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Exploring the low-energy landscape of large-scale signed social networks
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Analogously to a spin glass, a large-scale signed social network is characterized by the presence of disorder,
expressed in this context (and in the social network literature) by the concept of structural balance. If, as we
have recently shown, the signed social networks currently available have a limited amount of true disorder (or
frustration), it is also interesting to investigate how this frustration is organized, by exploring the landscape of
near-optimal structural balance. What we obtain in this paper is that while one of the networks analyzed shows
a unique valley of minima, and a funneled landscape that gradually and smoothly worsens as we move away
from the optimum, another network shows instead several distinct valleys of optimal or near-optimal structural
balance, separated by energy barriers determined by internally balanced subcommunities of users, a phenomenon
similar to the replica-symmetry breaking of spin glasses. Multiple, essentially isoenergetic, arrangements of these
communities are possible. Passing from one valley to another requires one to destroy the internal arrangement of
these balanced subcommunities and then to reform it again. It is essentially this process of breaking the internal
balance of the subcommunities which gives rise to the energy barriers.
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I. INTRODUCTION

Signed social networks represent an interesting class of net-
works at the interface between network theory, social sciences,
and statistical physics [1–7]. In these networks, the nodes
represent the individuals and the edges can assume a positive or
a negative sign according to the type of relationship established
between pairs of individuals: a positive edge represents a form
of friendship-collaboration-trust (“I like”), while a negative
edge represents aversion-competition-mistrust (“don’t like”).

Like in an Ising spin glass, the presence of negative
edges introduces frustration in the network, which for social
networks is associated to a property called structural balance,
introduced by Heider in [8], then generalized and formulated
in graphical terms by Cartwright-Harary in [9]. According to
the theory proposed by Heider, individuals tend to establish
relations that avoid tensions: this can be condensed in the
statement “the enemy of my enemy is my friend” (and similar,
equivalent statements; see, e.g., Fig. 1 of [2]). When these
social interactions are described through signed networks,
the theory can be reformulated in terms of frustration of
the cycles which are present in the corresponding signed
graphs [9]. In particular, all cycles with an odd number of
negative edges (hereafter called negative cycles) are frustrated:
they do not obey Heider’s principle and they contribute
to the global frustration of the whole network. Since the
concept of frustration is formally identical to the one used
in spin glass theory [10], also the notion of structural balance
admits a statistical physics analog. Exact structural balance,
in particular, corresponds to lack of frustration, as in a Mattis
model [11].

In this model the negative edges form only positive cycles,
and hence the disorder they introduce into the system is only
apparent and can be completely eliminated by equivalence
transformations called gauge transformations [12]. On the
contrary, the frustration cannot be eliminated by equivalence
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transformations; hence it is sometimes referred to as true
disorder.

In the general case, computing the structural balance
of a signed social network corresponds to computing the
ground state of a (nonplanar) Ising spin glass, which is
a well-known NP-hard problem [13,14]. In fact, in social
network theory a common approach to overcome this difficulty
has been to focus on the simplest cyclic motif potentially
encoding frustration, namely triangles of pairwise relations,
comparing the frequency of positive and negative triangles
[7,15]. However, the determination of the level of balance
cannot always be reduced to the count and characterization
of local motifs. If for all-to-all networks [1,5] triangles are
a reliable measure of structural balance, for heterogeneous
networks (like real social networks) it is not clear to what extent
counting triangles reflects the structural balance (which is a
global property [6], in the Cartwright-Harary generalization).

For this purpose, in [2], exploiting the analogy between
signed social networks and Ising spin glasses we have
computed structural balance using algorithms inspired by
the literature on ground state search. On the signed social
networks currently available (which can reach sizes of 105

nodes), these calculations have proved quite effective (with a
guaranteed precision of 5% in the value of structural balance),
and have allowed one to conclude that these networks are
extremely balanced, much more than expected from random
edge sign distributions. In spin glass terminology, this result
can be restated by saying that the social networks have a
limited amount of true disorder (or frustration) and a significant
amount of apparent disorder.

