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We study the dynamics of the classical and quantum mechanical scattering of a wave packet from an oscillating
barrier. Our main focus is on the dependence of the transmission coefficient on the initial energy of the wave
packet for a wide range of oscillation frequencies. The behavior of the quantum transmission coefficient is
affected by tunneling phenomena, resonances, and kinematic effects emanating from the time dependence of
the potential. We show that when kinematic effects dominate (mainly in intermediate frequencies), classical
mechanics provides very good approximation of quantum results. In that frequency region, the classical and
quantum transmission coefficients are in optimal agreement. Moreover, the transmission threshold (i.e., the
energy above which the transmission coefficient becomes larger than a specific small threshold value) is found to
exhibit a minimum. We also consider the form of the transmitted wave packet and we find that for low values of
the frequency the incoming classical and quantum wave packet can be split into a train of well-separated coherent
pulses, a phenomenon that admits purely classical kinematic interpretation.
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I. INTRODUCTION

The agreement between quantum and classical mechan-
ics, usually referred to as quantum-classical correspondence
(QCC) is a subject that has intensively been studied in a
large variety of systems. In the semiclassical limit, classical
mechanics is a useful tool for the study of quantum systems,
especially in the case where ab initio quantum calculations
are lengthy and cumbersome [1,2]. It is therefore important to
know under which circumstances a quantum system may be
adequately described by classical mechanics. The majority of
works on QCC have been devoted to bound or semibound
systems with static potentials, and less attention has been
devoted to scattering systems [3–5] as well as to systems with
time-dependent potentials [6,7]. The behavior of such systems
cannot be fully attributed to the shape of the potential, as
kinematic effects may play an important role [8,9].

The aim of the present work is to study QCC in a simple
time-dependent system with the presence of kinematic effects.
In particular, we study the scattering of classical and quantum
wave packets off a one-dimensional barrier whose position
oscillates laterally and harmonically with time. The problem
of a charged particle interacting with a static potential barrier in
the presence of an oscillating electric field, can be transformed
to that of a particle interacting with an oscillating potential
barrier, by means of the Kramers-Henneberger transformation
[10–12]. The interest in the behavior of driven barrier systems
has been renewed due to the effect of quantum charge pumping,
according to which, in systems of mesoscopic scale subject
to an ac driving, a dc current can be generated even at zero
bias [13–16].

A commonly used approach for the quantification of QCC
is the construction of a phase space representation of quantum
mechanics and the comparison of the evolution of classical
and quantum densities in phase space [17–20]. Such represen-
tations, based on the Wigner and Husimi phase space densities,
elucidate the effects of classical phase space on the quantum

evolution. However, in most cases of practical interest, the
agreement between classical and quantum mechanics is con-
sidered with respect to specific observables, such as ionization
or dissociation rates [21–24], tunneling probabilities [25],
dwell times [3], etc.

In the case of scattering from barriers, the most widely
used observable in both classical and quantum approaches is
the transmission coefficient. For a static barrier, the classical
transmission coefficient as a function of the energy E of the
particles exhibits the form of a step function: it is zero for E <

V0 and unity for E > V0, where V0 is the height of the barrier.
Nevertheless, if classical wave packets (i.e., ensembles of
orbits) are considered, the transmission coefficient can become
a continuous function of the mean energy, as is the case in quan-
tum mechanics. This occurs when the classical wave packet
is broad enough in momentum space to include orbits with
energies larger than the height of the barrier. Introducing time
dependence, by means of the lateral oscillation of the barrier,
will in general enhance the transmission since particles with
E < V0 can be transmitted if the energy corresponding to their
relative motion with respect to the barrier is greater than V0.

