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Junctions and spiral patterns in generalized rock-paper-scissors models
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We investigate the population dynamics in generalized rock-paper-scissors models with an arbitrary number
of species N . We show that spiral patterns with N arms may develop both for odd and even N , in particular in
models where a bidirectional predation interaction of equal strength between all species is modified to include
one N -cyclic predator-prey rule. While the former case gives rise to an interface network with Y-type junctions
obeying the scaling law L ∝ t1/2, where L is the characteristic length of the network and t is the time, the latter
can lead to a population network with N -armed spiral patterns, having a roughly constant characteristic length
scale. We explicitly demonstrate the connection between interface junctions and spiral patterns in these models
and compute the corresponding scaling laws. This work significantly extends the results of previous studies of
population dynamics and could have profound implications for the understanding of biological complexity in
systems with a large number of species.
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I. INTRODUCTION

Nonhierarchical interactions between individuals of dif-
ferent species seem to be essential to the development of
the enormous biodiversity observed in nature. Rock-paper-
scissors (RPS)-type models, incorporating some of the crucial
ingredients associated with the dynamics of a network of
competing species, are a powerful tool in the study of complex
biological systems. In its simplest version, the RPS model
describes the evolution of three species which cyclically
dominate each other [1–3] (see also [4,5] for the pioneer work
by Lotka and Volterra). If the population mobility is small
enough, the spatial RPS model has been shown to lead to the
stable coexistence of the three species with the formation of
complex spiralling patterns [1,2].

The basic interactions behind the RPS game are motion,
reproduction, and predation, but generalizations incorporating
new interactions and further species have also been proposed
in the literature [6–14]. In [11] the standard cyclic RPS model
was generalized to an arbitrary number of species and it was
shown that the emerging patterns, in numerical simulations of
population dynamics in a cubic grid with periodic boundary
conditions, depend crucially on whether the total number of
species is even or odd. While an odd number of species,
if the mobility is not too large, leads to the formation of
complex spiralling patterns whose characteristic length L

remains roughly constant in time, an even number of species
is associated to the formation of partnership domains where
several species coexist, whose dynamics is controlled by
interactions of equal strength between species on either side
of the interfaces separating adjacent domains. This has been
shown [14] to lead to a scaling regime where the characteristic
scale of the network L grows as L ∝ t1/2, which is the typical
scaling law associated with grain growth and the dynamics of
soap froths [15–22].

In the present paper we shall consider a broad family of
RPS-type models, with an arbitrary number of species N ,

which may lead to the emergence of spiral patterns both
for odd and even N . In [14] specific realizations leading
to a L ∝ t1/2 scaling law have been investigated. This law
was shown to accurately describe the macroscopic population
dynamics of complex networks without junctions or with
Y-type junctions provided that the dynamics is curvature
driven, with competing species on adjacent interface domains
having the same (average) strength. In the present paper we
shall extend the above results to models leading to higher
dimensional junctions, and investigate the connection between
these interface junctions and the spiralling patterns which
occur under cyclic competition between individuals from
different domains. Models with an odd or even number of
species shall be considered.

II. GENERALIZED RPS MODELS WITH ZN SYMMETRY

Consider a model where individuals of various species and
some empty sites are initially distributed randomly on a square
lattice with N sites. The different species are labeled by i (or
j ) with i,j = 1, . . . ,N , and we make the cyclic identification
i = i + k N where k is an integer. The sum of the number of
individuals of the species i (Ii) and empty sites IE is equal
to N . At each time step a random individual (active) interacts
with one of its four nearest neighbors (passive). The unit of
time �t = 1 is defined as the time necessary forN interactions
to occur (one generation time). The possible interactions are
classified as motion (active and passive switch their positions),

i � → � i,

reproduction (active reproduces filling an empty site),

i ⊗ → ii,

or predation (active predates the passive generating an empty
site),

i (i − α) → i ⊗ or i (i + α) → i ⊗ ,
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FIG. 1. (Color online) Scheme of all predator-prey interactions
allowed in a four-species realization of our model.

where � may be any species (i) or an empty site (⊗), α =
1, . . . ,αmax with αmax = N/2 if N is even or αmax = (N −
1)/2 if N is odd.

We denote the corresponding probabilities by mi (motion),
ri (reproduction), pLiα (left-handed predation), and pRiα

