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Noise-induced synchronization in small world networks of phase oscillators
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A small-world (SW) network of similar phase oscillators, interacting according to the Kuramoto model, is
studied numerically. It is shown that deterministic Kuramoto dynamics on SW networks has various stable
stationary states. This can be attributed to the so-called defect patterns in an SW network, which it inherits from
deformation of helical patterns in its regular parent. Turning on an uncorrelated random force causes vanishing
of the defect patterns, hence increasing the synchronization among oscillators for moderate noise intensities.
This phenomenon, called stochastic synchronization, is generally observed in some natural networks such as the
brain neural network.
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I. INTRODUCTION

Noise is usually considered a source of disturbance for the
main signals in the laboratory as well as in natural systems.
Nevertheless, the interplay between randomness, created by
the noise, and nonlinearities may lead to the enhancement
of regular behavior in some dynamical systems [1]. Stochas-
tic resonance [2], coherence resonance [3], noise-induced
transport [4], noise-induced transition [5], and noise-induced
collective firing in excitable media [6] are examples of such
a novel phenomenon. Being noisy, nature takes advantage of
these mechanisms to employ random fluctuation as an agent of
self-organization. This is the main reason why living systems
work so reliably in spite of the presence of various sources of
noise.

Brain neurons are examples of biological systems in which
the source of random fluctuations is the background synaptic
noises caused by highly fluctuating inputs coming from
thousands of other neurons connected to a given neuron [7].
However, this noise plays a constructive role in the regular
spiking of the individual neurons and also in increasing
synchronization among clusters of connecting neurons [8].
Synchronous spiking among a subset of neurons plays an
important role in more efficient propagation of activities from
one group of neurons to another [9]. Furthermore, there
are some controversial ideas on encoding of information
about stimuli thorough synchrony in oscillatory activity of
neurons [10]. Another phenomenon in which noise-induced
synchronization takes place is the gene regulatory process
in systems such as quorum-sensing bacteria, in which noise
originates from the small number of molecules involved in
related biochemical reactions [11].

Collective dynamical behaviors, like synchronization, can
be observed in systems of coupled nonlinear oscillators and
have been extensively studied in complex networks [12]. One
such model has been proposed by Kuramoto, which consists of
a set of oscillators of a fixed amplitude (phase oscillators) mu-
tually coupled by a 2π periodic interaction [13]. The stochastic
Kuramoto model has been studied on globally connected [14]
and also on scale-free (SF) and Erdös-Rènyi (ER) random
networks [15]. Analytical results on an all-to-all network
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show that for a given distribution of intrinsic frequencies
of oscillators, a minimum value of coupling is needed for
synchronization. Perturbation of the fully synchronized state
by uncorrelated white noise causes the synchrony between
oscillators to decrease monotonically upon an increase in the
noise strength. The same results have been found in numerical
integrations of the stochastic Kuramoto model for ER and
SF networks.The difference is that the synchronized state in
SF networks persists better against application of noise with
respect to ER and all-to-all networks [15].

Watts and Strogatz (WS) found out that many systems
in nature possess the properties of small-world (SW) net-
works [16,17]. A short mean path between the nodes and a high
degree of clustering are the two main features of SW networks.
The former is a characteristic of random networks, while the
latter is a feature of regular networks. It has been found that
the presence of random shortcuts may lead to noise-driven
ordering phenomena such as stochastic resonance [18] and
coherence resonance [19] in SW networks.

Motivated by recent discoveries revealing the SW topology
of brain neural networks [20] and also noise-induced regula-
tory behaviors in such networks [8], we study the effect of
random force on the dynamics of an SW network of a set
of similar phase oscillators coupled to each other based on
the Kuramoto model. We show that in this system, for an
intermediate noise strength, the synchronization among the
oscillators is increased. The rest of the paper is organized
as follows. In Sec. II we present the results of numerical
integration of the deterministic Kuromato model in regular
and SW networks. Investigation of the stochastic Kuramoto
model driven by uncorrelated white noise is done in Sec. III,
and the final section is devoted to a summary and concluding
remarks.