The transmission of wave packets through a laterally
harmonically oscillating barrier exhibits very interesting prop-
erties and has been studied in several works, mainly in the
framework of quantum mechanics [26–32]. It has been found
that for high driving frequencies, the transmission coefficient
exhibits peaks at energies well below the barrier height.
These peaks correspond to resonances, which are associated
with quasistable bound states of the effective time-averaged
potential [28,29]. For intermediate frequencies, inelastic pro-
cesses dominate the scattering dynamics and strong sidebands
appear in the energy spectrum [28]. Recently, the classical
mechanics of the system has been extensively studied [30,33].
In particular, it has been found that at high driving frequencies,
the system exhibits dynamical trapping, which is associated
with the existence of a stable island in phase space. As
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a consequence, the system exhibits nonhyperbolic chaotic
scattering as well as stickiness of scattering trajectories in
the vicinity of the stable island. The transmission of wave
packets through an oscillating barrier has been studied both
in the context of classical and quantum mechanics. In such
systems, the oscillation frequency introduces an additional
time scale and its influence on the QCC is an open question,
which we attempt to address in the present work. Moreover,
it is interesting to investigate whether classical characteristics
other than phase space structures have an influence in the
quantum mechanics. Such characteristics as kinematic effects
are investigated in the present work and are shown to play an
important role in the dynamics of a time-dependent system in
the absence of phase space structures.

More specifically, in the present work, we compare classical
and quantum dynamics for several values of the driving
frequency, focusing mainly on the effects that are induced
by kinematics rather than by the underlying classical phase
space. Our study is centered on the following points.

(i) We compare the classical and quantum transmission
coefficient as a function of the incoming wave-packet energy
for several values of the driving frequency. We find that
classical and quantum mechanics exhibit a good quantitative
agreement in an intermediate range of frequencies where
kinematic effects dominate. Moreover, in this frequency range,
the relatively small differences between classical and quantum
mechanics can be interpreted, at least at a qualitative level,
using mainly classical kinematic arguments. On the contrary,
at low and high frequencies classical and quantum behaviors
deviate due to the presence of quantum phenomena such as
tunneling and resonances.

(ii) We study the form of the transmitted part of the wave
packet as a function of the driving frequency. It is found that
in a region of the parameter space, the incoming wave packet
can be split to form a train of distinct coherent pulses. This
phenomenon appears in both classical and quantum mechanics
and we show that it admits a purely classical interpretation.
The dependence of this phenomenon on the parameters of the
system as well as its possible applications and experimental
realizations are also investigated.

Both phenomena investigated in this work (QCC in the
transmission coefficient and in the formation of coherent pulse
trains) can be interpreted using classical kinematic arguments
rather than phase space effects.

The remainder of the present paper is organized as follows.
In Sec. II we describe our model system and the methodology
of our study. In Sec. III we present the study of the classical
and quantum transmission coefficients. In Sec. IV we describe
the formation of coherent pulse trains. Finally, in Sec. V we
summarize our findings.

II. SYSTEM AND METHODOLOGY

Our system consists of a particle of mass m interacting
with a laterally oscillating repulsive potential barrier. The
oscillation of the barrier is harmonic with amplitude A and
the system is described by the Hamiltonian

H (x,p,t) = p2

2m
+ V [x − A sin(ωt)], (1)

FIG. 1. The oscillating barrier at its equilibrium position (solid
line) and its extremal positions (dashed line). The boundaries of the
interaction region are shown with the dotted line.

where V (x) has been chosen to have the form of a rectangular
barrier of height V0 and width equal to α (see Fig. 1)

V (x) =
{
V0, 0 < x < α

0, x � 0 and x � α
. (2)

The problem of a charged particle interacting with a static
potential barrier in the presence of a spatially uniform alternat-
ing electric field, as mentioned above, can be transformed, by
means of the Kramers-Henneberger transformation [10–12],
to that described by the Hamiltonian (1), with

A = qE
mω2

, (3)

where q is the charge of the particle, E is the amplitude of the
electric field, and ω is the frequency of the field oscillation.

