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Manifold learning approach for chaos in the dripping faucet
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Dripping water from a faucet is a typical example exhibiting rich nonlinear phenomena. For such a system,
the time stamps at which water drops separate from the faucet can be directly observed in real experiments,
and the time series of intervals τn between drop separations becomes a subject of analysis. Even if the mass
mn of a drop at the onset of the nth separation, which is difficult to observe experimentally, exhibits perfectly
deterministic dynamics, it may be difficult to obtain the same information about the underlying dynamics from
the time series τn. This is because the return plot τn−1 vs. τn may become a multivalued relation (i.e., it doesn’t
represent a function describing deterministic dynamics). In this paper, we propose a method to construct a
nonlinear coordinate which provides a “surrogate” of the internal state mn from the time series of τn. Here, a key
of the proposed approach is to use ISOMAP, which is a well-known method of manifold learning. We first apply it
to the time series of τn generated from the numerical simulation of a phenomenological mass-spring model for
the dripping faucet system. It is shown that a clear one-dimensional map is obtained by the proposed approach,
whose characteristic quantities such as the Lyapunov exponent, the topological entropy, and the time correlation
function coincide with the original dripping faucet system. Furthermore, we also analyze data obtained from real
dripping faucet experiments, which also provide promising results.
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I. INTRODUCTION

Dripping of water from a faucet is ordinarily seen in our
daily life. At first glance, such a motion of dripping looks
very common. It provides, however, a variety of rich nonlinear
dynamics including the period-doubling bifurcation to chaos,
intermittency, crisis, hysteresis, etc. In particular, Shaw and his
collaborators [1] first found that there is a clear transition from
a periodic motion to low-dimensional chaos by investigating
the time intervals τn between dripping separations from the
faucet, both theoretically and experimentally.

The dripping water is fluid dynamics (i.e., ideally described
as an infinite-dimensional dynamical system). But as far as
the dynamics is confined within a low-dimensional attractor,
it can be modeled by a class of phenomenological models
called “mass-spring” systems [1]. Since the pioneering work
of Shaw et al., many versions of the mass-spring system for the
dripping faucet have been proposed. Among them, Kiyono and
Fuchikami [2] significantly improved the mass-spring system
on the basis of both numerical simulations of fluid dynamics
[3] and real experiments [4]. They showed that their model
can systematically explain various aspects of the complex
behaviors observed in the real dripping faucet experiments.

One of the most prominent aspects of the Kiyono-
Fuchikami model is that the essential feature of chaos in the
dripping faucet is exactly represented as a one-dimensional
map. More precisely, the mass mn at the moment of the nth
separation of a drop from the faucet obeys a one-dimensional
mapping dynamical system [i.e., there exists a deterministic
scalar function f (·) such that mn = f (mn−1)].

In general, however, not all state variables are observable
in real experiments. In the case of the dripping faucet system,
a high precision balance with resolution of about 0.1 mg for
every 0.1 sec is needed to obtain the time series of the mass mn

of drops. Instead, time intervals τn between successive drop
separations can be recorded more easily in real experiments.
As investigated by Shaw et al., depending on the degree of flux
of water, the return plot τn−1 vs τn also shows a clear functional
relationship. At the same time, however, they have also shown
that it often takes the form of a multivalued relation. Namely,
there are two or more candidates of τn against a single value of
τn−1, which prevents us from interpreting the dripping faucet
as a simple one-dimensional mapping system. This multival-
uedness problem often occurs in general chaotic dynamical
systems such as the Kuramoto-Sivashinsky equation [5].

On the other hand, the existence of the one-dimensional
map f associated with the mass mn means that an em-
bedding of the dripping-time interval τn into a sufficiently
high, say d-dimensional Euclidean space R

d as sn =
(τn−d+1, . . . ,τn−1,τn), is lying on a one-dimensional manifold
S ⊂ R

d . Then, a point sn ∈ S obeys a deterministic law as
sn = F(sn−1) where F(·) is a d-dimensional vector valued
function whereas the relationship between τn−1 and τn is
a multivalued one. Actually, in the case of the Kiyono
and Fuchikami’s mass-spring model, embedding τn into a
three-dimensional space generally results in a filamentlike
one-dimensional manifold without crossing. Therefore, if a
new coordinate u is spanned along T , which plays the role of
a surrogate variable for the internal state mn, then we obtain
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a more simplified expression as un = �(un−1) where �(·) is
a scalar function of u. Even if the original one-dimensional
mapping system mn = f (mn−1) is not available, important dy-
namical features can be obtained from the mapping associated
with the surrogate variable.