II. KURAMOTO MODEL ON COMPLEX NETWORKS

In this section we introduce the Kuramoto model and
numerically investigate its steady-state solutions in ER, SF,
and SW networks. Consider a set of phase oscillators, residing
on top of the nodes of a network. Their phases and intrinsic
oscillation frequencies are given by θi and ωi , respectively.
According to the Kuramoto model, the dynamics of these phase
oscillators is given by the following set of coupled differential
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FIG. 1. (Color online) Order parameter (r) versus time (on
a logarithmic scale) for ER [dark-gray (fuchsia) dashed curve],
Barabási-Albert [light-gray (green) dashed curve], and WS networks
for five initial conditions (solid curves for, from top to bottom, WS-a
to WS-e). N = 1000 and 〈k〉 = 10.

equations:

θ̇i = ωi + K

N∑
j=1

aij sin(θj − θi), i = 1, . . . ,N, (1)

where K is the coupling strength, N is the number of nodes,
and aij are the elements of the adjacency matrix (aij = 1 if
nodes i and j are connected and aij = 0 otherwise).

Synchronization of the Kuramoto model for SW networks,
for a random distribution of ωi , has already been studied by
Hong et al. [21]. They showed that a small fraction of short-
cutsis enough for both phase and frequency synchronization,
despite the absence of any synchronization of regular ones. In
the present work, we assume that all the intrinsic frequencies
are the same (ωi = ω0), therefore moving to a reference frame

FIG. 2. (Color online) Steady-state phase configurations in two
helical patterns of a regular network and corresponding steady states
of WS networks with N = 1000 and 〈k〉 = 10. WS-b, λ = 1000;
WS-e, λ = 50. λ is the wavelength of helical states in the regular
network.

in which ω0 = 0 simplifies Eq. (1) to

θ̇i = K

N∑
j=1

aij sin(θj − θi), i = 1, . . . ,N. (2)

To compare the solutions of Kuramoto model in these three
networks, we need to construct them with equal numbers of
nodes and edges. To build an SF network with average connec-
tivity 〈k〉 = 2m, we use the Barabási-Albert algorithm [22].
Starting from m0 initial connected nodes, one attaches a
newly entering node to m � m0 older ones with a probability
proportional to the degree of the present nodes. An ER random
network with N nodes and the same average degree per node
(〈k〉 = 2m) is simply produced by connecting a randomly
chosen pair of nodes with Nm edges [23]. To construct the
SW network, we use the WS algorithm [16]. Starting from a
regular network with N nodes and k = 2m edges for each

FIG. 3. (Color online) Density plot of correlation matrix elements
(Dij ) for four helical states of a regular network and corresponding
stationary states in a WS network with N = 1000 and 〈k〉 = 10.
(b) λ = 1000, (c) λ = 250, (d) λ = 100, and (e) λ = 50. λ is the
wavelength of helical states in the regular network.
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node, we rewire each edge randomly with probability p.
Choosing 0.005 � p � 0.05, this process converts the initial
regular network to a complex network with a small mean path
length and a large clustering coefficient, characteristics of SW
networks.

Starting from a randomly distributed initial phase θi(0)
(which is selected from a box distribution in the interval
[−π,π ]), the set of coupled differential equations, (2), is
integrated from t = 0 to a given time t with the time step
dt , using the Euler method. This method enables us to
computeθi(t), and to determine the synchrony among the
oscillators at any time we define the complex order parameter

reiψ = 1

N

N∑
j=1

eiθj (t), (3)

where 0 � r(t) � 1 indicates the degree of synchronization in
the network and ψ is the phase of the order parameter.

Figure 1 shows the temporal variations of r(t) in the
three types of networks with N = 1000 and 〈k〉 = 10. To
obtain these plots, the time step is set to dt = 0.01 and
five realizations of the initial phase distribution are taken for
a fixed network of each type. The rewiring probability for
constructing a WS network from a regular one is chosen to be
p = 0.04. As shown, the oscillators on ER and Barabási-Albert
networks immediately reach a fully synchronized state (r = 1)
irrespective of the initial conditions. However, in the case of
a WS network, they go more slowly toward the steady states,
which are highly dependent on the initial phase distributions
in such a way that r(∞) reaches several values between 0
and 1. These results show that, in contrast to ER and SF
networks, the structure of steady states of the Kuramoto model
of SW networks can be more complex. In what follows, we
discuss that the sensibility of dynamics to initial conditions is
indeed inherited by SW networks from their regular-network
parents. In a regular network, the ratio of nearest neighbor
connections to network size (k/N) determines the number
of stable solutions. It has been shown that for k/N < 0.34,
different initial conditions lead to different final states [24].