We will mainly use the following values of the parameters:
A = 200 a.u., α = 80 a.u., V0 = 0.0147 a.u., and m = 0.1 a.u.
These values of the parameters are adapted to the conditions
of electron transmission from a AlGaAs-GaAs structure in the
presence of a laser field [34,35]. We study the transmission
of classical and quantum wave packets from the oscillating
potential barrier. For the study of classical wave packets,
we use as initial conditions ensembles of orbits having
positions and momenta that follow Gaussian probability
distributions. These initial conditions are integrated forward
in time by solving Hamilton’s equations. For the study of the
quantum wave packets, we use Gaussian wave packets and
we solve the time-dependent Schrödinger equation using the
Crank-Nicolson finite difference scheme combined with mask
functions in order to avoid artificial reflections of the wave
packets at the boundaries of our spatial grid [36–38].

III. CLASSICAL AND QUANTUM TRANSMISSION
COEFFICIENT

In this section we discuss our calculations of the classical
and quantum mechanical transmission coefficient. At the
quantum level, our initial state is a gaussian wave packet,
which is broad in position space (σx = 5000 a.u.) and, as a
consequence, narrow in momentum space. Its center at t = 0 is
located at the position x0 = −A − 3σx (i.e., the right tail of the
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wave packet is at the left boundary of the interaction region),
which is defined as the region in which the particles can
interact with the oscillating potential (see Fig. 1). At the
classical level, we evolve in time an ensemble of initial
conditions having the same probability density in phase space
with the quantum wave packet

ρ(x,p,t = 0) = 1√
2πσx

e
− (x−x0)2

2σ2
x

1√
2πσp

e
− (p−p0)2

2σ2
p , (4)

where p0 is the initial mean momentum of the wave packet.
We use minimal uncertainty wave packets (i.e., σxσp = 1

2 ).
We define a driving frequency ωI as

ωI =
√

2V0

mA2
. (5)

For ω = ωI , the barrier can be penetrated even from a particle
at rest, colliding with the barrier when the phase of its
oscillation is equal to π . In our system, for the values of
the parameters chosen, ωI � 2.7 × 10−3 a.u. In the following,
we will refer to the frequency range where ω � ωI as
intermediate-frequency range, whereas frequencies for which
ω � ωI and ω � ωI will be referred to as low and high
frequencies respectively. Initially, we present the results for
the transmission coefficient for three values of the oscillation

frequency, namely ω = 3 × 10−4 a.u., ω = 3 × 10−3 a.u., and
ω = 3 × 10−2 a.u., as a function of the mean initial energy
of the wave packet. These values of the frequency are in the
low-, intermediate-, and high-frequency ranges as have been
previously defined. Our results are shown in Fig. 2, along with
those for the static barrier.

In the case of the classical wave packet interacting with
the static barrier, the transmission coefficient is a smooth
function of the energy [see the dotted line in Fig. 2(a)].
As discussed before, this occurs because a wave packet,
even if its expectation value of the energy is smaller than
the barrier height V0, can include orbits with energy larger
than V0. Assuming a Gaussian distribution for the momenta,
the transmission coefficient of a wave packet with mean
momentum P is given by

T (P ) = 1√
2πσp

∫ ∞
√

2mV0

exp

[
− (p − P )2

2σ 2
p

]
dp, (6)

where the mean momentum P and mean energy E are related
by

E = P 2 + σ 2
p

2m
. (7)

FIG. 2. Classical (open circles) and quantum (solid circles) transmission coefficient as a function of the energy of the incoming wave packet
for three frequency values, namely (a) ω = 3 × 10−4 a.u., (b) ω = 3 × 10−3 a.u., and (c) ω = 3 × 10−2 a.u. The classical (dotted line) and
quantum (dashed line) transmission coefficients for the static barrier are also shown.
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In our case, since the wave packet is very narrow in momentum
space, the classical transmission coefficient increases rapidly
for E � V0 and the result shown in Fig. 2(a) (dotted line) is
close to a step function. The corresponding quantum curve
(dashed line) is smoother due to quantum tunneling and
interference.