To identify lower-dimensional representations of the dy-
namics, dimension reduction methods can be employed. Di-
mension reduction is an important task of data (pre)processing
with applications in pattern and speech recognition, image
processing, bioinformatics, psychology, etc. Linear subspaces
containing or approximating the available data can be identi-
fied using principal component analysis (PCA), independent
component analysis (ICA), and many useful methods in vari-
ous fields [6]. However, when the data set of interest is located
on or close to a (sub)manifold with significant curvature, the
applicability of these linear methods is limited and nonlinear
dimension reduction methods have to be employed.

Recently, in the field of statistical machine learning, meth-
ods of manifold learning have been developed for providing
a low-dimensional representation when data is lying on a
nonlinear low-dimensional manifold embedded in a high-
dimensional Euclidean space. A number of methods have been
proposed and in the present study we employ ISOMAP [7] for
such a purpose. ISOMAP, which is an abbreviation of the term
“isometric feature mapping,” is a method of manifold learning
where the geodesics between training samples are employed
as the dissimilarity information in multidimensional scaling
(MDS) [8].

In this paper, we demonstrate that ISOMAP is very useful
to extract a surrogate state variable u and to construct a well-
defined one-dimensional map �(·) for both numerical and real
experimental data. It is shown that dynamical characteristics
such as the Lyapunov exponent and the time correlation
function can be computed from �(·).

The present paper is organized as follows. In Sec. II,
we explain the dripping faucet system. In Sec. III, we first
introduce the method of ISOMAP, then we apply it to data
generated from the mass–spring model mentioned in the
previous section. Finally, in Sec. IV, we give a summary and
discuss possible directions of future research.

II. DRIPPING FAUCET SYSTEM:
MODEL AND EXPERIMENT

A. Basic mechanism

Let us begin with a brief introduction of the basic mech-
anism how a water drop separates from a faucet. Figure 1(a)
shows an apparatus for dripping faucet experiments that we
prepared. Using such an experimental apparatus, we take a
snapshot at just the moment when a water drop separates from
a thin plastic pipe as shown in Fig. 1(b). Here, the shape of
the drop is determined by the balance between the surface
tension and the weight of water. When increasing the mass of
a drop by injecting water, the following processes are repeated
with time. (i) A “neck” which connects between the drop and
the faucet is formed by the break of the balance between the
tension and the mass of water. (ii) When the weight reaches
a critical value, the neck is broken (i.e., a portion of the drop
separates from the faucet). (iii) Just after its separation, the

(a)

(b)

(c)

(i) (ii) (iii) (iv)

FIG. 1. (a) Schematic illustration of the apparatus for the dripping
faucet experiment. (b) Snapshots of a high-speed movie showing the
separation of a drop. (c) Illustration of the mass-spring model.

remainder of the drop rapidly shrinks by the surface tension to
the upward direction. (iv) Finally, the drop grows again with
oscillations.

B. Mass-spring model

Based on observations as mentioned in the previous
subsection, the following equations of motion can be con-
sidered as a phenomenological model for the dripping faucet
experiment [1]

mẍ + ẋṁ = −kx − γ ẋ + mg, (1)

ṁ = Q (const.). (2)
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Such a model is called a mass-spring model and its schematic
illustration is depicted in Fig. 1(c). Here, x is the vertical
position of the forming drop to the downward direction, m is
its mass, g is the gravitational acceleration, k is the stiffness of
the spring, and γ is the damping parameter. The restoring force
given by the surface tension is represented as a spring force in
Eq. (1), and the mass of the forming drop linearly depends on
time with the rate Q as described in Eq. (2), because a drop
grows with time due to the influx of water from the faucet.
It is also assumed that when the position of the drop reaches
the critical point xc, the drop loses its mass by �m due to the
separation of a portion of the drop and this portion falls to the
ground. In spite of its simplicity, this model can explain many
dynamical aspects of the real dripping faucet [1].