The algorithm we have used (described in some detail in [2];
see also [16]) has an heuristic character, hence in order to
obtain reliable results it has to be run many times, changing the
initial conditions and the random seeds. In statistical physics
terminology, each such run corresponds to a replica of the
system. As the “cooling” schedule differs from replica to
replica, the level of structural balance, i.e., the energy reached
(which typically corresponds to a local minimum), may differ
from one replica to the other.
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The purpose of this paper is to use the large amount of
independent replicas produced in this way to try to obtain
a description of the low-energy landscape of the system,
i.e., of the landscape of near optimal balance of the social
networks. In statistical physics, in the presence of frustration
the low-energy landscape is usually rugged and contains a lot
of useful information on the properties of the spin glass. For
example, if the system has multiple distinct valleys of nearly
identical energy separated by energetic barriers, then it is said
to have a replica symmetry breaking picture [17], meaning
that ergodicity is broken and different cooling procedures
lead to different, isoenergetic (or nearly isoenergetic), minima
separated by energy barriers. Some other times, instead, it
may happen that the landscape is funneled around a single
“dominant” valley, possibly surrounded by a plethora of local
minima of little significance (and progressively higher energy).
The two different pictures are both observed on the two social
networks considered in this study. Most interestingly, we can
also obtain insight on the origin of these differences in the
landscape. In the case of multiple competing valleys, in fact,
it is possible to isolate internally balanced subcommunities
whose orientation with respect to the rest of the network
changes passing from one valley to another. The sample paths
connecting one valley to the other require one to destroy
the internal balance of (some of) these subcommunities and
then to reform it again in the opposite orientation. It appears
that the energy barriers between the near-optimal valleys is
largely due to this process of breaking the internal balance
of the subcommunities. In the case of funneled landscape, no
internally balanced subcommunity can instead be observed.
In any case, in both pictures all low-energy replicas are
sufficiently close to each other, a situation which corresponds
to a “partially ferromagnetic” spin glass, coherently with
the large fraction of positive edges, as well as with the low
frustration that characterizes these networks.

II. SIGNED SOCIAL NETWORKS AND THEIR
STRUCTURAL BALANCE

In this work we consider the following two signed social
networks:

(i) Epinions: trust-distrust network among users of product
review website Epinions [15,18].

(ii) Slashdot: friend-foes network of the technological news
site Slashdot (Zoo feature) [19,20].

Both are downloadable from the Stanford Network Analy-
sis Platform (http://snap.stanford.edu/). Numbers of nodes (n),
edges (m), and edge signs are provided in Table I, where we
report also the data for the largest two-component subnetwork
on which all the analysis has been performed. Indeed, leaves
can be removed since they are not involved in cycles, hence
they do not contribute to frustration. Further details on these
networks are provided in [15]; see also [20] for Slashdot.

Call s = [s1 . . . sn]T with si ∈ {±1} = B2, i = 1, . . . ,n, the
“spin” variables associated to the nodes (individuals) of the
network. Let also J be the n × n symmetric matrix of entries
Jij which represent the undirected relationships between
nodes si and sj (friendship: Jij = +1; hostility: Jij = −1).
Computing the global structural balance means assigning a
+1 or a −1 to the nodes in such a way as to minimize the

TABLE I. Social networks. Main features of the two networks: n

and m are the number of nodes and edges of the undirected graph. The
two-component subnetwork has been obtained considering only the
largest connected component and removing all leaves. In this paper
relationships are always represented as mutual, i.e., the edges are
undirected.

Original network

Network n m No. of − No. of +
Epinions 131828 841372 123705 717667
Slashdot 82144 549202 124130 425072

Largest two-component subnetwork

Network n m No. of − No. of + %−
Epinions 59235 641734 106286 535448 16.5
Slashdot 52048 468523 112023 356500 23.9

energy function:

h(s) =
∑
(i,j )

(1 − Jij sisj )/2, (1)

where the summation runs over all adjacent pairs of nodes. In
matrix form (1) is

h(s) = m − 1
2 sTJ s.

The network is exactly balanced when there exists s ∈ B
n
2 such

that all terms in (1) can be made simultaneously equal to zero.
If this is not the case, then global balance becomes the solution
of a Boolean optimization problem,

δ = min
s∈B

n
2

h(s) = min
s∈B

n
2

(
m − 1

2 sTJ s
)
. (2)

In correspondence of so = argmins∈B
n
2
h(s), the residual pos-

itive terms in (1) correspond to the least number of un-
balanced pairwise relationships between nodes [i.e., the
frustrations of the spin glass Hamiltonian (1) in its ground
state].

For the networks considered in this study an heuristic
estimate of δ was carried out in [2]. Recall from [2] that the
algorithm we apply uses the idea of gauge transformations
as a way to progressively eliminate the apparent disorder
in the adjacency matrix J ; see [2] for the details. The
outcome of the algorithm is a gauge-equivalent adjacency ma-
trix Jσ = TσJ Tσ , where the diagonal matrix Tσ = diag(σ ),
σ = [σ1, . . . ,σn], σi = ±1, is chosen so as to minimize the
number of negative entries of Jσ (transformations J → Jσ

are called gauge transformations in the statistical physics
literature [12]). The practical (iterative) heuristic construction
of Tσ is explained in the Supplementary Notes of [2].