It is easy to show that the stable stationary solutions of
Eqs. (2) have to satisfy the conditions

N∑
i=1

sin θi =
N∑

i=1

cos θi = 0, (4)

provided that the phase difference between any two adjacent
oscillators is less than π/2 (i.e, �θij = θi − θj < π/2 if aij =
1). These solutions can be put into two categories: (i) fully
synchronized states with r = 1 (�θij = 0 for any i,j ) and
(ii) phase-locked states with a regular arrangement of phases
around the phase circle with nonzero phase difference �θ , for
which r = 0.

The phase-locked states represent helical-wave phase mod-
ulations and their number depends on N and k. For instance, in
the case of N = 1000 and k = 10, there are 10 such states with
nearest neighbor phase differences �θα

nn = 2π/λα , in which
λα = 20, 25, 40, 50, 100, 125, 200, 250, 500, 1000 are the
wavelengths of the helical states indicated by α = 1, 2, . . . ,10,
respectively.

The stationary phase configuration of all nodes, correspond-
ing to the initial conditions in Fig. 1, are plotted in Fig. 2 for
both the regular network and its offspring WS network. This
plot corresponds to helical patterns with phase differences
λ = 1000 and 50, denoted in Fig. 1 by indexes b and e,
respectively. Figure 2 shows that rewiring a regular network
with a phase-locked state deforms its helical pattern to an
inhomogeneous state in the subsequent WS one. Therefore, a
WS network possesses various stable stationary states whose
number equals the number of helical patterns in the parent
regular network.

The local structure of the steady state can be better clarified
by the correlation matrix D, defined as [25]:

Dij = lim
�t→∞

1

�t

∫ tr+�t

tr

cos(θi(t) − θj (t))dt, (5)

where tr is the time needed to reach a stationary state. The
matrix element −1 � Dij � 1 is a measure of coherency be-
tween each pair of nodes. In the case of full synchrony between
i and j (θi = θj ) the correlation matrix element is Dij = 1, and

FIG. 4. (Color online) Stationary order parameter versus reduced noise intensity for the four network types. Left: Regular, ER, SF, and
fully synchronized states of WS. Right: Four phase-locked states of WS corresponding to states represented in Fig. 3. The number of nodes
and mean degree for the three networks are N = 1000 and 〈k〉 = 10.
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in the case of anti–phase locking (θi − θj = π ), the value of
the matrix element is Dij = −1. Figure 3 represents a density
plot of correlation matrix elements for the four steady states of
regular and WS networks corresponding to Figs. 1 and 2. These
plots clearly show the inhomogeneous structure of the helical
patterns before and after rewiring of the regular network. The
correlation matrix represents strip structures in the density
plot for helical states in the regular network, and the width
of the strips is proportional to the wavelength of the helices.
One can also observe from these plots that converting the
regular network to a WS one substantially affects the helical
patterns, provided that λ is large. The strip structure of matrix
D is almost preserved for short wavelengths, indicating that
short-wavelength helical patterns, despite small deformations,

FIG. 5. (Color online) Density plot of correlation matrix elements
(Dij ) for a steady state with four point defects on an SW network and
different noise intensities: (a) g = 0, (b) g = 2, (c) g = 3, (d) g = 4,
(e) g = 5, (f) g = 6, (g) g = 7, and (h) g = 8. The number of nodes
and mean degree for the three networks are N = 1000 and 〈k〉 = 10.

are stable against rewiring of the network. For long-wavelength
patterns of a regular network, the majority of nodes in the
corresponding WS phase configurations are synchronized
with each other, however, there are some isolated nodes in
anti–phase locking from the rest. These isolated nodes are
topological defects and induce spiral phase textures around
them, in such a way that the phase of surrounding oscillators
varies continuously from 0 to π , upon getting away from these
nodes. The number of these defects increases upon a decrease
in the wavelength of the corresponding helical pattern. For
example, it can be seen from Fig. 3 that for λ = 1000 there is
one point defect, while for λ = 250 there are four. Once the
structure of the steady states of the deterministic Kuramoto
model for a WS network is known, it will be interesting to
investigate the effect of noise on such states.