Kiyono and Fuchikami improved the above phenomeno-
logical model [2] based on the knowledge of the numerical
simulations of fluid dynamics [3] and real experiments of the
dripping faucet [4]. They first modified the equation of motion
in Eq. (1) as

mẍ + (ẋ − v0)ṁ = −kx − γ ẋ + mg, (3)

where v0 is the velocity of the influx of water. Note here that
there is a relation between v0 and Q in Eq. (2) as Q = πa2v0

where a is the radius of the faucet. Then, based on their real
experiments, they considered that the stiffness k in Eq. (3) also
depends on the mass of the drop as

k(m) =
{

−11.4m + 52.5 (m < mc),

0 (m � mc),
(4)

where mc = 4.61. Equation (4) means that when the mass
m amounts to mc, the value of the stiffness becomes zero,
then the drop undergoes free-fall. In their experiments, the
units of the length, time, and mass are chosen as (γ /ρg)1/2 =
0.27 cm, (�/ρg3)1/4 = 0.017 sec and ρ(γ /ρg)3/2 = 0.020g,
respectively, where � is the surface tension and ρ is the density.
Using these units, parameters are set to γ = 0.05, g = 1, xc =
5.5, �m = 0.8m − 0.3, and a = 0.916, and the constants in
Eq. (4) are also determined from their experiments. They also
assumed that just after a portion of the drop separates, the
position and velocity are reset to x = x0 = 2.0, ẋ = ẋ0 = 0.

Figure 2 shows a trajectory of the above mentioned model
with v0 = 0.1130 after some transient. In Fig. 2(a) we can
see that the trajectory is tracing a chaotic attractor. In real
experiments, however, it is in general impossible to observe
all state variables of the system. In the case of the dripping
faucet, time intervals τn(n = 1,2, . . .) between successive drop
separations are observed in experiments. How to determine τn

from the signal of the position x(t) is depicted in Fig. 2(b).
Here the variable mn is the value of the mass at the moment of
the nth drop separation.

Figure 3(a) shows the return plot mn−1 vs mn for v0 =
0.1130. We can see that there is a clear scalar function between
mn−1 and mn as mn = f (mn−1). In Fig. 3(b), however, the
return plot τn−1 vs τn is a multivalued relation (i.e., the right-
hand side of the return plot shows the 1 to 2 values). From a
different viewpoint, if we regard this return plot as the time-
delay embedding of τn into the two-dimensional plane R

2 as
sn = (τn−1,τn) denoting the manifold on which the states sn

FIG. 2. (a) Chaotic trajectory of the Kiyono-Fuchikami model.
(b) Time series of drop position x and the time interval τ between
drop separations.

are lying as S, then, we can see that there is a deterministic
function between sn−1 and sn as sn = F(sn−1) in R

2.

C. Bifurcation Structure

We also investigated how the statistical property of the
mass-spring model [Eqs. (3) and (4)] depends on the water
influx v0, and the result is shown in Fig. 4(a). One can see
repetitions of the period doubling bifurcation route to chaos,
as well as periodic windows and their reverses for increasing
v0. We also made experiments to check whether the true
dripping faucet system also exhibits this bifurcation structure.
Figure 4(b) shows a time series of the time intervals of drop
separations over a long time period. Here, in our experiments,
the surface of water of the bath decreases very slowly because
no water is supplied from outside, which plays a role of
changing the water influx. Therefore, this figure represents
a kind of “bifurcation” diagram. One can see that there is
a significant qualitative similarity between the numerical
simulations [Fig. 4(a)] and the real experiments [Fig. 4(b)].

 5.2

 5.6
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 15

 13  14  15

FIG. 3. (a) Return plot of mn−1 vs mn. (b) Return plot of τn−1

vs τn. Movements of points as the time delay embedding vector
sn = (τn−1,τn) are also depicted.
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FIG. 4. (a) Bifurcation diagram of the Kiyono-Fuchikami model.
Note that the unit of time is rescaled (e.g., τ = 14 corresponds to
0.238 sec). (b) Time series of a real dripping faucet experiment.