The optimization procedure is repeated many times, starting
from different initial points (independently and randomly
chosen). Denote δup = mink δ(k) the best estimate obtained for
the ground state energy over all replicas. Consider an energy
band of width ε above δup. For both networks ε/δup ∼ 0.6% is
chosen, meaning a few hundreds of energy levels above δup are
considered; see Table II. Only replicas reaching the interval
[δup, δup + ε] are retained for further analysis. The number
of such replicas is r = 606 for Epinions and r = 5557 for
Slashdot; see Table II. The tight gap between the lower (δlow)
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TABLE II. Structural balance. For the networks of Table I, we
report a lower and an upper bound (δlow and δup) on the true structural
balance (data from [2]). The high ratio δup/δlow shows that indeed our
calculations are approaching sufficiently close the true ground state
energy. By construction, δup = mink δ(k) over all replicas considered,
and only the r replicas of energy δ(k) ∈ [δup, δup + ε] are considered.

δlow δup δup/δlow ε r

Epinions 50452 50806 0.9930 310 606
Slashdot 70014 73604 0.9512 450 5557

and upper (δup) estimate for δ (see Table II) guarantees that
these replicas are indeed low-energy minima sufficiently close
to the true value of structural balance.

The histogram of the values of energies and the (relative)
Hamming distances between these minima are reported re-
spectively in Fig. 1 and in Fig. 2 for the two networks. A
first comparison of these energies shows a significant differ-
ence between the two networks: the histogram for Epinions
reports only a single broad group, whereas the histogram for
Slashdot shows three peaks; see Fig. 1. If we compute the
relative Hamming distances between each pair of replicas (see
Fig. 2), the two networks still present a different behavior: for
Epinions the minima are all close one to the other (Hamming
distances are distributed like a single Gaussian peak); on the
contrary, several peaks can be identified among the minima we
have found for Slashdot.

It is worth noting that, since the energy has a global spin
flip symmetry [i.e., h(s) = h(−s)], the Hamming distances
d(s(1),s(2)) and d(s(1), − s(2)) are not distinguishable. This
amounts to saying that only relative distances between 0 and

FIG. 1. (Color online) Distribution of the energies for all near-
optimal replicas. The leftmost bar of each histogram corresponds to
δup.

FIG. 2. (Color online) Relative Hamming distance between low-
energy replicas.

1/2 can be considered (analogously to the Ising spin glass
case). We follow this principle throughout the paper.

III. COMPUTATION OF THE LOW-ENERGY
SPIN PATTERNS

Since we can expect that each replica represents a different
local minimum in the energy landscape, we can explore the
distribution of the frequencies of the sign with which a spin
appears in the r replicas: in particular, if s(1), . . . ,s(r) are the
configuration states of the minima in the r replicas, for each
spin i we can define

νi = 1

r
min

{
r∑

k=1

1 − s
(k)
i

2
,

r∑
k=1

s
(k)
i + 1

2

}
,

where the two ratios represent the number of replicas in which
the ith spin has negative and positive sign, respectively. For
each value of ν between 0 and 1/2 (the histograms stop at
ν = 1/2 because of the global spin flip symmetry), the subset
W (ν) of spins which have νi = ν can be identified. For the
subgraph corresponding to W (ν), we calculate (i) the number
of spins n(ν), (ii) the number of connected components c(ν),
and (iii) the maximal size of these connected components z(ν).

Exploring the distribution of the frequency index c(ν) (see
the second panel in each row of Fig. 3), we can observe that
both networks have broad peaks around frequencies ν = 1/3
and ν = 1/2, meaning that the corresponding spins appear
flipped in a half or in a third of the low-energy replicas. The
peak at ν = 0 corresponds to spins with equal orientation in all
replicas; hence it constitutes a fixed “backbone” which does
not contribute to the variability.

A characterization of the two peaks at ν = 1/2 and
ν = 1/3 in the plot of the index c(ν) can be carried out
through a probabilistic model. By construction, the replicas
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(a) Epinions
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FIG. 3. (Color online) Indices n(ν), c(ν), and z(ν) for the two networks. The rightmost panel in each row reports the dimensions of the
connected components identified in the subgraph W (ν) of spins under the two peaks of c(ν) centered at ν = 1/3 and at ν = 1/2. Letters C1,
C2, and C3 indicate the three Slashdot communities identified in the spikes pointed to by the arrows.

are statistically independent. We may also expect that the
flipping components which belong to the peak at ν = 1/2 are
independent with respect to the flipping components around
ν = 1/3 (and vice versa). Under these assumptions, the two
peaks can be modeled separately [the plot of c(ν) is then
viewed as the overlap of two curves], considering the binomial
probability distribution B(r,p) as the theoretical distribution
for the variable rν for each peak:

P[rν = k] = ( r
k

)
pk(1 − p)r−k (3)

(where the value of p is fixed at p = 1/2 and p = 1/3 for the
two peaks). If Y (k) is a random variable representing the num-
ber of connected components (over a population of q flipping
components, q unknown) having ν = k/r , and assuming that
each connected component can flip independently, then

Y (k) ∼ B(q,P[rν = k]).