From Fig. 2 we observe that, in general, the increase of the
driving frequency leads to an overall enhancement of trans-
mission, due to the increase of the mean energy of the motion
of the particles with respect to the barrier. Nevertheless, apart
from this general trend, the dependence of the transmission
coefficient on the frequency and on the incident energy is more
complicated. Interestingly, we observe that the agreement be-
tween classical and quantum mechanics is better in the case of
the intermediate frequencies [see Fig. 2(b)]. In that case there
is very good qualitative agreement almost in the whole range
of the energies considered and a relatively good quantitative
agreement: the sum of the squares of the quantum-classical
differences of the transmission coefficient is 0.49 whereas for
the low and high frequency the corresponding values are 4.16
and 1.15 respectively. At low frequencies [see Fig. 2(a)], for

FIG. 3. Contour plots of the (a) classical and (b) quantum
transmission coefficients as a function of the energy E of the in-
coming wave packet and of the frequency of the oscillation ω. The
height of the potential barrier is shown as a solid vertical line. The
horizontal dashed lines correspond to frequencies log10 ω = −2.5
and log10 ω = −3.5 (see text).

energies below the onset of classical transmission, tunneling
leads to a nonvanishing quantum transmission coefficient,
whereas for larger energies transmission is suppressed due
to quantum interference. In the case of high frequencies [see
Fig. 2(c)], the quantum transmission coefficient exhibits four
peaks that are not apparent in the corresponding classical
calculation. Such peaks have been reported and explained
in Ref. [29]. The explanation is based on the fact that at
the limit of high frequencies, the scattered particle feels an
effective static potential, which is the time average of the
oscillating potential and in our case it has the form of a double
barrier. The peaks correspond to resonances in the double
barrier.

In order to determine in more detail the region of frequen-
cies ω and incident energies E in which the agreement between
classical and quantum mechanics is optimal, we perform a
calculation of the classical TC and quantum TQ transmission
coefficients in a two-dimensional grid of E and ω values. We
have used 60 values for the frequency and 90 values for the
energy resulting in a 60 × 90 grid on the ω-E plane. The results
are shown in Fig. 3. We have also calculated the difference
between the classical and the quantum transmission coefficient
�T = TC − TQ shown in Fig. 4. From Fig. 3 we observe that
the classical and quantum transmission coefficients exhibit,
at least qualitatively, a very similar behavior as a function of
E and ω. A more quantitative description, given in Fig. 4,
shows transparently that there is good agreement between
classical and quantum mechanics in a broad region of the (E,ω)
plane while discrepancies occur in certain frequency regions.
More specifically, in the low-frequency region (log10 ω <

−3.5), the discrepancy is enhanced at energies close to V0

and is due to quantum tunneling and interference, whereas in
the high-frequency region (log10 ω > −2.5), the discrepancy
occurs at low energies. In this energy region resonances occur,
and are due to the formation of a time-averaged potential
having the form of a double barrier. In the intermediate-
frequency region (−3.5 < log10 ω < −2.5) the agreement

FIG. 4. Contour plot of the difference between the classical and
the quantum transmission coefficient �T = TC − TQ as a function of
the energy E of the incoming wave packet and of the frequency of the
oscillation ω. The height of the potential barrier is shown as a solid
vertical line. The horizontal dashed lines correspond to frequencies
log10 ω = −2.5 and log10 ω = −3.5 (see text).
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FIG. 5. The difference between the classical and quantum trans-
mission coefficients �T = TC − TQ as a function of the energy E of
the incoming wave packet for ω = 3 × 10−3 a.u.

between classical and quantum mechanics is optimal almost
in the whole energy range considered.