III. EXTRACTING ONE-DIMENSIONAL MAPS
OF INTERNAL STATE VARIABLES BY ISOMAP

As shown in the previous section, this dripping model is
essentially described by a one-dimensional map f (m). Its
experimental observables τn also show a one-dimensional
filament in the d-dimensional space (τn−d+1,τn−d+2, . . . ,τn),
but the relationship between τn−1 vs τn is not always given by
a one-dimensional map directly. In this paper, we discuss the
case d = 2 as shown in Fig. 3. This suggests that the dripping
time interval τ isn’t appropriate for the simple description
of the dynamics. If we can construct a new coordinate u

along the filament, the dynamics must be described by a
one-dimensional map un = �(un−1) and easily analyzed using
the theory for one-dimensional maps. In this section, we try to
construct a new coordinate u by applying ISOMAP to the time
series τn and get the one-dimensional map �(u). In addition,
we test whether we can recover the statistical properties of the
dripping faucet system from the one-dimensional map �(u).

A. ISOMAP

ISOMAP is one of several widely used low-dimensional
embedding methods, which is an extension of classical MDS
(multidimensional scaling) [7]. MDS seeks a low-dimensional
representation of the sample points. This is achieved by
plotting data points in a low-dimensional space preserving the
“dissimilarity” (generalized distance) between sample points
(in the original higher-dimensional space) as much as possible.

i
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FIG. 5. Neighboring graph G. (a) Schematic illustration of the
sample points (◦) and the three-neighboring graph G (solid line). The
heavy solid line is the shortest path between points i and j and the
dashed line is the Euclidean distance. (b) 500 sample points (+) and
four-neighboring graph G (line) for v0 = 0.1130. (c) Graph G for
two-band chaos (v0 = 0.1128). The two clusters B1, B2 caused by
two-band chaos are connected by the shortest path C.

For the dripping time series τn, when we use the Euclidian
distances (pairwise distances between sample points) in the
(τn−1,τn) plane as the dissimilarity, we shall not obtain a
one-dimensional embedding, because the sample points are
located on a curved filament. In ISOMAP, the geodesic distance
on the low-dimensional structure instead of the Euclidean
distance is used and then we can embed the sample points
into a one-dimensional space and get the new coordinate u. A
concrete procedure is described as follows.

First, we compute the geodesic distance dij between ith
and j th sample points, which is approximated by the shortest
path from one to the other on the neighboring graph G.
This graph G is constructed by locally connecting among
sample points (we employ the Euclidean distance to construct
k-nearest neighbors). This procedure with k = 3 is illustrated
in Fig. 5(a). The point i is connected to i1,i2,i3 which are
k-nearest neighbors of the point i and all sample points are
connected in the same manner. The distance dij between points
i and j is not defined by the Euclidean distance (dashed line),
but by the shortest path distance (heavy solid line). As a
result, dij is an approximation of the geodesic distance on
the manifold. Figure 5(b) shows the graph G of the dripping
faucet (3) and (4) for v0 = 0.1130,N = 500, and k = 4. And
dij is obviously a good approximation of the geodesic distance
along the filament.

The bifurcation diagram for this dripping faucet is shown
in Fig. 4. When the attractor has n bands or exhibits strong
intermittency, the neighboring graph G may be separated into a
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few clusters and then we cannot estimate the geodesic distances
dij . In this case we adopt the shortest connection among the
clusters to construct the global graph G. An example for two-
band chaos (v0 = 0.1128) is shown in Fig. 5(c).

The second step is MDS whose purpose is to place a set of
new points ui,(i = 1,2, . . . ,N ) in a low-dimensional space
so that the dissimilarities dij in the original state are well
approximated by |ui − uj | [i.e., we find points ui that mini-
mize

∑
i,j (dij − |ui − uj |)2]. In MDS, for the sample points

si ,(i = 1,2, . . . ,N ) in the m-dimensional Euclidean space,
we define the square distance matrix D as Dij = |si − sj |2,
and introduce

Z = − 1
2JDJ = (JS)(SJ )T, (5)

where Sk� is the �th component of sk and J = (Jk�) =
(δk� − 1/N ) is called the centering matrix whose effect for S

is (JS)k� = Sk� − ∑
k Sk�/N . Next we decompose Z into its

eigenvalues and eigenvectors as Z pi = λi pi with λi � λi+1.
Then we get Z = P�P T where �ij = λiδij and Pij is the j th
component of pi . Therefore, we obtain the matrix

U = P�1/2, (�1/2)ij =
√

λiδij , (6)

which corresponds to the matrix JS and the new point ui

which is the ith row vector of U . Clearly the new points ui

are reconstructions of the original points si and recover the
distance |si − sj |. If λn � λn+1, we can approximate U by
its projection into the subspace spanned by the eigenvectors
{ p1, p2, . . . , pn}.