(right-handed predation). In this paper we assume that mi = m,
ri = r , pLiα = pLα , and pRiα = pRα for all i, so that all the
models have a ZN symmetry. We also assume that N = 5122

and that the number densities of the various species ni = Ii/N
are all identical at the initial time. The number density of
empty spaces, nE = IE/N , is initially set to be equal to 0.1.
Figures 1 and 2 show a scheme of all predator-prey interactions
allowed in four- and five-species realizations of our model,
respectively. Except for the labeling of the different species,
Fig. 1 is invariant under a rotation by an angle of 2π/4 thus
leading to a Z4 symmetry. The same is true for Fig. 2 with 2π/4
and Z4 replaced by 2π/5 and Z5, respectively. Full arrows
and dashed arrows indicate left- and right-handed predations,
respectively (with probabilities pLα and pRα with α = 1,2). In
the four-species case i + 2 or i − 2 coincide and, consequently,
pL2 = pR2 as indicated by the dashed-dotted arrow in Fig. 1.
At each time step the active and passive individuals as well
as the corresponding action are randomly assigned with the
following probabilities:

i(i + 1)
pR1−→ i ⊗ , i(i − 1)

pL1−→ i ⊗ ,

i(i + 2)
pR2−→ i ⊗ , i(i − 2)

pL2−→ i ⊗ ,

i⊗ r−→ ii, i� m−→ �i,

FIG. 2. (Color online) Scheme of all predator-prey interactions
allowed in a five-species realization of our model.

FIG. 3. (Color online) Snapshots of simulations of models I4
(top left), II4 (top right), I5 (bottom left), and II5 (bottom right).
The snapshot of the simulation of model I4 was obtained after 1000
generations while the others were taken after 20 000 generations.

implying that the evolution of a population network is
stochastic and not fully deterministic.

A. Spiral patterns

Consider a model with N = 4 as a particular example of a
model with an even number of species. If pL1 = p and pR1 =
pL2 = pR2 = 0 (model I4, video I4 of the Supplemental
Material [23] and top left panel of Fig. 3), then the partnerships
{1,3} and {2,4}, between species which do not interact through
predation, are formed in different spatial regions. In contrast,
if pL1 = pL2 = pR2 = p and pR1 = 0 (model II4, video II4
of the Supplemental Material [23] and top right panel of
Fig. 3) then there are no viable partnership domains and
spiral patterns with four arms do form as a consequence of the
left-handed predation between neighboring species. For a fixed
set of rules, the dynamics of the models may be very different
for even and odd number of species. Consider a model with
five species (N = 5) with pL1 = p and pR1 = pL2 = pR2 = 0
(model I5, video I5 of the Supplemental Material [23] and
bottom left panel of Fig. 3). In this model the species tend
to organize themselves into spiral patterns whose five arms
are dominated by individuals of a species which does not
interact with individuals of the dominant species of the two
adjacent arms. For example, individuals of the species 1 have
as partners individuals of the species 3 and 4 (note that
the colors blue, green, red, yellow, magenta, and white in
Figs. 3 and 4 represent the species, 1, 2, 3, 4, 5, and empty
sites, respectively). The fact that individuals of the species i

predate individuals of the species i − 1 (e.g., individuals from
species 4 predate individuals from species 3) is responsible
for the spiral patterns in this model, even though predator
and prey are never the dominant species in adjacent arms.
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FIG. 4. (Color online) Snapshots of simulations of models III4
(top left), IV4 (top right), III5 (bottom left), and IV5 (bottom right).
The snapshots were taken after 5000 generations.

On the other hand, if pL1 = pL2 = pR2 = p and pR1 = 0
(model II5, video II5 of the Supplemental Material [23] and
bottom right panel of Fig. 3) then spiral patterns with five
arms with a single dominant species do form, having as
immediate neighbors individuals from its predator (inside) and
prey (outside) species. These results can be easily extended to
an arbitrary even or odd number of species by considering
models with pL1 = p and pR1 = pLα = pRα = 0 (model I) or
pR1 = 0 and pL1 = pLα = pRα = p (model II) for α �= 1. The
even/odd asymmetry which is present in the case of model I
completely disappears in the case of model II. The results
shown in Fig. 3 were obtained with m = 0.5, r = 0.35, and
p = 0.15. We have carried out a large number of simulations,
for a wide range of parameters, and verified that the same
qualitative results also hold for other choices of the parameters
m, r , and p.

B. Multiple junctions

Now let us consider a model with pL1 = pR1 = p/κ and
pLα = pRα = p for α �= 1. In this class of models the cyclic
nontransitive hierarchical predator-prey rule between first
neighbors does not exist and each species can hunt and be
chased by any other. In this case N different domain types with
a single dominant species arise, separated by interfaces whose
dynamics is curvature driven and controlled by interactions
of identical strength between competing species. Figure 4
shows snapshots of four different simulations with N = 4 and
κ = 1 (model III4, top left, and video III4 of the Supplemental
Material [23]), N = 4 and κ = 20 (model IV4, top right,
and video IV4 of the Supplemental Material [23]), N = 5
and κ = 1 (model III5, bottom left, and video III5 of the
Supplemental Material [23]), N = 5 and κ = 20 (model IV5,

FIG. 5. Spatial distribution of the empty spaces of the snapshots
shown in Fig. 3 [models I4 (top left), II4 (top right), I5 (bottom left),
and II5 (bottom right)].