By (3), its expectation value is

E[Y (k)] = q
( r
k

)
pk(1 − p)r−k,

where the parameter q can be obtained by linear regression,
fitting the experimental data with k varying inside the support
of the peak. Once a level of significance α has been fixed,
we can select only spins which are in the central part of the
fitted peak with p value less than α, as determined through an
hypothesis test. The selected values of ν include only regions
where the fitting error is smaller or at least comparable with
the root mean square deviation (r.m.s.d.) of the data at each ν.

Extrapolating the connected subgraphs under the two
peaks (Table III reports the results of the probabilistic
model applied to the interpolation of these peaks), it is

TABLE III. Probabilistic binomial model for the spin frequencies.
Parameters of the fitting of the binomial probability distribution to
the broad peaks of c(ν) of spin frequencies ν = 1/2 and ν = 1/3; see
Fig. 3 (second panel of each row). Ranges are expressed as relative
to the total number of replicas. For Epinions the selected intervals
correspond respectively to ν ∈ [0.46, 0.50] and ν ∈ [0.31, 0.36].
For Slashdot, the test yields the intervals ν ∈ [0.49, 0.50] and
ν ∈ [0.32, 0.34].

Epinions
Parameter ν = 1/2 ν = 1/3

k/r range for fitting [ 263
606 , 303

606 ] [ 172
606 , 232

606 ]
Fitting parameter q 2378 642
r.m.s.d. 8 4
α 0.05 0.10
Selected region [ 279

606 , 303
606 ] [ 187

606 , 217
606 ]

No. selected components 2336 528

Slashdot

Parameter ν = 1/2 ν = 1/3
k/r range for fitting [ 2648

5557 , 2778
5557 ] [ 1762

5557 , 1942
5557 ]

Fitting parameter q 1740 447
r.m.s.d. 3 1
α 0.10 0.10
Selected region [ 2717

5557 , 2778
5557 ] [ 1807

5557 , 1897
5557 ]

No. selected components 1656 419
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possible to obtain statistics of the recurrent motifs which form
most of the variability of the spin configurations around a
ground state. A catalog of isoenergetic motifs (isoenergetic
alternatives for a ground state) we identified through this
interpolation is provided in Tables VI and VII (see also the
Appendix for more detailed characterization of these flipping
motifs).

IV. ANALYSIS OF THE LOW-ENERGY LANDSCAPES
FOR THE TWO NETWORKS

A. Epinions: A single valley

We can deduce from the histograms of Figs. 1 and 2
that all the minima of the Epinions network belong to the
same valley. As we move away from the bottom of the
valley (global minimum), the energy tends to grow. This
feature can be deduced from the analysis of the distance
among replicas versus energy of a replica reported in Fig.
4(a). The two-dimensional bar plot shows that, moving
away from the minimum of energy, the Hamming distance
increases monotonically. This means that the valley is char-
acterized by sufficiently regular ascending walls, and that
the basin of attraction of the global minimum is rather
broad.

The high degeneracy of the ground state, which is also
suggested by the sample trajectories of Fig. 4(b), is a well-
known feature of Ising spin glasses with bimodal bonds [21].
The flipping of the isoenergetic motifs we have identified
(see Tables VI and VII and Appendix) may explain the
broadening of the distribution of the Hamming distance. Apart
from these degeneracies, the Epinions network contains many
small disjoint motifs (scattered at all frequencies ν) whose
flipping slightly increases the energy. Their cumulative effect is
responsible for the energy difference between replicas, which
smoothly grows moving away from the ground state.

B. Slashdot and competing valleys of near-optimal balance

For Slashdot, the low-energy landscape is markedly differ-
ent: distinct peaks in the Hamming distances are clearly visible
(Fig. 2) and are related to the three valleys observed in the
energy histogram of Fig. 1(b). In fact, a scatter plot [Fig. 5(a)]
reveals that while the two valleys at higher energy are nearby
also in configuration space [cloud of points in the down-left
corner in Fig. 5(a)] both of them are far away from the lowest
valley (points in the upper-right corner). To confirm that indeed
this multivalley profile is not due to undersampling of the
low-energy landscape, the search for replicas in [δup, δup + ε]
was performed a large number of times (compare the two
values of r in Table II). Even increasing tenfold r no new
valley emerged for this network.