As we can find the points ui only from the distances,
we start with the geodesic distances dij instead of |si − sj |
and get the new low-dimensional vector ui corresponding
to the ith sample point on the filament. Finally, we obtain
n-dimensional representations ui = (u(1)

i ,u
(2)
i , . . . ,u

(n)
i ) whose

distances preserve the geodesic distances in the original space
as much as possible. This procedure is essentially the same as
the principal component analysis for the data matrix U [7,9].

B. Results for the mass-spring model

Figure 6(a) shows configurations of sample points for
the dripping faucet data (τn−1,τn) onto the (u(1),u(2)) plane
obtained from ISOMAP. Here, the spread of points in the
direction of the u(2) component is much smaller than that
of the u(1) component (about 0.6%). This means that the
points on the filament are almost explained only by the first
component u(1), which implies that ISOMAP succeeds to unfold
the attractor to a straight line and u(1) is considered as a new
coordinate along the filament [Fig. 6(b)]. Hereafter, u(1)

n is
abbreviated as un as we mainly use the first component. The
successful unfolding can be also confirmed from the one-to-
one relation between the mass mn and the new coordinate un

in Fig. 6(c).
As any point on the filament is deterministically mapped

to another point, the time evolution of u is described by a
one-dimensional map un = �(un−1), which is shown in Fig. 7.
In addition, the points whose spread in the u(2) direction in
Fig. 6(a) is relatively large are located around the folding point
(critical point) of the one-dimensional map in Fig. 7(a).
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FIG. 6. Results of the application of ISOMAP for Fig. 5(b). (a)
Configurations of sample points onto the (u(1),u(2)) plane. (b) Plot of
sample points in the (τn−1,τn,u

(1)
n ) space. (c) Relation between the

new coordinate u and the droplet mass m.

The results in Fig. 7 show the expected relationship between
un−1 and un. We approximate this one-dimensional map �(u)
by a locally quadratic function

�(u) =
2∑

j=0

aj (u)uj , (7)

-2

 0
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 4

-4 -2  0  2  4

-2

 0

 2

-4 -2  0  2

FIG. 7. (a), (b) Return plots of the new variable u(1) generated by
ISOMAP for Figs. 5(b) and 5(c), respectively.
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where aj (u) is determined by the local least squares method,
i.e., aj (u) satisfies

min
{a0(u),a1(u),a2(u)}

∑
n

(�(un−1) − un)2 exp

{
−

(
un−1 − u

σ

)2}

and we use σ = 0.05.

C. Statistical properties

From the one-dimensional map �(u), we can get the natural
invariant density ρ(u), which is the base for the discussion of
the statistical properties. Here, ρ(u) satisfies the equation

ρ(u) = H [ρ(u)] =
∫

ρ(v)δ[u − �(v)]dv

=
∑

un:u=�(un)

ρ(un)

|�′(un)| , �
′(u) = d�

du
(8)

where H is called Frobenius-Perron operator and ρ(u)
is generally expected to be the empirical distribution
limN→∞

∑N
n=1 δ(u − un)/N for a chaotic orbit.

To solve approximately Eq. (8), we divide the domain
of �(u) into the intervals Ii ,(i = 1,2, . . . ) whose edges are
inverse mapping points �−n(u∗),(n = 0,1,2, . . . ), where u∗ is
the critical point [the minimum in Fig. 7(a) and the maximum
in Fig. 7(b)] of the function �(u), and expand ρ(u) as

ρ(u) =
∑

i

αiei(u), ei(u) =
{

1, (u ∈ Ii)

0, (others).
(9)

We substitute Eq. (9) in Eq. (8) and get

αi =
∑

j

Hijαj , Hij = βij

|�′(u(c)
j )|

,

(10)

βij =
{

1, if Ij ⊂ �(Ii)
0, if Ij 
⊂ �(Ii)

where u
(c)
j is the center of Ij . The solution αi is given by the

eigenvector corresponding to the eigenvalue 1 of the matrix
H . The above-mentioned method is a kind of the Galerkin
approximation which is often used in the study of the one-
dimensional map [10].