Despite the overall optimal quantum-classical agreement
in the intermediate-frequency region, there are differences
between the classical and quantum mechanics that can be
attributed to kinematic effects. The difference between the
classical and quantum transmission coefficients �T = TC −
TQ as a function of the energy of the incoming wave packet
is shown in Fig. 5. In that plot we have extended the energy
range to 0.08 a.u. as at this value of the energy the classical
transmission coefficient is 1 and the quantum transmission
coefficient approaches this value. In the following we will
give a brief kinematic interpretation of the differences between
the classical and quantum transmission coefficients in the
intermediate-frequency regime.

In the intermediate-frequency region, although there are no
structures in phase space and as a consequence no dynamical
trapping of the orbits, there is a significant fraction of
orbits exhibiting more than two collisions. One such orbit
is illustrated in the x-t diagram of Fig. 6, where the orbit is
represented by joined linear segments and the boundaries of the

FIG. 6. Schematic representation on the x-t plane of an orbit
exhibiting five collisions with the oscillating barrier for ω = 3 ×
10−3 a.u. and E = 0.026 67 a.u. The orbit is represented as joined
linear segments and the boundaries of the barrier as sinusoidal curves.
The points of impact are denoted with black dots.

FIG. 7. �ρ = ρ>2,t − ρ>2,r (solid line) and �T = TC − TQ

(dashed line) as a function of the energy of the incoming wave packet
for ω = 3 × 10−3 a.u.

barrier as sinusoidal curves. Qualitatively, due to interference
effects, the presence of parts of the wave packet with many
collisions that are finally transmitted, leads to a reduction of
the quantum transmission coefficient compared to its classical
value. Conversely, the presence of parts of the wave packet with
many collisions that are finally reflected leads to an enhance-
ment of the quantum transmission coefficient compared to its
classical value. For convenience let us denote as ρ>2,t and ρ>2,r

the fraction of the total orbits with more than two collisions that
are transmitted and reflected respectively. Following the above
qualitative line of thinking, the difference �ρ = ρ>2,t − ρ>2,r

should be a measure of the difference between the classical and
quantum transmission coefficient: increased ρ>2,t will enhance
classical over quantum transmission whereas increased ρ>2,r

will enhance quantum over classical transmission. This is
indeed true, as can be seen from Fig. 7, where �ρ is plotted on
the same axes with �T = TC − TQ. From that figure it can be
seen that a purely kinematic measure, namely the difference
�ρ = ρ>2,t − ρ>2,r , describes quite accurately—except for
the purely quantum resonance oscillations—the differences
between the classical and quantum transmission coefficients.

In the region of intermediate frequencies, apart from the
enhancement of the agreement between classical and quantum
mechanics, there is a significant lowering of the transmission
threshold (i.e., the energy above which the transmission
coefficient acquires a significant value). In order to illustrate
this fact, we calculate the classical and quantum transmission
threshold ET , defined as the energy at which the transmission
coefficient acquires for the first time the value 10−3. The
results are shown in Fig. 8. From this figure it becomes
obvious that ET exhibits a minimum in both classical and
quantum mechanics. Moreover, the frequency corresponding
to this minimum (ω � 3 × 10−3 a.u. in classical mechanics
and ω � 6 × 10−3 a.u. in quantum mechanics) is located in the
intermediate-frequency region, in which classical and quantum
mechanics are in better quantitative agreement.

The effect of the lowering of the transmission threshold
as the frequency increases from the low- to the intermediate-
frequency region admits a purely classical kinematic inter-
pretation. In the range of intermediate frequencies (ω � ωI ),
particles with low energy can interact with the barrier at a
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FIG. 8. Classical (open circles) and quantum (solid circles)
transmission thresholds ET as a function of the oscillation frequency.