Looking at the spin frequencies of Slashdot [Fig. 3(b)]
we can also observe a feature absent in Epinions, namely the
presence of three sharp spikelike peaks for z(ν). If broad peaks
usually contain small connected components, sharp, spikelike
peaks in the plot of z(ν) are more likely to be associated to large
connected components whose spins are simultaneously flipped
in some of the replicas. A thorough analysis reveals that these
three peaks correspond in fact to three connected subnetworks
characterized by a high level of internal balance, higher than
with the rest of the network. In Table IV we report some
features of the corresponding subnetworks and in Fig. 6 we
draw their adjacency matrices and graphs. These subnetworks
are responsible for the formation of competing valleys of near-
optimal balance described earlier. In fact, while the internal
arrangement of their spins is usually frozen on each valley,
their relative orientation with respect to the rest of the network
may change passing from one valley to another, meaning
that all spins of a subnetwork are simultaneously flipped; see
Fig. 5(c). Computing a few sample trajectories from one valley
to another [Fig. 5(b)], we can observe the presence of an energy
barrier: the paths break the internal balance of some of the
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FIG. 4. (Color online) Epinions. (a) Distance among replicas vs energy of a replica. The replicas of Fig. 1(a) are binned into six bins
according to their energy, and the mean of the relative Hamming distances is computed. The vertical axis [and color (gray) code] represents
the mean over bins of the relative distances. The replicas of least energy are also closer, and the distance grows regularly with the energy. (b)
Sample minimal energy paths connecting the global and a local minimum. For visualization purposes, the trajectories are depicted as radially
distributed according to a polar coordinate, with the global optimum placed in the origin. The vertical axis [and color (gray) code] represents
the energy. The radius of the disks represent the average distance among the replicas in correspondence of the six bins of (a). The horizontal
parts on the paths correspond to isoenergetic flips.
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FIG. 5. (Color online) Slashdot. (a) Three valleys of minima corresponding to the three peaks in Fig. 1(b) are called low, medium, and
high, according to their energy. For each pair of minima s(i) and s(j ), the scatter plot shows differences in energy |h(s(i)) − h(s(j ))| versus the
relative Hamming distance d for both intra and intervalley peaks. The two valleys medium and high are near and both more distant from the
low valley. (b) A few sample trajectories connecting minima in different valleys. The radius of the disks corresponds to the average intravalley
distance among the replicas. The height of the trajectories is indicative of the energy barrier between the valleys. To improve readability, the
degenerate spin flips are not shown. (c) The three internally balanced communities Ci (described in Tables IV and V and Fig. 6) and their
average magnetization in the three valleys of near-optimal balance.

subnetworks before they are able to rearrange them again in
another manner. In terms of our social networks, the formation
of different valleys of near-optimal balance means the presence
of possible alternative “alliances” between the majority of
the users and a few internally balanced subnetworks of users
(not necessarily mutually friends among them). Fixing the
relationship with one such subnetwork constrains the sign
of the relationship with the other subnetworks. Different
arrangements lead to slightly different global levels of balance
for the whole network.

As already mentioned, a necessary condition for the spins
of a subnetwork to have constant sign relative to each other

TABLE IV. Slashdot balanced subnetworks: nodes and edges of
the three subgraphs Ci identified from Fig. 3. The row rest denotes
the complement to the Ci in J . Internal edges are those connecting
two nodes of the same Ci , while external nodes are those connecting
a node in Ci and one in Cj (or in rest). The Ci are visualized in
Fig. 6.

Nodes
Edges

Subnetwork nCi
+1 int. −1 int. +1 ext. −1 ext.

C1 855 4169 1362 6268 6587
C2 62 11 107 143 148
C3 58 7 197 443 1009
rest 51073 345510 102856 6752 7259

in all low-energy replicas (which means also to be flipped
simultaneously in all these near-optimal configurations) is that
the subnetwork has to have a high level of balance internally,
and a certain amount of frustration with respect to the rest of
the network. At low energies, in fact, this favors a constant
choice of spin orientation within the subnetwork which can,
however, vary from valley to valley.

Denote C1, C2, and C3 the three subnetworks of
Table IV (and rest their complement in the original signed
graph). By lumping together all nodes of each subnetwork, the
corresponding matrix of adjacencies (blocks ordered as C1,
C2, C3, and rest) is the following:

A =

⎡
⎢⎣

2807 16 −206 −129
16 −96 −1 −19
−206 −1 −190 −359
−129 −19 −359 242654

⎤
⎥⎦ , (4)

where the original amounts of positive and negative edges are

A(+/−)

=

⎡
⎢⎣

4169/1362 30/14 21/227 6217/6346
30/14 11/107 0/1 113/132
21/227 0/1 7/197 422/781
6217/6346 113/132 422/781 345510/102856

⎤
⎥⎦ .