The internal state variable u is not a natural physical
quantity for the dripping faucet system. However we can derive
any physical quantity A from u, because the quantity A on the
filament is determined by u [i.e., A = A(u) and its long-time
average is calculated by 〈A〉 = ∫

A(u)ρ(u)du]. Actually, as
the results of ISOMAP provide the relationship between un

and (τn−1,τn) as shown in Fig. 8(a), the important observable
variable τ of the dripping faucet system is determined by

τ = φ(u), (11)

where the function φ(u) is approximated in the same way as
�(u) [see Eq. (7)]. First we get the distribution function

P (τ ) = ρ(u)

|φ′(u)| , (12)

which is one of the most basic properties of the dripping faucet.
The result in Fig. 8(b) shows P (τ ) with many peaks which are
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FIG. 8. (a) Relation between the new variable u and the dripping
interval τ . (b) Distribution function of dripping intervals P (τ ) which
is derived from Eq. (12). The result from the direct simulation (106

droplets) are also plotted by the symbol + .

generated by the folding processes of �(u). These properties
are consistent with the result from the direct simulation of
Eqs. (3) and (4).

Next, we calculate the Lyapunov exponent [11] and the
topological entropy [12], which characterize the stability and
the variety or complexity of chaotic orbits, respectively.
The Lyapunov exponent of �(u) is defined by � =
limN→∞(1/N ) ln |duN / du0| = limN→∞(1/N )

∑N − 1
n=0 ln

|dun+1/dun| and given by

� = 〈ln |�′(u)|〉. (13)

The topological entropy is calculated by [11]

H = 1

N
ln

〈∣∣∣∣d�N (u)

du

∣∣∣∣
〉
, N � 1. (14)

As both quantities are invariant under the transformation
from u to m, the results from �(u) should coincide with the
Lyapunov exponent and topological entropy of f (m) [if the
map �(u) is an appropriate description of the dripping faucet
dynamics given by Eqs. (3) and (4)]. They are cited in Table I.
The results are in good agreement, but the standard deviations
of both quantities calculated from �(u) is larger than the results
from f (m). This may be caused by enhancing the fluctuation of
the return plot by the shortcut in ISOMAP. We can calculate the
time series τn from the one-dimensional map (7) and Eq. (11),
but its long-time behavior is very different from the direct
simulation of Eqs. (3) and (4), because the dynamics is chaotic.

TABLE I. Lyapunov exponents and topological entropies calcu-
lated from f (m) and �(u). Here, we approximate the one-dimensional
map f (m) and get the invariant density ρ(m) in the same way as
Eqs. (7)–(10) for the return plot of mn (Fig. 3). And we use N = 64 in
Eq. (14). The cited values are the averages and the standard deviations
for 20 different sets of time series.

v0 f (m) or �(u) Lyapunov exp. topologcal entropy

0.1128 f (m) 0.254 ± 0.008 0.280 ± 0.002
�(u) 0.249 ± 0.011 0.274 ± 0.009

0.1129 f (m) 0.320 ± 0.008 0.334 ± 0.001
�(u) 0.316 ± 0.021 0.331 ± 0.019

0.1130 f (m) 0.360 ± 0.005 0.378 ± 0.003
�(u) 0.349 ± 0.019 0.375 ± 0.012
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FIG. 9. Time correlation function of τn. The results from �(u) (◦)
for a return plot (500 droplets) and the direct simulation (106 droplets)
from Eqs. (3) and (4) (×) are plotted. The size of fluctuation
for the different return maps is about 30% around n = 25. The
two curves show the decay for a period-two and a long-period
(about 23) oscillation.

We also calculate the time correlation function of τn

C(n) = lim
N→∞

1

N

N−1∑
m=0

(τm − τ̄ )(τm+n − τ̄ )

= 〈φ(u)φ(�n(u))〉 − 〈φ(u)2〉, (15)

where τ̄ = limN→∞(1/N )
∑N−1

m=0 τm. The result in Fig. 9
shows the exponential decay for a period-two and long-period
(about 23) oscillation. Their properties are also shown in the
result, which is calculated directly from τn by the simulation
of Eqs. (3) and (4). The good coincidence shows that by using
the internal variable u, we can discuss statistical properties of
the original observable τ .