FIG. 6. (Color online) Probability distribution function of corre-
lation matrix elements (Dij ) for different noise intensities: (a) g = 0,
(b) g = 2, (c) g = 3, (d) g = 4, (e) g = 5, (f) g = 6, (g) g = 7, and (h)
g = 8. The number of nodes and mean degree for the three networks
are N = 1000 and 〈k〉 = 10.
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III. THE EFFECT OF RANDOM FORCE

A network of oscillators could be plagued by some external
random forces. The effect of such forces may be modeled by an
uncorrelated white noise [ηi(t)] applying to all nodes. Adding
this noise to Eq. (2), we have

θ̇i = K

N∑
j=1

aij sin(θj − θi) + ηi(t), i = 1, . . . ,N, (6)

where 〈ηi(t)〉 = 0, 〈ηi(t)ηj (t ′)〉 = 2Dδ(t − t ′)δij , with D be-
ing the variance or intensity of the noise. In our numerical
work, we choose a box distribution in the interval [−w/2,w/2]
for η, so that its variance is equal to D = w2/24. It can be
shown that by proper rescaling of the time variable, the effect
of parameters D and K can be included in a single parameter
g2 = D

K
[15], converting the dynamical equations to

dθi

dτ
=

N∑
j=1

aij sin(θj − θi) + gξi(τ ), (7)

where τ = Kt is the rescaled time variable and ξi(τ ) :=
ηi(t)/g is a random variable in the interval [−1/2,1/2].

Numerical integration of Eq. (7) is carried out by em-
ploying the Euler method for the deterministic part and Ito’s
algorithm [26] for the stochastic part. Figure 4 represents the
variations of the stationary order parameter [r(∞)] versus the
rescaled noise intensity g for the four network types: regular,
SF, ER, and WS (top panel for fully synchronized states and
bottom panel for phase-locked ones).

Upon inspecting this figure, one can extract two essential
results. (i) As shown in the top panel, for all four networks, the
order parameter, starting from a fully synchronized state with
r(∞) = 1, decreases monotonically when the noise is turned
on. The critical coupling (gc) at which synchrony among the
oscillators disappears is the greatest for the SF and the smallest
for the regular network. Therefore the coherent state in the SF
network lasts longer against noise than that in the ER, WS, and
regular networks with the same average degree and coupling
constant. The greater fragility of the fully synchronized state
in regular and WS networks can be explained in terms of

the formation of some local clusters in these networks. The
phase differences among different clusters of oscillators tend to
become large due to the effect of random forcing, hence leading
to a rapid decrease in the order parameter. The persistence of
the synchronized state in the SF network has been argued to be
related to the existence of few nodes with a very large number
of connections (hubs) in this type of network [15].

(ii) The bottom panel in Fig. 4 shows that for inhomoge-
neous phase-locked states in the WS network, the variation of
r(∞) versus noise is nonmonotonic. It remains almost constant
for small noise strengths and reaches a maximum in an interval
of reduced noise intensity. Therefore in these cases, instead of
playing a destructive role, noise promotes synchrony among
oscillators.

Noise-induced synchronization is also called stochastic
synchronization and its occurrence in WS networks can be
explained in terms of defect patterns in the steady states
of the Kuramoto model. Figure 5 represents the evolution
of correlation matrix density plots versus a reduced noise
intensity, g, for a specific steady state of a WS network with
four topological defects. It is shown in this figure thatwhen
noise is turned on, the defects resist it up to g ∼ 4, they begin
to disappear at g > 4, and they vanish completely at g ∼ 6.
The disappearance of defects enhances the homogeneity in
the system and, so, the synchrony among the oscillators. This
is more apparent in the probability distribution of correlation
matrix elements [p(D)] shown in Fig. 6. As the figure shows,
p(D) has two peaks, at D = 1 and −1, for g = 0. Upon an
increase in the noise intensity the two peaks move toward each
other, and at the onset of stochastic synchronization, g ∼ 6,
they emerge in one peak. At this point the variance of p(D)
reaches its minimum and, again, increases with increasing
noise strength. Figure 7 represents the complexity of WS,
ER, and SF networks in terms of reduced noise intensity. The
complexity is defined by the Shannon entropy of p(D) [27],