(5)

Both C2 and C3 have a vast majority of internal negative
edges, see Fig. 6 and Table IV. In correspondence of the
optimal balance, the gauge transformed adjacency matrix for
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(a) C1 (b) C2 (c) C3

FIG. 6. (Color online) Slashdot: the three internally balanced subnetworks C1, C2, and C3 of Table IV. The adjacency matrices (first row)
and the corresponding signed graphs (second row) are shown. Blue (full) dots correspond to +1 edges, red (empty) to −1. In the corresponding
graph, blue (thick) lines correspond to +1 edges, red (thin) lines to −1. The color code for the nodes reflects the sum of the external edges:
blue (darker) means positive sum, red (lighter) negative, and white no external edges.

the subnetworks is

Aσ (+/−)

=

⎡
⎢⎣

5441/90 32/12 242/6 6726/5837
32/12 118/0 1/0 170/75
242/6 1/0 204/0 809/394
6726/5837 170/75 809/394 381167/67199

⎤
⎥⎦ ,

where it can be observed that the various Ci have very
few residual negative edges (in particular C2 and C3 have
none), meaning that indeed these subnetworks are internally
balanced. If we look at the structure of the adjacency matrices
of the Ci in Fig. 6, it is easy to understand why so many negative
edges disappear in the gauge transformed Aσ : the negative
edges are all in correspondence of the same users. This is
particularly visible in the adjacency matrix of C1: each row or
column is highly skewed towards positive or negative edges.
Such skewed sign distributions are the trademark for “apparent
disorder,” i.e., negative edges which can be eliminated by
means of gauge transformations and hence that do not spoil
global balance. In Slashdot, users with a high number of
negative edges are known as trolls [20]. Trolls do not add
tension to the network, as they are unanimously tagged as foes
by the other users. Looking carefully at Fig. 6 it is possible
to observe that the subnetworks C2 and C3, where negative
edges are the vast majority, have nevertheless all positive
cycles. In C2 all cycles have length 3 and pass through the
(positive) edge linking the two highly connected nodes. In C3,
instead, cycles have length 4 and are composed of four negative
edges.

Observing the pattern of signs (and sign flips) of the Ci

in the 5557 low-energy replica of Slashdot, a high degree of
regularity can be seen. Call s(j )

Ci
the spin configuration of the Ci

subnetwork in the j th low-energy replica, and nCi
the number

of spins of Ci . By construction, the relative Hamming distance
within the subnetwork

d
(
s(j )
Ci

,s(k)
Ci

) = [
1 − (

s(j )
Ci

)T
s(k)
Ci

/
nCi

]/
2

is always zero. The intervalley relative Hamming distance is
shown in Fig. 5(a). The “average magnetization” within a
subnetwork and within a valley is computed restricting the
computation to the sCi

spins and to the replicas falling into the
valley. If rlow is the number of replicas in the low valley, then
the average magnetization for the low valley is

〈sCi
〉low =

∑
k∈Ci

∑
j∈low

s
(j )
k

/
(rlownCi

),

and similarly for 〈sCi
〉medium and 〈sCi

〉high, i = 1, 2, 3.
These average magnetizations are shown in Fig. 5(c) and
Table V. It can be observed that for example the spins sC1 are
flipped passing from the low energy valley to the medium-high
energy valleys. These community-wide flips do not modify
the intravalley energy, but they alter the energy of the cut
set between the Ci’s and with the rest of the network. The
increase in energy passing from one valley to another is a
consequence of these changes. The cut sets between C1 and
C2 and between C2 and C3 are always negligible, while the cut
set between C1 and C3 can increase the energy considerably.
This happens when 〈sC1〉 and 〈sC3〉 are not solidary, i.e., in
the medium valley. This makes the most of the difference in
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TABLE V. Slashdot valleys: 〈sCi
〉low, medium, high is the average

magnetization of the subnetwork Ci (or of rest) in the three low-energy
valleys of Fig. 5.

〈sCi
〉 Valley

Subnetwork low medium high

C1 −0.712 0.712 0.712
C2 0.513 0.066 −0.663
C3 −0.517 −0.517 0.506
rest 0.797 0.804 0.807

energy between low and medium valleys. In the high valley,
instead, the magnetizations 〈sC1〉high and 〈sC3〉high are again
aligned. However, both are flipped with respect to the low
valley, and this reflects in the changes of energies in the cut sets
relative to the rest of the network. Remember that rest contains
a very large fraction of the network, and that it is highly

biased towards positive magnetization (see Table V), which
is essentially uninfluenced by flipping of small communities.
Nevertheless, the internal rearrangements inside rest due to the
flips of sC1 and sC3 induce a consistent increase of frustration
within rest. In summary, it appears that a feature instrumental
to the creation of separated energy valleys is the presence of
perfectly balanced subnetworks (like C2, C3 and, to a large
extent, also C1). These can be composed of friends as well as
of “declared” enemies: for what concerns structural balance,
the trolls of C2 and C3 play exactly the same role as the users
having many positive edges.