bottom right, and video IV5 of the Supplemental Material
[23]). If κ = 1 then the predation rate pLα = pRα = p does not
depend on α. In this case, every interface has the same effective
tension, leading to the formation of an interface network with
Y-type junctions which can be seen in the videos III4 and III5
of the Supplemental Material [23] and in the left panels of
Fig. 4. On the other hand, if κ > 1, the effective tension of the
interfaces separating individuals from species i and i ± α is
not the same for α = 1 (smaller effective tension) and α �= 1
(larger effective tension). This results in the suppression of
the interfaces with larger effective tensions, and may lead to
the formation of stable N -dimensional junctions, as shown in
videos IV4 and IV5 of the Supplemental Material [23] and
in the right panels of Fig. 4. As demonstrated in [14], the
average velocity of this type of interfaces is proportional to
their curvature. As a result the network is expected to attain a
scaling regime where the characteristic length of the network L

obeys the scaling law L ∝ tλ with λ = 1/2. Although this has
been explicitly demonstrated in [14], in the case of interface
networks without junctions or with Y-type junctions, we shall
provide numerical evidence that the same scaling law also
applies to interface networks with higher-order junctions. All
simulations shown in Fig. 4 were performed with m = 0.15,
r = 0.15, and p = 0.70. Although these values were found to
be the most adequate for visualization purposes, we verified
that many other choices of the parameters m, r , p, and κ would
provide similar qualitative results.

C. Empty spaces distributions

The black dots in Figs. 5 and 6 represent the distribution
of the empty sites of the snapshots shown in Figs. 3 and 4.
These vacancies are a result of predation between individuals
from the competing species. Note that in the models I4, III,
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FIG. 6. Spatial distribution of the empty spaces of the snapshots
shown in Fig. 4 [models III4 (top left), IV4 (top right), III5 (bottom
left), and IV5 (bottom right)].

and IV, they are located at the domain borders whereas they are
spread out over the entire lattice in the case of models I5 and
II. Furthermore, the number density of empty spaces is much
smaller in the case of model I5 than in the case of model II. This
happens because in model I the species organize themselves to
minimize the interactions (other than motion), while in model
II adjacent arms are dominated by individuals of interacting
species. In fact, model II is the simplest generalization of the
standard RPS model to an arbitrary number of species.

D. Scaling laws

The average evolution of I−1
E with time t (over 25

simulations with different initial conditions), in the case of
models I4, III, and IV, is shown in Fig. 7. The scaling law
I−1
E ∝ tλ describes quite well the late time evolution of these
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FIG. 7. (Color online) Time evolution of I−1
E for models I4, III,

and IV.
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FIG. 8. (Color online) Time evolution of I−1
E for models I5 and II.

population networks, with λ = 0.460 ± 0.063 (model I4),
λ = 0.479 ± 0.038 (model III4), λ = 0.471 ± 0.040 (model
III5), λ = 0.483 ± 0.055 (model IV4), and λ = 0.489 ± 0.044
(model IV5). These results were obtained considering only the
network evolution for t > 100. No significant dependence of
the scaling exponents on the number of species and junction
dimensionality has been found. In the case of models I4, III,
and IV empty sites appear mainly at the interfaces, whose
average thickness does not change with time. Hence the
evolution with time of the characteristic length L may be
estimated as L ∝ I−1

E . The computed values of λ are all very
close to the λ = 1/2, thus extending the validity of the above
scaling law to complex interface networks with junctions
of dimensionality greater than 3. Note also that the scaling
regime is achieved earlier in the case of interface networks
with junctions (models III and IV), a feature also observed
in the case of cosmological domain wall networks [24]. The
dynamics of spiral patterns in models I5, II4, and II5 is
not curvature driven. After an initial period of fast variation
the number of empty sites becomes roughly constant. This
behavior is shown in Fig. 8, where the time evolution of I−1

E is
plotted for these models. The initial scaling regime is due to the
clustering of individuals of the same species to form spiraling
domains. After some time the characteristic size of the
network stabilizes as the spiral patterns achieve their stationary
size.

III. CONCLUSIONS

In this paper we investigated the population dynamics in
generalized RPS models with an arbitrary number of species,
demonstrating the following:

1. Spiral patterns with N arms may develop both for an odd
and even number of species N .

2. Interface networks with junctions of dimensionality
greater than 3 may form in models with a symmetric bidi-
rectional predation interaction between all the species, with
the characteristic length scale L of the network obeying the
standard scaling law L ∝ t1/2 associated with grain growth
and the dynamics of soap froths.

3. The simplest generalization of the standard RPS model
to an arbitrary number of species, including one asymmetric
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N -cyclic predator-prey rule, leads to a population network
containing N -armed spiral patterns with a nearly constant
characteristic length scale at late times.

This work generalizes the results of earlier investigations on
the evolution of biological populations and makes predictions
for the spatial structure and dynamics of population networks
whose evolution is described by generalized RPS models. Our
work is expected to provide a powerful framework for the

study of population dynamics and to drive the search for new
signatures of population dynamics on systems with a large
number of species.
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[6] G. Szabó, A. Szolnoki, and G. A. Sznaider, Phys. Rev. E 76,

051921 (2007).
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