phase close to π , leading to the observed small transmission
threshold, since in this case the kinetic energy of the particle
relative to the barrier is close to its maximal value. This
fact is illustrated in the x-t diagram of Fig. 9(b), where the
wave packet is represented as a bundle of initially straight
lines and the boundaries of the barrier as sinusoidal curves.
This figure corresponds to ω = 3 × 10−3 a.u. and E = 2 ×
10−3 a.u. The phases of the barrier for which transmission
occurs are indicated with thick solid lines. At this point we

should note that there are oscillation phases inaccessible to
the scattered particle. This occurs when the velocity of the
incoming particles is smaller than the maximum velocity
of the barrier. The above effect that explains the reduced
transmission threshold in the range of intermediate frequencies
does not apply in the case of high and low frequencies. In
the high-frequency case, particles interact with the barrier at
a phase close to 3π/2, as shown in Fig. 9(c), and typically
exhibit several collisions with the oscillating barrier. In the
low-frequency case, the corresponding x-t diagram is shown
in Fig. 9(a). In this case, all phases of the oscillating barrier are
accessible to the scattered particle. However, at this value of
the energy the transmission of particles is not allowed, since
the maximum kinetic energy of the particles relative to the
barrier is smaller than V0.

Regarding the classical phase space of the system, it has
been shown that in the high-frequency region it exhibits mixed
dynamics: it possesses a central island of stability centered
on a periodic orbit, a structure of Kolmogorov-Arnold-Moser
(KAM) islands and a thin layer of chaotic motion around them
[30,33]. It has been found that the central island appears for
ω � 3.3 × 10−3 a.u.(log10 ω � −2.48). As it can be seen from
Fig. 4 (upper left part of the graph), this frequency is very close
to that above which classical-quantum disagreement occurs.
Although the stable manifolds of the chaotic invariant set
extend well outside the interaction region [30,33], the fraction

FIG. 9. Representation on the x-t plane of a part of a wave packet (bundle of initially straight lines) with E = 2 × 10−3 a.u. interacting
with a laterally harmonically oscillating barrier (region between two sinusoidal curves) oscillating with frequency (a) ω = 3 × 10−4 a.u.,
(b) ω = 3 × 10−3 a.u., and (c) ω = 3 × 10−2 a.u. In (b) the phases of the barrier for which transmission occurs are indicated with thick solid
lines.
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FIG. 10. The classical (solid line) and quantum (dotted line) time-dependent transmission coefficient for ω = 6 × 10−4 a.u. and
(a) E = 0.03 a.u. and (b) E = 0.013 a.u.

of particles influenced by them is not statistically significant
so as to induce structures (such as peaks or oscillations) in the
classical transmission coefficient, unless a fine tuning in the
initial conditions is made.

IV. FORMATION OF COHERENT PULSE TRAINS

In this section we will study QCC in an observable related
to the space-time evolution of the scattered wave packet. More
specifically, we focus our study on the form of the transmitted
wave packet in space. The initial wave packet is the same as in
the previous section and the frequency of the barrier oscillation
is ω = 6 × 10−4 a.u. In the following, we will study the time-
dependent transmission coefficient, which is defined as the
fraction of the initial wave packet that has been transmitted at
time t

T (t) =
∫ ∞

A+α

|�(x,t)|2dx. (8)

At the limit t → ∞, T (t) tends to the usual transmission
coefficient. We have found that T (t) can in general exhibit
two distinct behaviors: it can either be a smoothly increasing
function of t or it can exhibit an interesting steplike structure.
Two such representative cases are shown in Figs. 10(a)
and 10(b) for incident wave packet energies E = 0.03 a.u.
and E = 0.013 a.u. respectively. The steplike structure, on
which we will focus in the following, appears at both classical
and quantum levels. In this case the transmitted wave packet
splits to a series of well separated pulses. This is displayed
in Fig. 11, which shows the time evolution of the classical
and quantum probability distributions for the transmitted wave
packet. For t = 53 600 a.u., the initial wave packet, after its
interaction with the oscillating barrier, has been split into four
narrower and well separated pulses. For t = 120 300 a.u. the
pulses are still well separated [i.e., this splitting effect persists
for time intervals much larger than the oscillation period (T =
2π
ω