V. FINAL CONSIDERATIONS

The point of view taken in this paper, identify a signed social
network with a spin glass (both are signed graphs), allows
one to pass from a local viewpoint of pairwise relationships
between individuals to a global perspective of organization

FIG. 7. (Color online) Relative energy of the motifs flipping with frequencies ν = 1/2 and ν = 1/3. These motifs are grouped according
to their size. The gray scale (color online) represents their number. In all histograms the relative energy (energy through the cut set divided by
the corresponding number of edges) is concentrated around 0.5, meaning that half of the edges are frustrated in the ground state. Therefore, the
peaks at ν = 1/2 and ν = 1/3 contain mostly isoenergetic motifs. These are described in Tables VI and VII.
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of the signs in a given social network. A by-product of the
approach is that a wide range of concepts developed for spin
glasses can be used to investigate social networks. These
include a “natural” energy functional whose global optimum
corresponds to the value of structural balance in the network,
a direct identification of frustration with the “social stress”
at the basis of unbalance, and the possibility of evaluating
near-optimal possible arrangements using the tools developed
for the rough energy landscapes of disordered systems.

It is worth mentioning that one aspect which cannot be
studied with these tools is the clustering of a social network
into communities of friends [22]. In this case the communities
are identified by the nodes of the subgraphs connected by
+ edges, and are separated by − edges. As soon as the
system is not globally balanced, the number of such clusters
is certainly larger than 2, hence the bipartition associated to
an Ising spin is not enough for exact clustering (in fact the
subnetworks discussed for Slashdot are balanced subgraphs,
not communities of friends). See [23,24] for more details and
pointers to the literature on these clustering methods. It is
not clear to us if more complex models of spin glasses, with
more than two states (e.g., Potts models), can be used for this
scope.

The possibility of exploring the low-energy landscape of
the equivalent Ising model of large signed social networks is
an important tool for investigating some peculiarities of the
social interactions which take place inside these communities.
In the paper we have presented examples of what can be
achieved using a large number of low energy minima for the
characterization of two large-scale on-line networks, Epinions
and Slashdot.

In spite of a similar fraction of negative edges in the two
networks (16.5% for Epinions and 23.9% for Slashdot) and
of a similar low level of frustration (partially ferromagnetic
behavior), two quite different low-energy landscapes have
been identified: a single valley for Epinions and a set of three
competing valleys for Slashdot. We associate this different
qualitative behavior with the presence of exactly balanced
(and highly connected) subnetworks, whose internal balance
must be destroyed and reformed in order to pass from one
valley to another. It is precisely the presence of these balanced
subnetworks (and their arrangement with the rest of the
network) that leads to a partial breaking of ergodicity in
the system, and to the creation of energy barriers between
competing near-optimal valleys. It is worth observing that
these subnetworks are not necessarily composed by friends,
making the determination of energy barriers like these a
difficult task if one simply looks at the sign distributions on
the edges and subdivides the nodes into clusters.

These results represent a clear demonstration that, for
complex systems like large social networks, global properties
cannot be inferred by local or mean features: more sophisti-
cated analytical and computational tools must be developed
and applied.
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APPENDIX: ISOENERGETIC MOTIFS

Both the peaks at ν = 1/2 and ν = 1/3 described in
Fig. 3 contain a large number of small disconnected com-
ponents. For the two networks, the vast majority of these
connected components are isoenergetic. In Fig. 7 these
correspond to motifs having relative energy erel through the
cut set equal to 0.5, where the relative energy of each motif
M is computed as the energy through the cut set that isolates
the motif from the rest of the network, divided by the number

TABLE VI. Isoenergetic motifs identified under the peak at
ν = 1/2. The values c+

i and c−
i refers to the number of positive and

negative edges from the ith node to the rest of the network in the
gauge transformed Jσ . The motifs are classified according to their
size and then to the size of the cut set with the rest of the network.
In the case marked with the asterisk, one of the triangles on the top
presents a frustration. The pictures reported in the table represent
examples of the corresponding motifs: thick line indicates a positive
edge, thin line a negative edge.

Motif M c+
1 c−

1 c+
2 c−

2 Epinions Slashdot

1 1 – – 1928 1469
2 2 – – 180 155
3 3 – – 40 41
4 4 – – 15 14
5 5 – – 6 6
6 6 – – 2 6
7 7 – – 1 2
8 8 – – 3
9 9 – – 2

17 17 – –
24 24 – –

1 node Total 2172 1698
1 1 1 1 13 5
1 1 2 2 5 2
1 1 3 3 2 2
1 1 4 4 1 1
1 1 5 5 2
2 2 2 2 1 1
2 2 3 3 1

2 nodes Total 24 12
1 1 0 0 2 4∗

2 2 0 0 2
4 4 0 0 1
1 1 1 1 1 2

1 1 2 2 1

3 nodes Total 4 9
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TABLE VII. Isoenergetic motifs identified under the peak at
ν = 1/3. The c+

i and c−
i are the positive and negative edges of the

ith node through the cut set separating a motif from the rest of the
network in the ground state. In the case marked with a double asterisk
the two nodes are interconnected by a negative edge. The pictures
reported in the table represent examples of the corresponding motifs:
thick line indicates a positive edge, thin line a negative edge.