S =
(

−
m∑

i=1

pi ln pi

)
/ ln m, (8)

where m is the number of bins in the division of p(D) (m =
200 in this work). This quantity measures the ability of a

FIG. 7. (Color online) Left: Complexity of small-world network versus noise intensity for N = 1000 and 〈k〉 = 10. These plots correspond
to initial conditions leading to the helical state in parent regular networks with wavelength λ = 1000, 250, 100, and 10. Right: Complexity of
ER and SF networks versus noise intensity for N = 1000 and 〈k〉 = 10.
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FIG. 8. (Color online) Phase diagram of the noisy Kuramoto
model for an SW network with N = 1000 and 〈k〉 = 10, in g-p
space. gs [light-gray (green) line] and gc [dark-gray (red) line] denote
the noise strengths at the onsets of stochastic synchronization and
desynchronization, respectively.

network both to synchronize as a whole (integration) and,
meanwhile, to preserve the independence of its subsystems
(segregation). This intermediate regime with a high complexity
is desirable for functioning of real neural networks.

In the top panel in Fig. 7, we compare the complexity of
the Kuramoto model of a WS network for different initial
conditions, leading to the patterns shown in Fig. 3. This
plot shows that the complexity is larger for the patterns with
greater spatial inhomogeneity (corresponding to the helical
patterns with smaller wavelength in the regular networks), and
these patterns are more robust against noise. By applying the
noise, the complexity remains more or less unchanged until
the the onset of stochastic synchronization at which shows a
sudden fall. Beyond this point, the complexity tends to rise
and reaches to a maximum at the noise strength by which
the synchronization vanishes. On the contrary, for ER and SF
networks, shown in the bottom panel of Fig. 7, the complexity
monotonically raises with noise strength and reaches to a
maximum at the onset of the vanishing of synchronization.

Finally, we investigate the occurrence of stochastic syn-
chronization in terms of the link rewiring probability p. We
found that the value of the noise strength at which stochastic
synchronization occurs reaches a maximum at p ∼ 0.02 and
then decreases with increasing p and vanishes at p ∼ 0.17. For

p > 0.17, the behavior of the noisy Kuramoto dynamics in an
SW network is similar to that in random networks. Figure 8
depicts the phase diagram for an SW network with N = 1000
and 〈k〉 = 10, in g-p space.

IV. CONCLUSION

In summary, we have found that an SW network of
similar phase oscillators communicating with each other by
Kuramoto coupling shows novel behaviors. Unlike ER and
SF networks, this system fails to reach a fully synchronized
state for any arbitrary initial conditions. Moreover, driving
it with uncorrelated white noise reveals the occurrence of
stochastic synchronization, a phenomenon through which a
random force induces synchrony among the oscillators. We
report that the reason for this phenomenon lies in the stable
helical patterns in the regular networks from which the SW
networks are built. Rewiring a regular network of similar
phase oscillators with a periodic helical pattern results in
complex inhomogeneous states in the resulting SW network.
The existence of such stable inhomogeneous patterns in SW
networks, sometimes appearing as topological point defects
and also as aperiodic helical patterns, prevents the network
from reaching full synchrony. These patterns persist against
the noise at low noise intensities. However, external random
forces of moderate strengths are able to destroy these patterns
in favor of more homogeneous states, hence enhancing the
synchronization among oscillators. We have computed the
complexityof the SW network in the case of inhomogeneous
pattern formation and shown that the complexity of such states
is higher than that of ER and SF networks, for a noise strength
less than the onset of stochastic synchronization. Therefore,
as a model for neural networks, this finding shows that the
functioning of such systems can be more efficient in the
presence of moderate noise. Generalization of the above results
to the more realistic case in which the coupling constants
(coefficients of periodic couplings) are normalized to the
degree of the nodes is currently under investigation. We hope
that our results will shed light on the reason why SW networks
are so ubiquitous in natural systems.
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