� 10 472 a.u.) and for regions far from the boundaries of
the interaction region]. For longer times, the train of the four
pulses loses its initial shape. This is mainly due to the fact

FIG. 11. Snapshots of the time evolution of the (a) classical and (b) quantum probability distribution of the transmitted wave packet for
ω = 6 × 10−4 a.u., E = 0.013 a.u., and four values of time, namely t = 53 600 a.u., t = 120 300 a.u., 190 400 a.u., and t = 257 100 a.u.
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FIG. 12. (a) Schematic representation on the x-t plane of a part of a wave packet (bundle of initially straight lines) interacting with a
laterally harmonically oscillating barrier (region between two sinusoidal curves). The right boundary of the interaction region is shown with a
dashed line. (b) Schematic representation of the regions A, B, C: the orbits in region A are transmitted whereas the orbits in regions B and C
are reflected (see text).

that the pulses spread in position space due to the broadness
of their momentum distribution (dispersion). Moreover, at
the quantum level, quantum interference also contributes to
the loss of the peaked structure of the pulse train. This can
be seen in Fig. 11 where for t = 257 100 a.u. the quantum
probability density has almost lost its peaked structure whereas
the classical probability density still retains four distinct peaks.
Moreover, by performing a Fourier transform of the four pulses
as they exit the interaction region, we find that their spectra
are almost identical (i.e., the pulses are coherent).

The splitting of the incident wave packet into distinct
pulses admits a purely classical kinematic interpretation. In
the parameter region where the splitting occurs, three distinct
dynamical behaviors for the orbits of the particles can occur
depending on the phase of the barrier at the instant of the
collision. In Fig. 12(a) a representation of the wave packet
motion in a x-t diagram is shown. The regions marked as A, B,
and C in Fig. 12(b) correspond to the three distinct dynamical
behaviors. The orbits of region C do not have enough kinetic
energy (relative to the barrier) to overcome its height and
therefore they are reflected. For these orbits

(v0 − vb)2 <
2V0

m
, (9)

where v0 = √
2E/m is the velocity of the particle before the

collision and vb is the velocity of the barrier at the instant of
the collision. In contrast to the orbits of region C, for the orbits
of regions A and B the condition

(v0 − vb)2 >
2V0

m
(10)

is fulfilled and the particles enter the barrier. However, some
of these orbits (region B), after their collision with the barrier,
do not have enough energy to reach the right boundary of
the barrier and they collide for a second time with the left
boundary. These orbits are finally reflected as well. There is
therefore a time interval during which no particles reach the
right boundary of the interaction region (x = A + α), shown
with a dashed line in Figs. 12(a) and 12(b). A single pulse
in the transmitted wave packet corresponds to a period of the
oscillation and therefore contains a succession of regions A,

B, C in the incident wave packet. The wider the wave packet in
position space is, the more pulses appear after its interaction
with the oscillating barrier.

The existence of the regions A, B, C and the occurrence
of the pulse-splitting effect depend on the parameters of the
system. In order for T (t) to exhibit steps and, as a consequence,
the incoming wave packet to be split in several pulses, the
incoming wave packet has to probe all the phases of the
oscillating barrier. This requirement introduces the constraints

σx > v0τ (11)

and

v0 > Aω, (12)

where τ is the period of the oscillation. Moreover, during
a period of the oscillation, both reflection and transmission
of particles should occur. The latter introduces the additional
constraint for the initial velocity√

2V0

m
− Aω < v0 <

√
2V0

m
+ Aω. (13)

For smaller velocities all orbits are reflected whereas for larger
velocities all orbits are transmitted. As for the number of steps,
and therefore the number of pulses, it is found that it does not
change by varying E and V0 but it can be adjusted by varying
the frequency of the oscillation: with increasing frequency, the
number of steps increases and therefore their width decreases
(i.e., the number of transmitted pulses increases and their width
in space decreases).