Motif M c+
1 c−

1 c+
2 c−

2 Epinions Slashdot

1 1 – – 367 245
2 2 – – 51 53
3 3 – – 17 13
4 4 – – 2 6
5 5 – – 1
6 6 – – 1 1
9 9 – – 1

15 15 – – 1
17 17 – – 1
20 20 – – 1

1 node Total 442 318
1 1 1 1 2
1 1 2 2 1
1 1 3 3 2
2 2 3 3 1
1 0 0 1 3 1
2 1 0 1 1
1 0 0 1 1∗∗

2 nodes Total 9 3

1 0 0 1 1 1

3 nodes Total 1 1

of edges in the cut set itself:

erel
M =

∑
i∈M
j /∈M

(1 − Jij sisj )/

(
2

∑
i∈M

ci

)
,

with ci the connectivity through the cut set of the ith node of
the motif M (c+

i and c−
i are the corresponding numbers of +1

and −1 edges of ci). Hence erel
M = 0 means that with respect to

the ground state the motif M has all “satisfied” edges across
the cut set, erel

M = 0.5 means it has 50% of frustrated edges,
and erel

M = 1 means 100% of edges frustrated. A catalog of the
isoenergetic motifs under the two peaks is given in Tables VI
and VII.

While the presence of isoenergetic motifs under the ν = 1/2
peak is straightforward to explain, the abundance of such
motifs under the ν = 1/3 peak is less obvious and requires an
extra bit of investigation. On what follows we restrict ourselves
to the size-1 isoenergetic motifs of Epinions (in this case the
motif M is represented and indicated by its only node i). For
each low energy replica σ (with the relative gauge-transformed
adjacency matrix Jσ ) and for each node i (size-1 isoenergetic
motif under either the peak at ν = 1/2 or that at ν = 1/3)
we calculate the percentage of edges which change sign with

respect to the initial matrix J . This value is given by the ratio

ρ̄(σ,i) =
∥∥J (i,·)

σ − J (i,·)∥∥
1

2‖J (i,·)‖1
,

where J (i,·) represents the ith row of the matrix and ‖ · ‖1 the
1-norm. We can easily attribute a plausible meaning to some
of the values that this ratio can assume, as follows:

(i) ρ̄(σ,i) = 0: the gauge transformation σ flips neither node
i nor its neighbors.

(ii) ρ̄(σ,i) = 1/2: the gauge transformation σ flips only half
(mostly one) of the neighbors of node i.

(iii) ρ̄(σ,i) = 1: the gauge transformation σ flips the node
i (or, less likely, all its neighbors).

In order to compare two differently populated peaks at ν =
1/2 and ν = 1/3, for each σ we must normalize the counts for
the three cases:

ρ0(σ ) = N0

N
, ρ1/2(σ ) = N1/2

N
, ρ1(σ ) = N1

N
,

where Nk is the number of i such that ρ̄(σ,i) is equal to k and
N = ∑

k Nk . As most pairs (σ,i) are such that ρ̄(σ,i) assume
the values 0, 1/2, or 1, we have the “empirical” constraint:

ρ0(σ ) + ρ1/2(σ ) + ρ1(σ ) ≈ 1 ∀σ. (A1)

The comparison of the values obtained for Epinions is shown
in Fig. 8. For ρ1 (bottom panel) the plots at ν = 1/2 and at
ν = 1/3 almost totally overlap. The top plot for ρ0 which, as
already mentioned, refers to both node and neighboring nodes
unchanged in a replica, instead shows a systematic difference
(less frequent in ν = 1/3 than in ν = 1/2). From Eq. (A1),

0.25

0.3

0.35

0.4

0.45

ρ 0

0.18

0.2

0.22

0.24

ρ 1/
2

5.079 5.08 5.081 5.082 5.083 5.084 5.085

x 10
4

0.3

0.35

0.4

0.45

ρ 1

Energy of a replica

ν=1/2

ν=1/3

FIG. 8. (Color online) Epinions: origin of the size-1 motifs for
ν = 1/2 and ν = 1/3. Plots of the ρ0, ρ1/2, and ρ1 ratios for the
2172 isoenergetic size-1 motifs identified under the peak at ν = 1/2
(circles) and for the 442 size-1 isoenergetic motifs belonging to
the peak at ν = 1/3 (points). The case ρ1/2 (referring to gauge
transformations that change 50% of the edges through the cut set)
is more frequent under the ν = 1/3 peak than under the ν = 1/2 one.
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such a difference is compensated by an equal but opposite dif-
ference in the middle panel for ρ1/2. Recalling that ρ1/2 refers
to the case in which 50% of the neighboring nodes of node i are
flipped, then we can conclude that the peak at ν = 1/3 appears

to be due, at least to some extent, to a bulk of the network which
is less “rigid” than under the ν = 1/2 peak and hence allows
for more frequent internal rearrangements. It is worth noting
that this behavior is uniform across all low-energy replicas.
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