D. Application to real experimental data

Last we show preliminary results of the application of the
dimension reduction method to our real experimental data. A
short time series whose water flux is almost stationary and its
first-return plot τn−1 vs τn are shown in Figs. 10(a) and 10(b),
respectively. This return plot shows a multivalued function
in the wide region and cannot describe the dripping faucet
dynamics. The application of our method leads to the internal
variable u and the one-dimensional map un = �(un−1), which
is shown in Fig. 10(c). The absolute value of its slope is nearly
one in almost all regions (i.e., the instability of the orbits is
weak), which is related to the fact that the time series contains
one or two periodic-like motions.

It has been pointed out that ISOMAP is topologically unstable
for small noise [13]. In actuality, the neighboring graph
G around the folding point of the filament is affected by
experimental noise or high-dimensional dynamics and has
some shortcuts, which are out of the filament. Therefore, the
first-return map of u has a multivalued structure around the
critical point (maximum point) of �(u). However, this effect is
small and localized so we can say our method is a promising
method for not only the numerical study but also experimental
data.

Our experiment is a first step and currently we cannot keep
it stationary to measure long time series. We work on a revised
setup and extended experimental results are a subject for future
research.
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FIG. 10. Results for our experimental data. (a) Dripping time
series τn, which contains one or two periodic motion around n =
50,170. (b) First-return plot of τ . It shows a multivalued function in
the right region. (c) First-return plot of inner state variable u, which
suggests that there is a one-dimensional map �(u). It may have a
wavelike pattern in the right region.

IV. SUMMARY AND DISCUSSION

In this paper, employing the dripping faucet system as an
illustrative example, we studied the problem of constructing a
surrogate variable for the internal state of a chaotic dynamical
system from time series using manifold learning analysis. Es-
pecially, when the time-delay embedding of the observed time
series forms a one-dimensional curved structure, we succeeded
in obtaining one-dimensional deterministic maps associated
with the surrogate variable. The statistical properties of the
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original chaotic system were successfully reproduced by its
surrogate system.

In real-world applications, not all original state variables of
the system can be directly observed. Instead, only some of the
original state variables or their transformations are observed
in experiments. So, it is often seen that the manifolds obtained
from the time-delay embedding may be very complex even if
their dimensionality is low, which leads to multivaluedness in
the return plots [5]. For example, the time series of interspike
intervals is mainly observed in neural systems and its return
plot often exhibits a multivalued relation [14]. Besides neural
systems, there are a number of such examples (e.g., laser
systems [15,16], passive biped walkers [17], and social activity
models [18]). Extracting the deterministic relationship from
the observations of these models may also be done using
dimension reduction methods.

Besides, the return plot of un−1 vs un (Fig. 7) is less smooth
compare to that of mn−1 vs mn [Fig. 3(a)]. This is because
methods of manifold learning are generally unsupervised
ones, only using the information of τn. If the assumption
that the data is generated from a dynamical system with
a simple mapping form (say the logistic parabola) can be
incorporated additionally to the manifold learning as some
additional constraint term then, we can obtain a more refined
return plot, which may be more interpretable to us.

In this paper, we have been only concerned with the case
in which the internal state behind the observed time series
obeys a one-dimensional dynamical system. This is of course

an ideal case. As formal methodologies (application of ISOMAP

or other manifold learning methods) are not restricted to
one-dimensional manifolds, the presented approach can in
principle be extended to higher-dimensional cases. It should
be noted, however, that ways of acquiring training samples
to obtain a lower-dimensional representation become more
important. For example, let us consider the situation where
the Hénon attractor A is lying on a two-dimensional non-
linear manifold M embedded in, say, the three-dimensional
Euclidean space R

3. In order to obtain a lower-dimensional
representation of M, not only the data on A, but also the data
associated with transient dynamics are needed because A is
too thin to recover the whole two-dimensional structure of M.
In addition, the nonuniformity in the natural measure on A and
its transient area affect the performance of manifold learning.
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