We conclude that it is possible to prepare the desired
pulse-splitting effect for a given system with parameter values
(V0,m,α) by matching the parameters (A,ω) of the external
driving field as well as the initial spread σx and energy E of
the incoming wave packet using a purely classical calculation.
One possible experimental setup for the observation of the
pulse-splitting effect are semiconductor heterobarriers, which
are driven either by an external laser field or an applied ac gate
voltage [39,40]. The wave packet of quasiparticles could be
created by a (second) laser allowing to control the width and
energy of the initial pulse. Observation of the transmitted time-
delayed pulses can be done via time-resolved measurements.
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A potential application would be the use of the pulse-splitting
effect to build controllable intermittent pulse sources on a
nanometer scale, which should be of interest to nanoelectron-
ics. Due to the very general character of the scattering process
off oscillating barriers, the mechanism for the formation of
pulse trains might occur in a variety of other physical systems
of either classical or quantum character [e.g., for (cold) atoms
encountering oscillating barriers or penetrable walls].

V. CONCLUSION

In this work we have studied the scattering of classical and
quantum wave packets off a one-dimensional barrier laterally
oscillating with a harmonic time law. Our study has been
mainly focused on quantum classical correspondence (QCC)
and its dependence on the parameters of the system. More
specifically, we have considered the transmission coefficient
as well as the form of the transmitted wave packet in both
classical and quantum mechanics.

Regarding the transmission coefficient, the region of pa-
rameter space where classical and quantum mechanics are
in good agreement has been investigated. It is found that in
a certain frequency region (the intermediate one), QCC is
optimal almost in the whole energy range considered and
the transmission threshold exhibits a minimum. The latter
admits a purely classical interpretation based on kinematic
effects. Moreover, in the same frequency range, the difference
between the classical and quantum transmission coefficient
can be described mainly by kinematic arguments as well.

Regarding the form of the transmitted wave packets, it
is found in both classical and quantum mechanics that in a
rather broad region of parameter space the incoming wave
packet can be split into a train of well-separated coherent
pulses. This effect is not related to the phase space of the
underlying classical system and admits as well a purely
classical kinematic interpretation. The pulse-splitting effect
can possibly be observed experimentally, for example in
appropriately driven semiconductor heterostructures, and is
expected to have useful applications.

[1] F. Grossmann, Chem. Phys. Lett. 262, 470 (1996).
[2] N. Faginas, F. Huarte-Larranaga, and A. Lagana, Chem. Phys.

Lett. 464, 249 (2008).
[3] C. H. Lewenkopf and R. O. Vallejos, Phys. Rev. E 70, 036214

(2004).
[4] A. Back and N. Markovic, J. Chem. Phys. 122, 144711 (2005).
[5] G. A. Luna-Acosta, J. A. Mendez-Bermudez, P. Seba, and K. N.

Pichugin, Phys. Rev. E 65, 046605 (2002)
[6] M. Holthaus, Chaos Solitons Fractals 5, 1143 (1995).
[7] E. A. Shapiro and P. Bellomo, Phys. Rev. A 60, 1403 (1999).
[8] T. Yanao and K. Takatsuka, J. Chem. Phys. 120, 8924 (2004).
[9] M. Spanner, I. Franco, and P. Brumer, Phys. Rev. A 80, 053402

(2009).
[10] W. C. Henneberger, Phys. Rev. Lett. 21, 838 (1968).
[11] Atoms in Intense Laser Fields, edited by M. Gavrila (Academic

Press, San Diego, 1992).
[12] M. Henseler, T. Dittrich, and K. Richter, Phys. Rev. E 64, 046218

(2001).
[13] P. W. Brouwer, Phys. Rev. B 58, R10135 (1998).
[14] L. E. F. Foa Torres, Phys. Rev. B 72, 245339 (2005).
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