distance between crests (wave-
length),  = L/m � 1.4w, is larger than the interaction range
w; however, if the cluster size 2x0(w) is large enough, there can
be an influence of one cluster over the two neighboring ones.
When clusters are disconnected, 2x0 �  − w = 0.4w means
that one cluster does not influence the neighbors. Otherwise
they do, even if disconnected.

III. FINAL REMARKS

Nonlinear diffusion is expected in the spreading of biologi-
cal populations rather than normal diffusion, hence motivating
the introduction of a state-dependent diffusion coefficient, as in
Eq. (3). We have shown how pattern formation is altered in the
presence of anomalous diffusion. Moreover, in all cases, the
initially fastest growing mode remains selected at longer times.
This observation allows one to obtain theoretical predictions
that we verified through numerical integration of the evolution
equation.

Then, it is clear that diffusion is not a necessary ingredient
for the onset of patterns, nor does it have an impact on the char-
acteristic wavelength, which depends only on the interaction
range w. Furthermore, diffusion imposes a critical threshold
of the model parameters for pattern formation. The type of
diffusion regime has an impact on patterns shape, even if the
characteristic mode is kept unchanged. An important qualita-
tive change in the shape of patterns occurs mainly for ν > 1, in
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which case fragmentation of the population is induced. This ef-
fect is also observed for very small diffusion constant D and/or
large interaction width w. The occurrence of fragmentation
may have important consequences in disease dissemination
and other spreading processes triggered by contacts between
individuals. Superdiffusion (ν < 1) facilitates pattern forma-
tion, which can occur even for shorter interaction width w and
manifests larger amplitudes than in normal diffusion.

Beyond the initial motivation of introducing nonlinear
diffusion to the nonlocal FE, we uncovered aspects that apply

also to the normal diffusion case previously studied. The
identification of the main mode selected at long times allows
one to perform analytical predictions, which may be extended
to tackle other variants of the model.

ACKNOWLEDGMENTS

We are grateful to Welles A. M. Morgado for useful
discussions. We acknowledge partial financial support from
CNPq and Capes (Brazilian Government Agencies).

[1] T. E. Woolley, R. E. Baker, E. A. Gaffney, and P. K. Maini, Phys.
Rev. E 84, 046216 (2011).

[2] J. A. R. da Cunha, A. L. A. Penna, and F. A. Oliveira, Phys. Rev.
E 83, 015201 (2011).

[3] R. F. Costantino, R. A. Desharnais, J. M. Cushing, and B. Dennis,
Science 275, 389 (1997).

[4] N. Perry, J. R. Soc., Inteface 4, 379 (2005).
[5] L. Giuggioli and V. M. Kenkre, Physica D 183, 245

(2003).
[6] R. A. Fisher, Ann. Eugen. 7, 355 (1937).
[7] V. M. Kenkre and M. N. Kuperman, Phys. Rev. E 67, 051921

(2003).
[8] M. A. Fuentes, M. N. Kuperman, and V. M. Kenkre, Phys. Rev.

Lett. 91, 158104 (2003).
[9] M. A. Fuentes, M. N. Kuperman, and V. M. Kenkre, J. Phys.

Chem. B 108, 10505 (2004).
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